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Abstract. Natural systems, such as organs and organisms, are large-
scale complex systems with numerous elements and interactions. Model-
ing such systems can lead to better understanding thereof and may help
in efforts to save on resources and development time. In recent years,
our group has been involved in modeling and understanding biological
systems, which are perhaps the prime example of highly complex and
reactive large-scale systems. To handle their complexity, we developed
a technique called reactive animation (RA), which smoothly connects a
reactive system engine to an animation tool, and which has been de-
scribed in earlier publications. In the present paper we show how the
basic idea of RA can be made generic, by providing a simple general
way to link up any number of reactive system engines — even ones that
are quite different in nature — to an animation tool. This results in
natural-looking, fully interactive 3D animations, driven by complex re-
active systems running in the background. We illustrate this with two
examples that link several tools: Rhapsody for state-based specification,
the Play-Engine for scenario-based specification, MATLAB for mathe-
matical analysis and the 3DGameStudio for animation. Our examples
are both from biology (pancreatic development) and from everyday ac-
tivities (e.g., gym training).

1 Introduction

Natural systems, such as organs and organisms, are large-scale complex systems
that maintain an ongoing interaction with their environment and can thus be
beneficially specified as reactive systems [18,23]. This observation has led to quite
a lot of work on modeling biology using various software engineering tools and
ideas to simulate behaviors in various natural systems. To handle the complex-
ity of natural systems we need even better visualization techniques than those
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used for conventional reactive systems. Indeed, animating natural system reveals
unexpected behavioral properties that emerge from the simulations at run-time.
These emergent properties are not explicitly programmed, but are often a con-
sequence of massively concurrent execution of basic elements that act in concert
as a population [8].

In recent years, our group has been involved in developing a technique called
reactive animation, whereby reactive systems whose external form requires more
than conventional kinds of GUIs are modeled by languages and tools for the re-
activity linked with tools for true animation. In our earlier work on this topic [10]
we were motivated by a complex modeling example from biology, which required
us to model many thousands of T cells developing, moving around and inter-
acting in the thymus gland, and we wanted the animation to show this actually
happening. Our implementation linked the Rhapsody tool, with its statechart
model of the system, to a Flash animation front-end, and enabled interaction
of the user with the system either via Rhapsody or via the Flash front-end. In
that work, the animation was two-dimensional. More importantly, however, the
linking itself was binary — one reactive system engine to one animation tool —
and it was carried out in an ad hoc fashion. It thus did not provide a mechanism
for a more generic reactive animation.

In this paper we exhibit a stronger kind of reactive animation, by devising
a specific mechanism for linking any number of tools, which may include an
animation tool and reactive system engines of different kinds. We illustrate the
technique and the underlying principles (as well as the feasibility of 3D reactive
animation) by linking up the Rhapsody tool, which supports statecharts and
object diagrams, and the Play-Engine [22], which supports live sequence charts
(LSCs)[9], to 3DGameStudio (3DGS) [1] for animation and MATLAB[28] for
mathematical analysis. Our two reactive engines, Rhapsody and the Play-Engine,
which follow state-based and scenario-based approaches, respectively, are con-
nected through a central mechanism with the 3DGS animation tool and the
Mathematical GUI. The mechanism is general enough to support and maintain
any number of such links. We demonstrate the architecture using two main ex-
amples, a complex one from biology and a simpler one closer to everyday life.
We will also briefly discuss possible future directions for modeling other natural
systems.

This paper is supplemented by a website (www.wisdom.weizmann.ac.il/
~yaki/GRA), which contains a recording of a short session that was carried out
with the different tools linked together. The material on the site also includes
several more detailed video clips showing some of the possibilities of the setup.
We have deliberately left out in this paper much of the technicalities of the
method and its implementation, and have focused instead on the motivation
and objectives, and on examples. For readers who are interested in the technical
details, there is a technical report that explains things in greater detail, and
which can be downloaded from the above website. That report also includes a
detailed description of how the architecture is employed, and it briefly suggests
directions for standardizing the platform. The site also points to some additional
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supplementary material on the examples (e.g., explanatory clips and interactive
illustrations).

In our first example, we employ the architecture to model pancreatic devel-
opment in the mouse, which besides its biological importance turns out to be a
highly complex system for modeling, with numerous different kinds of objects.
Our model includes a state-based specification linked to a 3-dimensional ani-
mated front-end and a mathematical analysis GUI [36]. A prerecorded clip of
the simulation at run time is available at www.wisdom.weizmann.ac.il/~yaki/
runs. In this example, Statecharts [16] (in Rhapsody [38]) describe the behav-
ior of the biological objects themselves (e.g., cells), which are represented in the
front-end as 3D elements possessing realistic animation attributes. Statistics and
analysis of the simulation are shown in a separate GUI (in MATLAB). We dis-
cuss how available scientific data is specified as statecharts in Rhapsody, and how
scenarios via the LSCs and the Play-Engine may answer the need for mutating
the system. The front-end shows the animation continuously, and provides the
means to interact with it. The mathematical analysis GUI provides statistics and
graphs of the simulation. Generally, the simulation corresponded well with the
biology, indicating that the 3D structure emerging from the simulation seems to
capture pancreatic morphogenesis in mice. Moreover, this platform enabled to
perform a set of in silico experiments, which reproduced results similar to in-vivo
efforts and provided a dynamic description. In addition, the model suggested new
intriguing results that are currently being tested through collaboration, for an
experimentally validation.

Our second illustration of the method is a more intuitive running exam-
ple (pun intended...) of a 3-participant gym training system, which includes a
team leader and two team members, running, walking, jumping, crawling and
standing, and if needed also swimming and wading (in the special case of scenar-
ios involving flooding). The system also includes a moving camera, sub-viewing
abilities, and more. We discuss the way certain parts of the overall controlling
behavior are specified in scenarios via the LSCs and the Play-Engine, whereas
others, such as the behavior of the participants themselves, are specified using
statecharts in Rhapsody. The front-end shows the animation continuously, and
provides the means to interact with it. Interactive illustrations of this example
are available at http://www.wisdom.weizmann.ac.il/~yaki/GRA/gym.

2 Reactive Animation

Reactive animation (RA) [10] is a technology aimed at combining state-of-the
art reactivity with state-of-the-art animation (Fig. 1A). RA links the effort of
reactive system design and the front-end design by bridging the power of tools
in the two separate areas. In essence, RA has two arms: One comprises power-
ful tools and methods for reactive systems development, the heart of which is
a rigorous specification of the systems reactivity. The other comprises powerful
animation tools to represent the specification as an intuitive, controllable, ani-
mated front-end. The animated front-end serves as a communication channel for
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better human understanding of the simulation. Technically, RA is based on the
view that says that a system is a closely linked combination of what it does and
what it looks like. From this stem two separate but closely linked paths: reactive
behavior design and front-end design.

Implementing a tool for RA poses a number of challenges: accuracy, per-
formance (e.g., CPU usage, memory management, smoothness of the resulting
animations), distribution, ease of interaction, openness and platform indepen-
dence. These should be considered at the architecture level and with the specific
functionality chosen.

RA was conceived of during an effort to model and simulate the development
of T-cells in the Thymus gland [10], where it was implemented using a direct
communication socket between a state-based model (using statecharts in Rhap-
sody) and a 2D animated front-end (using Flash). Our work improves upon [10]
by providing a generic, modular and fully distributed multi-party architecture
for RA, which also employs 3D animation (Fig. 1B).

Fig. 1. A. Reactive animation: an animation tool is binary linked to a reac-
tive system tool to enable natural-looking, fully interactive animations. B. Im-
plementing generic multi-party reactive animation: reactive engines, animation,
mathematical and any other type of tool are linked together using a central rout-
ing server (a star topology). Tools communicate through a TCP socket and trans-
mit XML based messages, enabling a fully distributed, platform-independent
implementation (in a way similar to Soap).
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3 Implementation Architecture

The architecture of our examples includes two reactive engines supporting two
different modeling approaches: a state-based, intra-object approach, and a scenario-
based, inter-object approach. The reactive engines are linked up to a three-
dimensional animated front-end and a mathematical analysis GUI, using a cen-
tral routing server. In principle, the architecture can be extended by using any
number of additional components of any related kind (e.g., a 2D front-end us-
ing Flash).1 Below we briefly describe each of the architectural components, a
detailed technical report is available at www.wisdom.weizmann.ac.il/~yaki/
GRA/.

The Central Routing Server: The server was implemented as a multi-threaded
executable application. Each thread serves as a communication plug-in for one
architectural component. A TCP socket is initialized upon registration to the
server, enabling message transmission and XML parsing. See the supplementary
technical report for a more detailed description.

The State-Based Specification: We use the language of statecharts [17] and
the Rhapsody tool [38] to implement state-based specification. Statecharts are
naturally suited for the specification of objects that have clear internal behav-
ior, an attribute we call intra-object. Together with object model diagrams, they
provide a graphical representation of the dynamics of objects using states, tran-
sitions, events, and conditions [20]. The language makes it possible to visualize
the behavior of an object in a way that emphasizes the elements in its life-cycle.
Rhapsody is a model-driven development environment supporting statecharts
and object model diagrams (see [20]), and can be viewed also as a UML tool.
It enables object-oriented design, with full execution of the statechart-rich mod-
els, and full code generation. Table 7, top details a representative example for a
state-based specification.

The Scenario-Based Specification: We use the language of LSCs, live se-
quence charts [9] and the Play-Engine [22] to implement scenario-based specifi-
cation. LSCs are scenario-based, and inter-object in nature, and are particularly
fitting for describing behavioral requirements. LSCs extend classical message
sequence charts (MSCs) with logical modalities, depicted as hot and cold ele-
ments in the charts. The language thus achieves far greater expressive power
than MSCs, and is comparable to that of temporal logic. In particular, LSCs
can specify possible, mandatory and forbidden scenarios, and can be viewed as
specifying multi-modal restrictions over all possible system runs. An LSC typi-
cally contains a prechart and a main chart. The semantics is that if the scenario
in the prechart executes successfully, then the system is to satisfy the scenario
given in the main chart. The Play-Engine is the tool built to support LSCs, that

1 In earlier work of our group, we developed InterPlay, which is a different kind of
technique to connect reactive system engines, based on pairings of connections [4].
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enables a system designer to capture behavioral requirements by ‘playing in’ the
behavior of the target system, and to execute the specified behavior by ‘playing
out’. In the play-out phase the user or an external component executes the ap-
plication as if it were the real system. Table 7, bottom details a representative
example of a scenario-based specification.

The 3D Animated Front-End: The front-end was implemented using a three
dimensional authoring tool (3D Game Studio (3DGS) [1]), which supports real
time rendering of 3D animation. In 3DGS, objects can have associated actions,
which appear as part of its attributes. The scripting language of 3DGS, C-Script,
enables control of animation objects (e.g., changing an attribute) and supports
object oriented programming. We choose to add a controlling GUI to our system
as part of the front-end (as was done also in the thymus model [10]). However,
in more complex systems such a GUI could very well complicate the front-end
and should be designed as a different architectural component, possibly using a
GUI-building tool.

Mathematical Analysis GUI: We designed a mathematical analysis GUI
using MATLAB from MathWorks [28], which is a high-level language and inter-
active environment for computational tasks. This GUI generates various graphs
and statistics based on data received from the simulation. Similar mathemati-
cal analysis tools such as Mathematica from Wolfram Research, can also be
plugged-in the architecture.

The Architecture at Run-Time: Each component, when executed, initiates
a connection with the Central Routing Server. The setting of components in the
architecture enables pairwise message transfer between them. At run-time, mes-
sage passing drives the simulation in the participating components. For example,
messages from the reactive engines (i.e., Rhapsody and Play-Engine) drive the
animation in the front-end. Table 7 describes in detail possible runs of one of
our examples.

4 Modeling a Large-Scale Biological System

We have employed the proposed generic RA setup to model the development
of the pancreas, a highly complex system, containing numerous objects. The
pancreas is an essential organ, which is involved in regulation of metabolic
and digestive pathways. During development, it takes on an interesting three-
dimensional cauliflower-like shape. A prerecorded run of the simulation is avail-
able at www.wisdom.weizmann.ac.il/~yaki/runs

Abnormal functioning of the pancreas leads to lethal diseases such as pancre-
atitis and diabetes. Our model includes a comprehensive state-based specification
that results from analyzed scientific data. It is linked to an animated front-end
and a mathematical analysis GUI. In the future, we plan to link these two also
with a scenario-based specification to simulate mutations (e.g., defective blood

www.wisdom.weizmann.ac.il/~yaki/runs
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vessel). In [36], we provide details of this the work and discuss the intriguing
novel ideas that emerged from the model. See www.wisdom.weizmann.ac.il/

~yaki/abstract/ for a short description.

Modeling Pancreatic Development: We modeled pancreatic development
as an autonomous agent system [5] in which cells are autonomous entities that
sense the environment and act accordingly. The cell object in the model consists
of three elements, the nucleus, the membrane and the cell itself. The nucleus
operates as an internal signaling unit that expresses genes to drive the devel-
opment, while the membrane acts as an external signaling unit that senses the
environment and alerts the cell. The cell itself changes states in response to the
various signals (see Fig. 2). The environment was modeled as a computational
grid, with values that designate concentrations of biological factors. Various bi-
ological components participate in the process by regulating factors in the envi-
ronment. Each of these was specified as an object accompanied by a statechart
to describe its behavior. Cells however, are considered as the basic objects, and
the progress of the simulation/execution relies very much on their behavior. An
execution of the model is initiated with approximately 500 cells, which, among
other processes, proliferate and create new instances. A typical execution ends
with almost 10, 000 objects.

Fig. 2. The model for a cell as an autonomous agent accompanied with its
visualization (top-left)

www.wisdom.weizmann.ac.il/~yaki/abstract/
www.wisdom.weizmann.ac.il/~yaki/abstract/
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Designing an Animated Front-End: We visualize the simulation in an ani-
mated front-end, which we built based on what is depicted in the literature. Each
one of the participating components is represented as a 3D element possessing
attributes to represent change in location and behavior (Fig. 3A). For example,
the cells are represented in the front-end as spheres. At run time, an instance of
a cell directs its corresponding animated sphere according to its active state. A
differentiated cell might, for example, change its color to depict the new stage.
As the simulation advances, the cells dynamically act in concert to form the
cauliflower-shape structure of the pancreas (Fig. 3B). At any stage, the user
can halt the simulation and query objects or interact directly with the emerging
structure (e.g., ‘slice’ the structure) (Fig. 3C).

Mathematical Analysis GUI: We designed a GUI in MATLAB to provide
mathematical analysis of the simulation. The GUI continuously receives data
from the reactive engine, analyzes it and provides graphs and statistics (for ex-
ample, graphs of cell population, proliferation rate etc.). It thus enables the user
to evaluate the dynamics of the simulation over time. Fig. 3D shows a snapshot
of a graph that displays the cell count over time. In general, the system developer
can design many graphs and statistics, which are related to the relevant system
and whose data is gleaned from the model.

Fig. 3. A. 3D Animated front-end for the pancreatic development. B. The pan-
creatic structure emerging from the simulation. C. User interaction with the
simulation, the simulation was halted and a cross-section cutting was triggered.
D. Mathematical analysis of the pancreatic development: number of cells as
function of time.
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Specifying Mutations in the Simulation: In the pancreas project, as well as
as in modeling other large-scale natural systems, scenario-based programming
may help in specifying mutations in a rather natural way. A typical mutation
scenario should specify the changes in the model that correspond to relevant
mutations between elements in the system. At run-time, the user may trigger
relevant scenarios to mutate the system and then watch the effect on the simula-
tion. For example, a mutation scenario in pancreatic organogenesis would specify
the effect of a defective blood vessel on the participating elements, in particular
cells.

In the past, work in our group has shown scenario-based programming to be
beneficial for modeling biology. For example, it was the dominant tool used for
the specification and verification of certain developmental aspects in the repro-
ductive system of the C. elegans nematode (see e.g., [26,27,35,25]).

The Pancreas at Run-Time: Once the model is executed, instances of the
Cell are created and appear in the front-end as a sheet of red spheres on the
proper location on the flat endodermal Gut. Once a Cell instance is created, one
state in each concurrent component of its statechart is set to be in active state.
At this point, the Cells are uniform and their active states are set to the initial
states . In parallel, the environment is initiated and defines the initial concen-
trations of factors in the extracellular space. As the simulation advances, cells
respond to various events (e.g., the concentration of factors in their close vicin-
ity) by changing their active states accordingly. Hence, the sheet loses uniformity
at a very early stage of the simulation.

As the simulation advances, among other things, cells are differentiated, pro-
liferated and move. The processes are driven by many extracellular events (e.g.,
from the membrane) and intra-cellular events (i.e., from the nucleus). These
events change the active states in orthogonal specifications through the various
stages of the cell’s life cycle. For example, the proliferation process is initiated
by extra-cellular signals when the membrane senses relevant factors and gener-
ates a chain of inter-cellular events (in the cell and the nucleus) that promote
cell division. Proliferation ends when the Cell duplicates itself by creating an
identical instance. In turn, a message is sent to the front end, which creates a
new identical sphere corresponding to the new Cell at the proper location.

The cell population acts in concert to drive the simulation, by promoting
various decisions in individual cells. Consequently, messages are continuously
being sent between the different components in the architecture, in order to drive
the simulation. The process is displayed in parallel in each one of the components.
The state-based specification highlights the active state of the different objects
and, at the same time, the front-end and the mathematical GUI continuously
visualize and analyze the simulation.

Once scenario-based specification is combined to the model, interplay be-
tween scenario- and state-based specifications will drive mutations in the sim-
ulation. The user would be able to trigger mutations through the various tools
in the model and then watch the mutated behavior through the animation and
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analysis. Such mutations may be tested in vivo on the real system through lab-
oratory collaboration.

5 A Team Training Model

The second example we describe here is a simple, yet representative, model. It
involves gym training sessions for a team of three: a team leader and two team
members. The team leader performs various actions at different speeds, and the
team members follow suit, after a short “comprehension” delay. Team members,
however, are not as physically fit as the team leader, and need to rest while per-
forming certain fast actions. In addition, the team leader reacts to environmental
changes (e.g., a Flood) and performs an appropriate set of actions to handle such
situations. The model implements a state-based and scenario-based model, linked
to an animated front-end. Detailed descriptions of two execution examples of the
model are given in Table1. Also, http://www.wisdom.weizmann.ac.il/~yaki/
GRA/gym contains several self-explanatory video clips.

Modeling Team Behavior Using Statecharts: We used the state-based
approach to specify the team’s actual behavior. Our Rhapsody model includes
three classes: the team leader, the team member and the team. We demonstrate
statecharts using two team members, however, the model can be easily extended
to handle any number thereof. The behavior of each model element is specified
by a different statechart. The statecharts of the leader and a member describe
the action and the speed taken and are very similar (see Table2 for greater de-
tails). The statechart of the team handles interactions with the environment.

Specifying Team Training Tasks Using LSCs: We used the scenario-based
approach to specify training tasks for the team. The Play-Engine model specifies
several training task, which include a set of instructions for the team and for
the environment. Four different tasks have been specified: Escape, Flood, Storm
and Volcano Eruption. Each of these initiates a different scenario. Triggering
a new task while another is being executed causes a violation and the new LSC
terminates. An instruction message (e.g., crawl, jump, swim) triggers an LSC
that forces the engine to execute a specified set of messages. In addition, LSCs
specify camera control and environmental changes (see Table2 for greater de-
tails).

Designing an Animated Front-End: The front-end for the model consists of
a real-time 3D animation of the training exercise. Animated renditions of a team
leader and a team member were created based on the cbabe model of 3DGS. The
participants perform various actions such as walking, swimming, wading etc. The
user may query the model by clicking an animated figure, and the relevant data
(e.g., ID, current action) is displayed next to it. Environmental changes such as
a flood may occur and the animated front-end displays the change accompanied
by matching sound effects. The GUI portion of the front-end enables the user to

http://www.wisdom.weizmann.ac.il/~yaki/GRA/gym
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trigger an instruction to the team (e.g., to jump fast) or to assign a task (e.g.,
to escape), respectively. He or she also controls the camera’s activity and may
query the running simulation.

Team Training at Run-Time: Once the model is executed, the state-based
specification of the team behavior is initiated and the active state of each player
is set to Stand (i.e., the initial state). As the simulation advances, various events
(either internal or external) change the active state of the players. For exam-
ple, instructions from the leader to the members are internal events of a team
that drive within the state-based specification. Similarly, external events from
the scenario-based specification, describing team tasks (e.g., flood), directs the
active state of state-based specification.

The behavior of the model is continuously visualized at the front-end in
various manners. For example, when a flood task is initiated, a water wave
appears at the front-end and the team starts wading. At every time-point, the
user may interact with the model so as to trigger different behaviors of the team
(e.g., change the action of team members).

6 Additional RA examples

We are currently looking into using our techniques in additional biological mod-
eling projects. We use the generic reactive animation architecture to visualize
behaviors as part of the GemCell project [2]. GemCell contains a generic state-
chart model of cell behavior, which captures the five main aspects of cell behav-
ior (proliferation, death, movement, import and export). This generic model is
coupled with a database of biological specifics (DBS), which holds the informa-
tion about the specific cellular system. Modeling a particular segment of biology
involves setting up the DBS to contain data about the specific behaviors and
responses of the particular kinds of cells in the system under description. During
execution, statecharts read in the specific data and the combination runs just as
described in the model above.

We have employed the generic reactive animation architecture to link the
GemCell model (in Rhapsody) with a 2D animated from-end (in Flash). At run
time, the front-end continuously visualizes the behavior of numerous cells. The
visualization clarifies the underlying principles in simulation. This project is still
in its early stages of development.

In addition to this, we have tested the genericity of our architecture on some
other examples, with different tools. We have a ‘traffic handing’ model that uses
our architecture to link the scenario-based programming tool, the Play-Engine,
to a 2D animated front-end using Flash. Also, we have designed a ‘police at work’
game using S2A[21], an aspectJ-based tool for scenario-based programming,
linked to a 2D animated front-end in Flash.

Further details of these examples appear in www.wisdom.weizmann.ac.il/

~yaki/GRA.

www.wisdom.weizmann.ac.il/~yaki/GRA
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7 Discussion

In the last few years, increasing interdisciplinary work combines experimental
results with theoretical models in order to explain various natural systems (see
e.g., [3,7,15,29]). Another type of modeling work formalizes gene expression and
protein activity using a variety of mathematical and computational tools (for ex-
ample, see [6,24,31,32,33]). However, most of the relevant work ignores multiple
concurrent activities and focuses on a single mechanism in the entire system. An
example for comprehensive modeling is the beating heart project [30], which for-
malizes the electric activities in the heart. However, by its mathematical nature,
the model interactivity and real time animation are limited since simulations
require much computation time.

Recently, various work uses computational modeling approaches for natural
systems. In [14], hybrid automata are used to model the Delta-Notch mechanism,
which directs differentiation in various natural systems. In [12], computational
challenges of systems biology are described and various approaches for achiev-
ing them are discussed. A similar motivation for model-driven engineering ap-
proaches is discussed in [34]. Recently, in [13] computational and mathematical
approaches are reviewed and the term executable biology is used to describe the
kinds of modeling carried out in our group, and recently also elsewhere. In [39],
a model for a eukaryotic cell is built, in which a UML class diagram was used
to formalize the relations between a cell and its sub-cellular elements. The setup
was empowered by specifying behavior of different cell types (e.g., red blood cell)
using the ROOM formalism. A similar approach was employed in [37] to model
the Ethylene-Pathway in Arabidopsis thaliana using statecharts and LSCs.

As mentioned, the present paper is an extension and generalization of our
previous work on reactive animation [10], which was motivated by the need
for a clean way to bridge the gap between how objects behave and how that
behavior should show up on the screen. The idea was to separate the reactivity
from the visualization, making it possible to choose the best tools for each, and
thus enjoying the benefits of both worlds. Having a reactive engine that controls
the simulation while an animated front-end monitors the visualization, makes it
possible to model large-scale systems with many objects and interactions. Each
agent in the reactive engine has a corresponding animated figure in the front-
end, and since the two models are separate, they can be designed by specialists
in their particular fields using any state-of-the-art tools.

In [10], reactive animation was illustrated by simulating the development of
T-cells in the Thymus gland, and it was implemented using a direct communica-
tion socket between a state-based model (statecharts in Rhapsody) and a 2D an-
imated front-end (in Flash). The present paper provides a generic, modular and
fully distributed architecture, with the ability to link multiple reactive engines,
and it illustrates the feasibility of reactive animation with a three-dimensional
visualization. Furthermore, this platform was used beneficially for the realistic
modeling of pancreatic development, a complex and large-scale biological system.
Moreover, the model reproduced results of relevant experiments and suggested
new intriguing ideas [36].
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We believe that our biological models emphasize the benefit for modeling
complex large-scale systems using reactive animation. In the models, the visual-
ized concurrent execution of the basic elements revealed properties that were not
explicitly programmed into the model. Rather, they emerge from the concurrent
execution of cells as a population. For example, in the pancreas model, we found
that concurrent execution of pancreatic cells gives rise to a property that corre-
sponds well with first transition clusters found to appear early in the developing
organ in vivo [36]. Similarly, the concurrent execution of T-cell development in
the thymus led to the emergence of competitive behavior between the cells [11].
Moreover, using the model, we analyzed and studied these properties and sug-
gested some insights into the phenomena [8,11,36]. In general, since emergent
properties are dynamic properties of a population, it is rather difficult to predict
them from the model’s static specifications. At the animated front-end, which
visualizes the simulation, the phenomenon is often easily seen and can then be
carefully examined against the literature for a biological explanation.

While we have used a number of examples to illustrate generic reactive an-
imation, we find the technique particularly beneficial for large-scale biological
systems. We envision that in the long run, the pancreas project may lead to
new insights about pancreas-related diseases, such as diabetes. Furthermore, we
feel that generic RA my perhaps help in efforts to build an in-silico organ or
organism (see, e.g., [19]).

Acknowledgments. We would like to thank Shahar Maoz and Gera Weiss for
their help and support in setting the architecture and designing the examples.
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Table 1: Illustration of two execution examples of the team training model (for interactive illustration and
recorded clips see http://www.wisdom.weizmann.ac.il/~yaki/GRA/gym)
.
Illustration of the Architecture:
The Team Training Model: Message transmission between the architectural components of the model: The
state-based model (ST, at top left); The scenario-based specification (SC, at bottom left); and the animated
front-end (FE, at middle right).

Example 1: Medium Speed Jumping Example 2: Flood Training Task
Participating components: FE, ST Participating components: FE, SC,ST
Description: Description:
When the user sets the speed scroll bar to medium and
clicks the jump button, FE notifies (i.e., sends a mes-
sage to) ST about the instruction (1). Accordingly, the
team object in ST generates an inner event to set the
statechart of the team leader to jump at medium speed
(i.e., the Action sub-statechart moves to the Jumping
state and the Speed sub-statechart is set to Medium).
After a predefined time interval, the team object gen-
erates another event for the statecharts of each of the
team members. Upon entering the Jumping state, ST
notifies FE to animate the action (2). Consequently, the
animated team leader jumps, and the team members fol-
low suit. The user can change the camera’s position to
view the team from different angles. Camera relocation,
however, has no effect on the running simulation. Dur-
ing a run of the system, the user may query the model
or relocate the camera. When a query is requested, FE
notifies ST (1), which provides the appropriate informa-
tion. Changes in the camera, however, do not interact
with the reactive engines.

The user assigns a flood task to the team by clicking on
the appropriate button. Consequently, FE notifies SC
and the flood LSC is activated (3), initiating the sce-
nario. The first message in the flood LSC is a running
instruction for the team. Consequently, the run LSC
is activated, and it notifies ST to run at a slow speed
(4). Later on, a message in the flood LSC instructs the
environment to initiate a flood. The FloodAlert LSC
is activated and notifies FE (5). Accordingly, a water
layer is displayed and a corresponding splashing sound
is played. Immediately after this, the swim LSC is ac-
tivated and it notifies ST. The swim message enables
a forbidden element in the run LSC, causing the run
LSC to exit. Again, the swim LSC notifies ST, which
in turn notifies FE(2). The flood LSC completes after
it instructs the team to walk, the environment to end
the flood, and the team to stand (i.e., to stop moving).
At this point, there are no more LSCs active in SC,
the statecharts of ST are all in the standing state, and
the animated figures in FE are standing, ready for the
next task. In case a fast speed action is taken, each of
the two team member objects will enter a resting state
after some time. Consequently, ST notifies SC(6) and
FE(2). Concurrently, the team member in FE changes
its appearance to resting, an SC in SC is triggered, and
it notifies FE (5) to activate the team member’s camera.
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Table 2: Sample of the model: statechart behavior of the team leader (top), and LSC specification describes
Flood task(bottom)

Samples of the Model Description

The team leader’s statechart: The behav-
ior of the team leader is specified by a stat-
echart with four orthogonal components
(i.e., concurrent sub-statecharts). The
most important of these are Action and
Speed, which specify the team leader’s cur-
rent action (e.g., running, working) and
current speed (slow, medium, fast), re-
spectively. The statechart of a team mem-
ber is similar, but it has an additional be-
havioral element: a team member takes a
short rest while a fast action is performed.
To add this behavior, a superstate was
added to a team member’s Action sub-
chart and an internal statechart was added
to the fast state. The other two orthog-
onal components are less important; they
serve as internal and external communica-
tors.

The flood LSC: assigning a flood task trig-
gers the flood LSC, which initiates the fol-
lowing scenario: the team participants run
until the water level rises, and then they
swim until the water level is low enough
to walk. When the flood is over, the team
participants stop motion, and stand, ready
for a new task. During task execution, the
run instruction triggers an LSC that in-
structs the team to run at an increasing
speed. When the swim instruction is taken,
the run LSC terminates.
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34. Roux-Rouquié, M., da Rosa, D. S.: Ten Top Reasons for Systems Biology to Get
into Model-Driven Engineering, In: GaMMa ’06: Proc. of the 2006 international
workshop on Global integrated model management 55–58 (2006)

35. Sadot, A., Fisher, J., Barak, D., Admanit, Y., Stern, M. J., Hubbard, E. J. A.,
Harel, D.: Towards Verified Biological Models, IEEE/ACM Trans. Comput. Biol-
ogy and Bioinformatics to appear (2007)

36. Setty, Y., Cohen, I. R., Dor, Y., Harel, D.: Four-Dimensional Realistic Modeling
of Pancreatic Organogenesis, submitted (2007)

37. Taubner, C., Merker, T.: Discrete Modelling of the Ethylene-Pathway, In: ICDEW
’05: Proceedings of the 21st International Conference on Data Engineering Work-
shops 1152 (2005)

38. Telelogic, www.telelogic.com.
39. Webb, K., White, T.: Cell Modeling with Reusable Agent-based Formalisms, Ap-

plied Intelligence 24, 169–181 (2006)


	Generic Reactive Animation
	David Harel, Yaki Setty
	Introduction
	Reactive Animation
	Implementation Architecture
	Modeling a Large-Scale Biological System
	A Team Training Model
	Additional RA examples
	Discussion



