On the Formal Semantics of Statecharts
(Extended Abstract) f

D. Harel»?3 A. Pnuelil2+

J. P. Schmidt!»®

R. Sherman!s®

Abstract: Statecharts have been introduced recently [H] as a visual formalism for specifying the behavior
of complex reactive systems. They extend classical state transition diagrains in several ways, while retaining,
and even enhancing, their visual appeal. In particular, statecharts cater for hierarchical descriptions, high-

level and low-level events, and notably, multi-level concurrency with a broadcast communication mechanism
that can give rise to chain-reaction effects. In this paper we provide a formal syntax and (operational)
semantics for statecharts. The semantics appears to be novel in a number of ways, among which are its
treatement of shared variables, chain reactions and simultancous multiple messages.

1. Reactive systems and State Diagrams

The literature on software and systems engineering is
alimost unanimous in recognizing the existence of a major
problem in the specification and design of large and com-
plex reactive systems. A reactive system (see [P, HP]), in
contrast with a transformational system, is characterized by
being, to a large extent, event-driven, continuously having
to rcact to external and internal stimuli. Examples include
telephones, communication networks, computer operating
systems, avionics systems, VLSI circuits, and the man-
machine interface of many kinds of ordinary software. The
problem is rooted in the difficulty of describing reactive be-
havior in ways that are clear and realistic, and at the same
time formal and rigorous, sufliciently so to be amenable to
detailed computerized simulation. The behavior of a reac-
tive system is really the set of allowed sequences of input
and output events, conditions, and actions, perhaps with
some additional information such as timing constraints.

Notable among the solutions proposed for this problem
are Petri nets [R], CSP [Ho] CCS [M], ESTEREL [BC], and
Temporal Logic [P]. A more rccent approach involves stat-
echarts [H], which constitute an attempt to revive the clas-
sical formalism of finite state machines (FSM’s) and their
visual counterpart, state transition diagrams, and make it
fitting for use in large and complex applications. Indeed,
people working on the design of really complex systems
have all but given up on the use of conventional FSM’s and
their state diagrams, and for several reasons.

1. State diagrams are ‘flat’. They provide no natural
notion of depth, hierarchy or modularity, and there-
fore do not support stepwise, top-down or bottom-
up development.

2. State diagrams are uneconomical when it comes to
transitions. An event that causes the very same
transition from a large number of states, such as
a high-level interrupt, must be attached to each of
them separately, resulting in an unneccesary multi-
tude of arrows.

3. State diagrams are extremely uneconomical, indeed
quite infeasible, when it comes to states. As the
system under description grows linearly, the num-
ber of states grows exponentially, the conventional
FSM formalism forcing one to explicitly vepresent
them all.

4. Finally, state diagrams are inherently sequential in
nature, and do not cater naturally for concurrency.

There have been attempts to remove some of these
drawbacks, by using various kinds of hierarchical or com-
municating state machines, but we consider these solutions
to be unsatisfactory. Typically, the hierarchies are merely
structural and do not.provide real savings in the size of
the resulting description, and the communication is usually
one-to-one, being channel- or processor-based, allowing for
only a single set of communicating machines on the highest
level of the description. Moreover, for the most part, these
extensions are not diagrammatic, and hence one loses the
advantages that a visual medium might offer.

Statecharts were proposed to overcome these draw-
backs while preserving, and even enhancing, the visual ap-
peal of conventional state diagrams. We shall only review

1 Ad Cad, Inc., Cambridge, MA.
Gl Carncgie-Mellon Univ., Pittsburgh,PA.
5 Courant Inst., NYU, New York.

CH2464-6/87/0000/0054$01.00 © 1987 IEEE

54

? The Weizmann Inst., Rehovot, Israel.
4 Univ. of Texas, Austin, TX.
. USC/1SI, Marina del Ray, CA. "

t See note at the end of the paper.

the essentials of the formalism very briefly here, referring

the reader to [H] for more details and examples. More ex-
amples, as well as several related developments, appear in
[BDH, DH1, DH2]. In a nutshell we might say:

statecharts state-diagrams + depth +

orthogonality + broadcast-communication

The idea of depth is illustrated in Fig. 1, where (ii)
may replace (i). The symbols ¢, f, g, and h stand for events
that trigger the transitions, and the bracketed c is a condi-
tion. Thus, g[c] triggers the transition from A to C if and
when g occurs, but only if c is true at that time. State D
is the XOR of A and C, so that being in D is tantamount
to being either in A or in C, but not in both. The main
point here is the f-arrow, which leaves the contour of D
and hence, by definition, applies to both A and C, as in (i).
This simple idea, when applied to large collections of states
in a multi-level manner, overcomes points 1 and 2 above.
Notice the way the small default arrows depend on their
scope: in (i) state A is singled out as being the default, or
start-state, of the three, a fact represented in (i1) by the
top default arrow; the bottom one, however, states that C
is default among A and C if we are already in D, and hence
alleviates the neced for continuing the h-arrow beyond D’s
boundary.

Orthogonality is the dual of the XOR decomposition
of states, being, in essence, an AND decomposition. Fig. 2
illustrates this. In (ii) state ¥ consists of two orthogonal
components, 4 and D, related by AND: to bein Y is tanta-
mount to being in both A and D, and hence the two default
arrows. The intended semantics of (ii) is given by its equiv-
alent ‘flat’ version (i), which represents a sort of automata
product. Notice the simultaneity of transitions that takes
place when event e occurs in state configuration (B, IF), and
the merging and splitting transitions that lead to and from
Y. Notice also the special condition in(G) attached to the
f-transition from C, and the way it isreflected in (i). Fig. 2
is, of course, somewhat misleading, since (ii) may not seem
to be any better than (i). However, this is obviously the
heart of the exponential blow-up problem, the number of
states in the (i) version being the product of the numbers
in the (ii) version. If the orthogonality construct is used
often, and on many levels, difficulties 3 and 4 above are
overcome in a reasonable way, as can be further observed
by studying the examples in the aformentioned references.

Another feature of statecharts is the ability to ‘remem-
ber’ a previous visit to a state. Fig. 3 shows a history en-
trance into A, which overrides the default arrow that leads
to D. The default is taken when the entrance is via the

Figure 1

Figure 2

55

f-arrow, whereas if A is entered via the e-arrow the state
entered is that one of B, C or D that the system happened
to be in when it was most recently in A. If the state thus
entered has its own substates, then the default arrows that
must appear therein are used to determine the lower-level
states actually entered.

Figure 3

Now, Figs. 1-3 do not contain any outputs, and
hence, so far, orthogonal components can synchronize only
through common events (like e in Fig. 2), and can affect
each other only through in(state) conditions. The real sub-
tlety of the way statecharts model concurrency is in their
output events. Icre statecharts can be viewed as an exten-
sion of Mealy machines, as we allow output events, which
we call actions, to be attached optionally to the triggering
event along a transition. However, in contrast with conven-
tional Mealy machines, an action appearing along a transi-
tion in a statechart is not merely sent to the ‘outside world’
as an output. Rather, it can, and typically will, affect the
behavior of the statechart itsell in orthogonal components.
This is achieved by a simple broadcast mechanism: just as
the occurrence of an external event causes transitions in all
components at which it is relevant (see Fig. 2, for exam-
ple), if event e occurs and a transition labelled e/ f is taken,
the action f is immediately activated, and is regarded as
an (internal) event, possibly causing further transitions in
other components.

Fig. 4 shows a simple example of this. If we are in
(B, F,J) and along comes the external event m, the next
configuration should be (C, G, 1), by virtue of e being gener-
ated in H and triggering the two transitions in components
A and D. This is a chain reaction of length 2. If now exter-
nal event n occurs, the new configuration will be (B, E, J),
by virtue of a similar chain reaction of length 3.

This concludes our brief discussion of the main features
of the language, as discussed at length in [H]. Statecharts
have been used in the design of a complex avionics system
in the Israel Aircraft Industries, and are currently being
used experimentaly in a number of additional industrial
projects. Statecharts are also at the heart of a commercial
product, STATEMATEL, that is intended as a graphical
working environment for the engineers involved in reactive
systems. Such an implementation is impossible without a
formal semantics, and the current paper actually grew out

of our work on STATEMATE].

56

—
i) \
|
|
|
)
|
[
|

—-——-—.-J—-—-—-—'-—-———-

Figure 4

3: The Scmantics: A Discussion

It is quite obvious that even the basic features pre-
sented here raise intcresting semantic problems. For one,
an instantaneous description of the systenr specified by a
statcchart must contain a state configuration whose length
is not fixed, but changes as orthogonal states are entered
and left. Morcover, we would like chain reactions to satisfy
two seemingly contradictory properties. On the onc hand,
they should ideally take ‘zero time’; that is, the new state
configuration ought to be obtained in the very next step,
so that other external events will not be able to interrupt,
and perhaps alter, the inevitable chain reaction. On the
other hand, the order of the transitions taking place within
a chain rcaction is important, even though they really do
not take time. This is onc of the main issues that our se-
mantics addresses.

The appendix to this extended abstract contains the
formal syntax and the operational semantics that we pro-
pose. It first presents a detailed syntax of a rather powerful
version the statecharts language, complete with compound
events and conditions, and shared variables that can be as-
signed to and tested. Thus, eA f and eV f are events, and
similarly for conditions (which are also closed under nega-
tion). Apart from e’s and f’s, the actions that can appear
to the right of the ‘/’ along transitions include ¢ :=true and
¢ :=false for a condition ¢, and v := 7 for a variable v and
an appropriate algebraic expression 7. In addition, there
are several special kinds of events and conditions. For ex-
ample, en(s) and ez(s) are events that occur upon entering
and exiting state s, respectively, and in(s) is the corre-
sponding condition. Also, for expressions 7 and o we have
conditions such as 7 = ¢ and 7 < o, as well as the event
ch(v), which occurs when v changes value. Any condition
gives rise to the two events tr(c) and fs(c), which occur
when ¢ changes from false to true and vice versa. (Thus,
for example, the events en(s) and tr(in(s)) will always occur

together.) Also, any event gives rise to the condition ny(e),
which stands for ‘e has not-yet occurred.” This condition,
as we shall see later, refers only to what is happening in-
side the currently evaluated chain reaction. And so, while
cevents are not closed under negation, one can state that an
event has not yet occured since the beginning of the latest
chain reaction. Another special condition is ¢r(c), which
stands for ‘the current value of ¢’, and refers to the value
of condition ¢ within the current chain reaction. Similarly,
we have cr(v) for a variable or expression v, representing
its current value within a chain reaction.

The reader who is well-versed in the semantic difficul-
ties raised by such languages as CCS and CSP will no doubt
realize the potential difficulties this syntax raises. Not only
do we have high level cvents (like f in Fig. 1(ii) and p in Fig.
2(i1)), concurrency on all levels, and defaults and history en-
trances that bubble control down to the states on the lowest
levels, but we also have simultanteous reactions to events
broadcast throughout the system, and shared variables that
can, in principle, be assigned simultaneously, possibly gen-
erating conflicting values. Some of the decisions that have
to be made here involve protecting chain reactions from
incoming external events, while complying with the order
implicit in them, and resolving conflicts, either by an un-
defined outcome or by nondeterminism.)

The bulk of the appendix is devoted to presenting a
formal operational semantics to this version of statecharts.
Our approach can be superficially described as follows. To
make the explanation simple we shall assume that we are
in a configuration C and that a single external event e that
has just occurred. Our intention is to define the set of
next configurations, nezt(C), the elements of which are the
legal outcomes of applying all transitions triggered by e,
followed by all their consequences, including newly enabled
transitions, followed by all their consequences, etc. (This
sequence will not be able to become infinite, as a study of
the semantics reveals.)

Given C and e, we first find all transitions T' that are
‘relevant’ to the event e in configuration C, in the sense
that (i) T originates in some ancestor of a subconfigura-
tion of C in the state-tree, and (ii) its triggering event in-
deed occurs when e does. In doing so one must keep track
of those T"s that are mutually inconsistent, and therefore
cannot be taken simultaneously; they will give rise to non-
determinism, as consistent ones must be taken together.
Figuring out (i) above entails computing appropriate least
common ancestors (LCA’s) in the state-tree, and (ii) re-
quires a careful definition, mutually inductive in events and
conditions, and further complicated by the ny and cr con-
structs. Haven found such a T', we must ‘apply’ it, with all
its consequences.

Here is where the semantics becomes really intricate.
We proceed by defining micro-steps, with a ‘rcal’ step being
a maximal sequence of them. Micro-steps thus capture the

internal order in which the simultaneons transitions and

57

Micro-steps are
not directly transparent to the user, although, as we ex-
emplify below, the ny and er constructs can be used to
exploit them benelicially. In a micro-step the system non-

actions of a single step are carried out.

deterministically sclects any consistently executable subset
of the enabled fransitions (in particular, a subset with no
conflicting assignment statements), and exccutes them at
one and the same time, adding their immediate consequent
actions to the events and transitions awaiting execution,
and hands this remaining set to the next micro-step for ex-
ecution. Note that history and default entrances in states
that appear in the target sub-configurations of the tran-
sitions that are taken have to be taken into account, and
their effects on the lowest-level states have to be calculated.
A sequence of micro-steps terminates, and thus becomes an
externally observable step, if and when there are no posible
consistent choices left. Hence the term ‘maximal’.

During micro-step execution, cr(c) and cr(v) are up-
dated to contain the current values of conditions, variables
and expressions, and ny(e) is updated to rellect whether or
not e has already been executed in the present step, i.e.,
since the first micro-step in the sequence. In contrast, the
status and values of events, conditions and expressions that
do not involve ¢r and ny do not noticably change within the
micro-steps of a single step. Thus, ¢r and ny are the only
mechanisms for detecting the order in which micro-steps
are carried out inside a step.

Figure 5

r)] T
| I
& : B !
el e[»\g(&)]:

|
figure {
Figure 6 : 1
L_ | |

4. Some Examples

A few simple examples are now in order. Fig. 5 shows
a simple kind of ‘structural’ nondeterminism, where if in B
and e occurs the two possible outcomes are C and D. Fig.
6 shows nondeterminism caused by the freedom of selecting
subsets in micro-steps. Here, if in (A4, B,C), event e can
cause the system to reach (D, B, F) if the transitions are
considered in the order A —» D,B — FE,C — F, since
the condition in the second one will be false. However,
(D, E, I) is also possible, if the transitions are considered in

the order B — E,A — D,C — F'. Note that the eA f event
occurs in both cascs, as the conjunction is not sensitive to

the ordering within a step.

The definition of conflicting actions forces an order to
be put on two assignments to the same variable, but not
on assignments to different variables. Thus, in Fig 7, if
the initial values of z and y are both 0, then while the fi-
nal value of both will be 1 after the step resulting from e
in configuration (A, B,C), there are two nondeterministic
resulting configurations: (D, E,C) (if both leftmost tran-
sitions are considered together, since z and y havn’t just
become equal; they were equal all along), and (D, E, F) (if
they are taken separately, since one of the two variables be-
came 1 while the other remained 0, thus making tr(z = y)
happen).

ﬁﬂ
i

bt o o o o smme GEn e

tr(k=y)

efxi=t efy=4

P
\

e o e e o e

Figure 7

Here are two examples of using the c¢r and ny con-
structs to one’s advantage. The first is in forcing ezclustvity
of the effect of an event e, and the second is in specifying
priority of e over f in case they both occur simultaneously.
Fig. 8 shows how the two conflicting assignments force the
micro-steps to be taken in sequence, with the consequence
that once one of them is taken in the first micro-step the
guarding condition on the second one prevents it from be-
ing taken, as it tests the system’s current whereabouts in
the first component. The result is that when e occurs in
(A, B) the systems reacts nondeterministically, entering ei-
ther (A, D) (with z = 2) or (C,B) (with z = 1). Notice
that omitting the cr’s gives a quite different behavior, with
the final configuration being deterministically (C, D), but
the final value of z being similarly 1 or 2.

a e[qon(m)]/x:i

— S — o]

(B elertime/ (D)

N\

Tigure 8

58

In Fig. 9 we are interested in specifying that in state
A event e leads to B and f leads to C, but that if ¢ and
f occur simultaneously the e-transition is to have priority.
This is achieved by the ny operator as illustrated.

" Figure 9

Finally, a somewhat more elaborate kind of priority
specification appears in Fig. 10. Here we want to specify
that if e occurs when in (E,C), ie., there is a nondeter-
ministic choice to be made in going to F or B in the top
component, then in the bottom component we want to go
from C to D only if the former choice was taken. Of course,
this might be achieved simply by eliminating the ‘/f’ ac-
tion from the arrow leading to B, but for the sake of the
example we may assume that f has other purposes, and
has to be carried out whenever e occurs. We could have
used a‘new action symbol, but the example shows how the
cr alone can be used to achieve th edesired effect.

e o e e e S WD w9 S e S

| @ueo,6)

TFigure 10

It should be noted that statecharts with no ap-
pearences of c¢r and ny behave in the intuitive way ex-
pected. Thus, the semantics prescribes the behavior de-
scribed above for the likes of Figs. 1-4. An interesting ques-
tion is whether this semantics can be easily extended to deal
with a number of additional features described informally
in [H]. One of the most promising of these is overlapping
states, the importance of which has been argued in [DH1].
A preliminary attempt at providing a formal syntax and
semantics for statecharts with overlapping states appears
in [K], but it does not contain any actions, assignments,
special events and conditions, or the special constructs ny
and cr. It would be interesting to know if the two semantics
are compatible on the rather primitive version obtained by
taking the common features only, and whether our seman-
tics can be easily extended to deal with overlapping states
using the ideas of [K].

1.

Appendix : Formal Syntax and Semantics

Syntax

The syntax of statecharts is defined over the following

basic sets of elements: states, transitions, primitive events,
primitive conditions and variables. Using these basic sets of
elements we define the extended sets of: events, conditions,
expressions and labels and the interrelations connecting them.

a.

States : The set of states, S, is defined together with a
hierarchy function p, a type function , a set of history
symbols H and a default function é.

The hierarchy function p: 5 — 25, defines for each state
its substates. If p(z)=p(y) then z=y. There exists a
unique state r €S such that /s €S rép(s), r is the root
of the statechart. p°,p* are extensions of p defined by :

P (s)='_LZJOP" (s), p*(s)=I,L211p" (s).

The type function ¢:S — {AND,OR} defines for each
state its type. If p(s)5%0 and (s)=OR then p(s) is a zor
decomposition of s. This means that when the system is
in a state s it is in one and only one of the substates of
s. If p(s)70 and y(s)=AND then p(s) is an and decom-
position of s. This means that when the system is in a
state s it is simultaneously in all the substates of s .

The set of history symbols, H, is related to the set of
states by a function y: H — S such that : ~y(h)=1(hs)
implies h,;=h, and A(H) is a subset of the set of OR
states, that is only an OR state may have a history sym-
bol associated with it. It is useful to define w: SUH — §
by :w(z)isz if €S and w(z)is (=) if z€H.

The default function, §: S — 2597 | defines for a state s
a set of states and history symbols which are contained in
the state. If z&b(s) then: for z€S,z€p*(s), and for
z €H Az)Ep*(s)-

&s) is the default set for s.

Expressions : The set of variables is denoted by V,.
The set of expressions, V, is defined inductively as fol-
lows :

1. If k is a number then k€V.
It veV, then veV.
If veV then current (v)EV.

(3

P

If v,,v,€V and op is an algebraic operation then
op (vy,vg€V.

current (v) is abbreviated to cr (v).

59

N o >

Conditions : The set of primitive conditions is denoted

by C,. The set of conditions, C, is defined inductively as
follows :

1 T,FeC, T,F stand for true ,false, respectively.

2. . If ceC, then c€C.

3. If s€S then i (s)eC.

4. If e €E then not_yet (¢)EC.

If vwoweV, Re{=><7#<,>}thenu R veC.
If ¢ €C then current(c)EC.

If ¢i,c,€C then ¢ ,\/co,c1/\cg,mc EC.

current (¢) is abbreviated to cr(c),
ated to ny(e).

not_yet (e) is abbrevi-

Events : The set of primitive events is denoted by E,.

The set of events, E, is defined inductively as follows :
1 \EE, X\ is the null event.

2 If e €E, then ¢ €E.

3. If ¢ eC then true(c), false(c)EE.

4. If veV then changed (v)EE.

5. If s €S then exit(s),entered (s)EE.

6 If e,,e.€E then e;\/eq, e /\eoEE.

7. If e€E,c€C then e[c|€E.

true (c),false(c) are abbreviated to tr{c).fs(c),
abbreviated to
changed (v) is abbreviated to

e is atomic if e is of the form 1-5.

respectively. exit (s),entered(s) = are
ex (s),en(s), respectively.

ch (v).

Actions : The set of actions, A, is defined inductively as
follows :

1. u€A, pis the null action.

2 If ceC,,de€C then c:=de€A.
3. IfveV,u€V then vi=u€A.
4

a €A is atomic if it is of the form 1-3.

Labels : The set of labels, L, is the set of pairs E XA,
and for /=(e,a) we write ¢ /a. Informally, if ¢/a is a
label of a transition ¢, then ¢ is triggered by ¢ and a is
executed when ¢ is taken.

Transitions : The set of transitions, T, is defined as the
set of triples T C2% XL x25Y7. A transition ¢t =(X,l,Y)
is composed of: a source set X, a target set Y, denoted

source (t),target (t), respectively, and a label [. Infor-
mally, if I =e¢ /a, the system is in X and ¢ occurs then t
is enabled and can be taken. If ¢ is taken, a is executed
and the system is than at Y. -

‘2. Notations and Definitions

Following are formal definitions of basic terms used in the next
section. In appendix A we give diagrams illustrating these
definitions.

A state s is basic if p(s)=0.

For a set of states X, the Lowest Common Ancestor of
X, denoted LCA (X) is defined as follows: LCA (X)=z iff

1. XCp'(2)
2. WseS XCp'(s)=z€p’(s)

For a set of states X, the strict Lowest Common OR
Ancestor of X, denoted LCA*(X) is defined as follows:
LCA*(X)=z iff :

1. XCp*(z)

2. $(z)=OR

3. VseS if ¥(s)=OR then X Cp"(s) =z€p"(s)

For a transition t €T, LCA (t) is defined as the LCA* of
its source and target sets of states. That is if ¢t =(X,/,Y")
then LCA (t)=LCAH(XUw(Y)).

Two states z,y are orthogonal, denoted =z ly, if either
z=y or their- LCA is an AND state, that is
WLCA ({z ,y }))=AND .

A set of states X, is an orthogonal set if Vz ,yeX =z ly.
Note that {z } is an orthogonal set for every z €S.

A set X is an orthogonal set relative to s if:
1. X Cp*(s)

2. X is an orthogonal set

A set X is a mazimal orthogonal set relative to s if :
1. X is-an orthogonal set relative to s.

2. Wyep*(s), y¢X = XU{y} is not orthogonal.

Note that for every s €S, {s } is a maximal orthogonal set
relative to s .

A state configuration of s is an orthogonal set relative to
s all of whose members are basic states. ;

60

i, A mazimal state configuration of s is a maximal orthogo-

nal set relative to s all of whose members are basic
states.

j. Given a sequence of maximal state configurations relative

to the root, (Xo,.,Xs), and a history symbol A with
A(h)=s the history function 1(h (Xo,... X)) defines the
substate of s which is the “last visit” of the system in s
according __t;o——_(Xo,‘..,X,) Formally, let
I={i | p*(s)NX; #£0}. If I=0 then =(h (Xo,... X))=5e),
otherwise let ; be the maximal number in I. Then since
s is an OR state there exists a unique s' €p(s) such that
p*(s!)NX; #B, we define 7(h (Xo,...,.Xa))=8" .

k. - The target set of a transition may contain non basic

states and history symbols. Each step of the system is
defined by a set of transitions which should define a max-
imal state configuration of the root state. Thus, we have
to define a state configuration corresponding to a target
set of a transition. The function C(s,X (Xo,....X}))
where: X is an orthogonal set realtive to s and (Xg,...,X,)
is a sequence of maximal state configurations of the root
state, is defined recursively. C(s,X (X,,..,X,)) is a maxi-
mal state configuration of s computed by repeatedly
applying the default and history functions and complet-
ing the orthogonal set into a maximal orthogonal set by
taking the defaults in orthogonal components. For the
formal definition of C(s,X,X) see appendix B.

1. The initial state configuration X, is defined to be

C(root ,{root },0). The initial state configuration is a maxi-
mal state configuration of the root state.

m. A set of transitions YT is structurally consistent if '

t,,t,€T LCA (t,)LLCA(t;). A consistent set of transi
tions can be taken simultaneously.

n. A transition t=(Y,l,Z) is structurally relevant to a state
configuration X if for every y€Y there exists z €X suct
that z €p*(y). If ¢ is structurally relevant to X and the
system is in X then t can be taken.

3. Semantics

The semantics is based upon a sequence of time instant
{0: }i >0, corresponding to the sampling rate of the Syster
Under Desciption (SUD). The basic time intervals are define
by I;=[o;,0:41). At oi4 the SUD reacts to external stimu
occuring in the interval J;. The semantics of statecharts
defined by providing the formal definition for changes occurir
in the SUD as a reaction to external stimuli. An eztern
stimulus associated with o4, is a triple (I1,0,€) where : IT is

set of external primitive events occuring in I;, © is a set of
external primitive conditions whose value is true at [0,0;,,) for
some o>o0;, and £ is a function, determined by the external
environment, such that for a variable v, £&v)=z if v’s value is
r in [0,0;4,) for some o0>0;. A system configuration associated
with an instant o;,, is a tuple (X I1,8,¢) where X is a maximal
state configuration of the root state and (I1,8,£) is an external

stimulus associated with o; ,,.

The system reaction at some instant is composed of the set of
transitions taken at that instant and the set of events gen-
erated when these transitions are taken. Thus, a system reac-
tion is a pair (T,JI?) where T is a set of transitions called a
step and II? is the set of atomic events generated by T. Given
a system configuration SC =(X I1,8,£) we define in this section
the set {SR =(T,II°)} of possible system reactions to SC

Intuitively a step is a set of consistent transitions that are
structurally relevant to a given system configuration and
enabled under the given external stimuli. The set of generated
events is the set of events occuring as a result of taking the
step’s transitions and executing the actions associated with
these transitions. All the transitions participating in a step T
are taken simultaneously. In our formal definition of a step we
sequence the set of taken transitions into micro-steps each of
which is a subset of T. Thus, a step is defined as a sequence of
micro-steps. It is important to understand that although
micro-steps are essential for the precise definition and under-
standing of the semantics they are considered as an internal
mechanism for computing steps and actually should be hidden
from the user. Sophisticated users may use their knowledge
about this internal mechanism of micro-steps to define compli-
cated and unusual system reactions. However, in the simplest
and most often used cases the system reaction as defined in
the following is identical to the intuitive understanding of a
step, above. Because of the very rich syntax allowing shared
variables and simultaneous assignments to variables in actions
the terms “consistent” and “enabled” in the above naive
definition should be defined very carefully, and this is the rea-
son for introducing the concept of micro-steps. The reader
should remember this simple definition as an intuitive under-

standing of a step.

Definition : Given a system configuration SC=(X]I1,6,£) we
define below an extension of ¢ to V, and we say that v is
evaluated to = under SC if &(v)=z. € is extended to V as fol-
lows:

1. If k is a number then &k)=k.

2. If v,,v,€V then {(op (vy,v2))=0p (&(v1),4(v2))-
3. If veV then &lcr (v))=¢(v).

Definition : Given a system configuration SC =(X]I1,8,¢), SC
salisfies ¢ €C, denoted SC —c, is defined inductively as fol-
lows :

1. SC—T not(SC—F).
2. If ¢c€C, then SC—c iff c€O.
3. If s€S then SC—in (s) iff X Np*(s)50

61

If ¢ €E then SC—ny(e) iff not (SC —e).
If w,weV,Re{=,>,<,%,>,<}
§u) R gv).
6. If ceC then SC—er(c)iff SC—e.
7. If ¢y,c,€C then
7.1. SC—e /\cy iff SC—c, and SC —¢,.
72. SC—c \cyiff SC—c, or SC—c,.
7.3. 8C —=c, iff not (SC —c,).

then SC—u R v iff

Definition : Given a system configuration $C=(XI1,8,¢),
e€E occurs at SC, denoted SC —e, is defined inductively as
follows :

1. SC-—h

2. If e€E, then SC—e iff ¢ €Il

3. If c€C then not (SC—tr(c)),not (SC—/s(c)).

4. If veV then not (SC—ch (v)).

5. If s€S then not (SC—ex (s)),not (SC—en(s)).

6. If e;,e,€F then
6.1. SC—se /ey iff SC—e, and SC —e,.
6.2. SC—e,\/eyiff SC—e, or SC—ey

7. If e€E,c €C then SC—e[c] iff SC—e and SC—c.
Given a system configuration SC as above, the SUD reac-

tion is composed of a sequence of micro steps. The first micro
step is defined as a set of transitions whose trigger occurs at

SC. This first
configuration to which the SUD may react by another micro

micro step results in a micro system
step and so forth. A system configuration is a full description
of the SUD: status in a time instance. The micro system
configuration is an abstract term in the sense that it does not
describe: an actual status of the SUD. In the following it is
defined as an extension of the system configuration term, used
to defined the abstract SUD status between micro steps. Note
that by the following definition the only operators that are
“sensitive’”’ to the micro step mechanism are the ¢r ,ny opera-
tors. A user who does not use these operators will in most
cases get a system reaction corresponding to the simple intui-
tive definition introduced in the begining of this section. In
the following, formally define the system
configuration term and the terms of satisfy and occur for con-
with

we: micro

ditions and events, respect to: a micro system

configuration.

Definition : A micro system configuration pSC with respect
to a system configuration SC=(X]I1,6,6) is a quadruple
pSC =(uX ,pILuO,u€nY) where :

1. pX is a partial state configuration,
pIICE, U{ez (s),en (s)ls €S}, TICHIL
O {er (¢) €6,).

2
3
4. p¢is a function assigning values to current-variables,
5

uXCX.

pY is a partial state configuration. i.e. u€ is a function
from {cr(v) | v€V,} to the set of numbers.

Definition : Given uSC=(uX ,ull,u0,ué,uY) with respect to a
system configuration SC =(X II,0,¢), we define below an exten-
sion of u€ to V, and we say that v is evaluated to = under
uSC i p&(v)=z. pu€is extended to V as follows:
1. If k is a number then pé(k)=pé&(cr (k))=k.
2. If veV, then ug(v)=¢(v).
3. If vy,v,€V then uélop (vy,vq))==0p (1&(v,),ué(vs))-
4 If v,V EV

ué(er (op (vy,v9)))=op (u€(cr (vi))p(er (v2))).
Note that for any cr-free expression v, ué(v)=¢(v).

then

Definition :
configuration SC=(X]II,6,¢),

Given pSC=(uX ,uIl,u®,u€,nY) with respect to a
system uSC salisfies c€C,
denoted uSC —c, is defined inductively as follows :
1. uSC—T not (uSC—F).
2. If ¢eC, then:

2.1. pSC—c iff SC—e.

2.2. uSC —er(c)iff cr(c)eud.
3. If s€S then:

3.1. uSC —in(s)ifl SC—in(s)

3.2. uSC —cr(in(s)) iff uXNp*(s)5£0 or pY Np*(s)40
4. If ¢€E then:

4.1. pSC —ny(c) iff not (uSC —e).

4.2. pSC —cr(ny(e)) iffl uSC —ny(e).
5. Ifv,veV,Re{=,>,<,5,>,<} then:

5.1. puSC—u R v iff ug(u) R pé(v).

5.2. uSC—cr(u R v)iff uSC—er(u) R cr(v).
6. If ¢,c,€C then :

6.1. for ¢;/\c,€C :

6.1.1.uSC —c /\cq iff uSC —c, and uSC —c,.

6.1.2.uSC —cr (c1/\cy) it uSC—er(cy) and
uSC—ser(cg).
6.2. for c,\/c,€C : !
6.2.1.uSC —c \/cq iff uSC —c; or uSC —c,.
6.2.2.uSC —cr(ci\eq) iff pSC —cr(cy) or

pSC —er (cy).
6.3. for —c,€C :
6.3.1.uSC —=c ifl not(uSC—e¢,).
6.3.2.uSC —cr (—c,) iff not (uSC —ecr(cy)).
Note that for ¢r,ny-free condition ¢, uSC —c¢ iff SC—c.

Definition Given two micro system ' configurations
pSC1=(uX \,uIl,u0,,u€,1Yy), pSC(uX ,pllu®,uénY), both
with respect to a system configuration SC=(XI1,0,f) we say
that uSC is a possible successor of uSC; if:

1. pXCuX,.
2. pll, Cull.
3. uY,CuY.

62

Definition Given pSC=(uX plluO,uéuY) which is a

possible succesor of pSC\=(uX,,ull;,u6,,u¢;) both with respect
to a system configuration SC=(X J1,0,¢), ¢ €E occurs at uSC,
denoted uSC —e , is defined inductively as follows :
1. 80—k
2. If e€E, then uSC —e iff e eull
3. If ceC then:
3‘.1.- uSC —ir(c) ifl either uSC—tr(c) or uSCi~er(=c)
~and pSC —er(c). v
3.2. uSC—fs(c) iff either uSC,—fs(c) or uSCi—er(c)
and uSC —ecr(=c).
4. - If veV then puSC—ch(v)
uéi(er (v))72ué(er (o).
5. If s€S then:
5.1. SC—ez(s) iff either uSC—ez (s) or ez (s)eull
5.2. SC—en (s) iff either uSC —en (s) or en (s)epIl.
6. If e,,e,€F then
6.1. uSC—e/\eyiff pSC—¢ and pSC —e,.
6.2. uSC —e \ey iff pSC—e, or uSC —e,.
7. If ¢€E,c€C then pSC —e [¢] iff uSC—e and uSC —e¢.
Note that since \[c |]=c we have C CE.

iffl either uSC,—ech(v) or

Lemma : For any ¢ €F, if uSC,—e then uSC—e.

In the following, we define the micro step term. Infor-
mally, a micro step is a set of transitions whose trigger occur
at a given micro system configuration and which can be taken
simultaneously without causing any conflicts, either structur-
ally or in values assigned to variables and conditions.

Lemma : If $C=(X,1,6,f) is a system configuration then
puSe =(X ,I1,0,£,0) is a micro system configuration with respect
to SC. Also, uSC is a possible successor of itsel.

Definition : Given a micro system configuration
pSC =(pX ,pILpO,ué,pY), two atomic actions a,b are incon-
sistent under uSC if:

either a =¢ :=d, and b =c¢ :=d, for some ¢ €C,

or
Two atomic actions a,b are conststent under uSC if they are

not inconsistent.

e =v:=u, and b =v:=u, for some v €V,

An action a =ay;...;a, is consistent under uSC if Vfi,j if {545

then ¢; a; are consistent under pSC.

Note that an atomic action is always consistent.

Definition : Given a set of transitions uT={ty,...,t, }, where
t =(X; ,(e;,0;),Y:), @ =ag;...;a, is the action caused by pT.
Definition : Given a micro system configuration uSC, a set of
transitions uT is consistent under pSC if:

1. uT is structurally consistent.

2. the action caused by uT is consistent under uSC.

Definition : Given two micro system configuration uSC, and
uSC =(pX ,pILuO u€,nY) both with respect to SC, where uSC
is a possible successor of uSC,, and a transition ¢t labeled by
l=c¢/a, t is enabled under pSC if :

1.t is structurally relevant to uSC.

2. uSC—e.

Definition : Given two micro system configurationsuSC, and
uSC =(pX ,uILu®,ué,nY) both with respect to SC, where uSC
is a possible successor of pSC, and a nonempty set of transi-
tions uT, uT is a micro step from uSC if :

1. uT is consistent under uSC.

2. YteuT, t is enabled under pSC.

A micro step causes changes in the current values of con-
ditions and variables and occurrances of new events. These
changes are formally defined as follows :

Definition : Given two micro system configuration pSC,; and
uSC =(pX ,uIL,u0,u&,1Y) both with respect to SC, where pSC
is a possible successor of uSC, and a micro-step uT from uSC,
where a =ay;...;a, is the action caused by uY, with a; being
atomic actions:

1. uY generates ¢ €E, iff a;=e¢ for some ¢.

2. uT generates ex(s) iff p"(s)NuX 540 and there exists

teuT s.t. s €pT(LOA (t)).

3. Given a sequence of state configurations X =(X,,....X,)
where X, =X, uT generates en(s) iff there exists teuT

s.t. p’(s)NC(LCA (t),target (t),X)540 and s €p*(LCA (1)).
4. uT assigns T to c€C, il a;=c:=d and pSC—d for

some 1.

5. uY assigns F to ¢€C, ifl a;=c:=d and pSC—-d for

some ¢ .

6. uT assigns z to v€V, iff g;=v:=u and p&(v)=z for

some .

Lemma : If 4T is a micro step from pSC then :
1. if uY assigns T (resp. F) to ¢ €C, it does not assign F

(resp. T) to c.

2. if 254y and uT assigns z to v €V, then it does not assign

y towv.

Proof : Follows from the consistency of micro-steps.

A micro step also results in a new micro system configuration :
Definition : Let X=(Xq,.,X,) be a sequence of state
configurations. Let SC be a system configuration whose state
configuration is X, . Let #SC, be a micro system configuration
with respect to SC, and let uT be a micro-step from pSC,.
Then uSC=(uX pullu®,pé&uY) is the
configuration reached by pT from uSC, if:

1. X =pX,~pX,N{Up" (LCA (t))t enT}

2 upll=ullU{e| uT generates e }.

micro system

3. p®=p6,Nnfecr(c)| pT does not assign F to ¢ ju{er (c)l pT
assigns T to ¢}

63

4. pé(v)=z ifl p&(v)=2z and uT does not assign any value
to v or uY assign z to v.
5. pY=pY ,U{UC(LCA (t),target (¢),X)|t enT)}
Lemma : If pSC is reached by uT from pSC, then:
1. for e€E,U{ex(s),en(s)ls €S}, uSC —e iff either nSC—e
or uT generate e .
2. for cecC,
2.1. pSC —er(c) iff either pSC —cr(c) and uY does not
assign F to ¢ or pSC,—er(—c) and pT assign T to
c.
2.2. uSC—tr(c)(fs(c)) ifl either pSC,—tr(c)(fs(c)) or
pSC—er (—c)er(c)) and pY assign T(F) to c.
3. forwev,
3.1. pfler(v))=z iff either p&(cr(v))=z and uT does
not assign any value to v or pY assign z to v.
3.2. pSC—ch(v) iff either pSC —ch (v) or uT assign z
to v and p&(er (v))#e.

A step is a maximal sequence of micro steps as formally
defined in the following :

Definition : Let SC be a system configuration. A step T from
SC is a sequence (Y, . .

1. uSCy=5C.

., #T,) where :

2. pY, is a micro step from uSC;, for ¢ =0,...,m |

3. uSC;,, is the micro system configuration reached by uY:
for ¢ =0,...,m .

4. The set uTeU - - - UpT, is a structurally consistent set of
transitions.

5. If ¢ is enabled under pSC,, 4, then {¢}JUpToU - - - UpY, is
not structurally consistent (i.e. the sequence is maximal).

A step causes the system to reach a new system configuration,
which is actually similar to the last micro system configuration
reached by the sequence of micro steps composing the step.
Since there are no enabled transitions from this last micro sys-
tem configuration the SUD ”waits” there a time interval for
new external stimuli. A step also causes some events to occur.
These events together with the new values assigned to condi-
tions and variables are the output of the SUD to the external
environment.

Definition : Let SC' be a system conﬁgurati;)n and let
T=(uYq, ..., #Tn) be a step from SC' taken at time instant
o;. SC=(XI1,8,6) is the system configuration reached by T
if:
1. X=pXp 1UnYn
2. IIis the set of primitive events occuring at time interval
%,
3. ForceC,, ¢ holds at o; iff uSC,, 1 —er(c).
© is the set of primitive conditions holding at [o,0;) for

some oc>0;.

4. ForveV

P
&(v)=z il v’s value at [0,0;4,) is 2 for some 0>0;.

v’s value at o; is z iff u&,, yy(cr(v))=z.

Definition : Let SC be a system configuration at instant 1

and let T=(uYo, ..., # Ty) be a step from SC taken at o;.

The set of generaled events by T is [={e| e generated by

uT; for some i }u{e | uSC,, 11—e ¢ atomic }.

Definition : A run of the SUD is a sequence {(SC;,T; ,I1¥)}i >0

where :

1. SCo=(XoI1s,60,), Xo is the initial state configuration,
and (ITg,0,¢) are the external stimuli occuring at the first

time interval [,.
2. T; is a step taken from SC; at time instant o, for ¢ >0.
3. SC;, is the system configuration reached from SC; by T;
for ¢ >0.
4. T17 is the set of generated events by T, for ¢ >0.
Definition : Let SC be a system configuration. The SUD is
non deterministic in SC if there exist two different reactions
(T1,119),(To,I1#) such that TFILF or Ti54T,.

References

[BDH] A. Bar-Tur, D. Drusinsky and D. Harel, “Us-
ing Statecharts for Describing the Communication between
Complex Systems”. Submitted.

[BC] G. Berry and I. Cosserat, “The ESTEREL Syn-
chronous Programming Language and its Mathematical Se-
mantics”, in Seminar on Concurrency (S. Brookes and G.
Winskel, eds.), Lect. Notes in Comput. Sci., Vol 197,
Springer-Verlag, Berlin, 1985.

[DH1] D. Drusinsky and D. Harel, “Using Statecharts for
Hardware Description”, C385-06, The Weizmann Inst. of
Science.

[DH2] D. Drusinsky and D. Harel, “Statecharts as an
Abstract Model for Digital Control Units”, CS86-12, The
Weizmann Inst. of Science. Submitted.

[H] D. Harel, “Statecharts: A Visual Formalism for
Complex Systems”, Science of Computer Programming” 8

(1987). (Larly version appeared as “Statecharts: A Visual
Approach to Complex Systems”, Weizmann Inst. Tech Re-
port, Feb. 1984.)

[HP] D. Harel and A. Pnueli, “On the Development of
Reactive Systems”, in Logic and Models of Concurrent
Systems (NATO ASI Series, Vol. 133, K. R. Apt, ed.),”
Springer-Verlag, Berlin, 1985, pp. 477-498.

[Ho] C. A. R. Hoare, “Communicating Sequential Pro-
cesses”, Comm. ACM 21 (1978), 666-677.

[K] H.-A.Kahana, “Statecharts with Overlapping States”,
M.Sc. Thesis, Bar-Ilan University, 1986. (In Hebrew.)

[M] R. Milner, A Calculus of Communicating Systems, Lec-
ture Notes in Computer Science, Vol. 92, Springer-Verlag,
Berlin, 1980.

[P] A.Pnueli, “Applications of Temporal Logic to the Spec-
ification and Verification of Reactive Systems: A Survey of
Current Trends”, in Current Trends in Concurrency (de
Bakker et al. eds.), Lect. Notes in Comput. Sci., Vol. 224,
Springer-Verlag, Berlin, 1986, pp. 510-584.

[R] W. Reisig, Petri Nets: An Introduction, Springer-
Verlag, Berlin, 1985.

(Note: This paper is actually incomplete, being essentially an extended abstract, and describing
only one approach to the formal semantics of statecharts. There are a number of reasons for consid-
ering alternative approaches, among which is the desire that a full symmetry exist between the way
orthogonal components relate to each other and the way an entire statechart relates to its environ-
ment. The present proposal can be seen to fall short of achieving this goal in its entirety. The full
version of this paper, which we unfortunately did not manage to complete in time for inclusion in the
proceedings, contains a slightly different approach that overcomes this anomaly. On the majority of
standard examples, however, both semantics are equivalent.)

