
Rhapsody:
A Complete Life-Cycle Model-Based Development System

Eran Gery, David Harel, and Eldad Palachi

I-Logix, Inc.

Abstract. We discuss Rhapsody, a UML based software development
tool, designed to support complete model-based iterative life-cycle. First,
we identify several key inhibiting factors that prevent model-based ap-
proaches from being adopted as a mainstream practice. We then examine
the requirements for allowing complete life-cycle model-based develop-
ment and discuss how they are met by Rhapsody through its key enabling
technologies, which include:
– model-code associativity
– automated implementation generation
– implementation framework
– model execution
– model-based testing

We explain why each of these features is instrumental to an effective
development of production systems, based on a key observation that the
modeling language does not replace the implementation platform, but
should be integrated with it in a synergistic manner. This allows the use
of modeling for expressing requirements and design abstractions, along
with the use of the full power of an implementation language and its
supporting platform to specify implementation details. While allowing
this flexibility, Rhapsody facilitates full consistency of the modeling and
implementation artifacts throughout the life-cycle, and it also supports
a high level of automation in the implementation and validation of the
developed system.

1 Introduction

Model-based development has been of interest in the software development indus-
try almost since its inception. Nevertheless, model-based development is not yet
mainstream practice. The emergence of the unified modeling language (UML) [7]
as a ubiquitous practice across the software industry brings awareness to mod-
eling and abstraction a step forward. Still, only a small percentage of software
developers practice model-based development with UML.

A common usage pattern of models is the informal use-case, by which con-
cepts and ideas are sketched in a model, and then followed by traditional imple-
mentation, without any formal consistency between the modeling artifacts and
the implementation artifacts. As we explain below, despite its common practice
this approach exposes some major weaknesses and actually limits the ability to
benefit from the main advantages of model-based development.

M. Butler, L. Petre, and K. Sere (Eds.): IFM 2002, LNCS 2335, pp. 1–10, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



2 Eran Gery, David Harel, and Eldad Palachi

Other paradigms (e.g. [10]) follow a translative approach, whereby implemen-
tation artifacts are generated from models but are not practically accessible to
the developers. This approach represent the other extreme. On the one hand it is
formal, meaning that model-semantics is fully compiled into the implementation
artifact. But on the other hand it poses significant difficulties as a mainstream
technique in the software industry, since it ignores the role and importance of
interfacing the implementation platform itself.

Recently, the OMG emerged with the Model Driven Architecture initiative
[8], which combines a set of technologies to achieve the construction of systems
in a highly reusable, platform-independent manner. In it, model-based develop-
ment serves as the key facilitator in achieving platform independence and a high
level of reuse. The model-based development approach proposed in the MDA
is consistent with what we describe here, in that it offers a formal and auto-
mated approach on the one hand, while realistically addressing implementation
constraints the other.

In this paper we describe the concepts behind Rhapsody [3,4], a system
designed to facilitate an effective model-based development life-cycle. In retro-
spect, Rhapsody realizes many of the ideas outlined in MDA, while focusing its
applicability on real-time embedded systems. It addresses those deficiencies that
prohibit the effective usage of model-based development, turning it into a main-
stream tool for industry. Rhapsody is based on the idea of executable models,
as described in [3], and it is fair to say that both of these pioneered the idea of
formal model-based development with UML.

2 Iterative Development

Iterative development is the current mainstream approach for software develop-
ment. In the UML context it is described as a generic process in [5]. A more
specific process suited for the development of embedded systems is described in
[1]. Iterative development addresses several key issues that can be viewed as the
legacy of waterfall-based processes:

– Reduces risk by early detection of analysis, design and implementation issues.
– Is able to effectively trade off schedule and functionality in order to address

competition and/or schedule slippage.
– Facilitates concurrent development to shorten development life-cycles.

It is crucial that a model-based development process effectively support it-
erative development. Iterative development is based on incremental steps, each
of which goes through a complete analyze-design-implement-test cycle. Comple-
tion of increment n is the starting point for increment n + 1. Therefore, effec-
tive iterative development requires strong bi-directional traceability between all
development artifacts. In addition, it is important to facilitate rapid iteration
throughout the development life-cycle.

In the sequel we will analyze the key enabling technologies required to facil-
itate effective iteration and traceability.



Rhapsody 3

3 Problems with Model-Based Development

There are several key inhibitors for the adoption of model-based development by
software developers. Each of them results in a workflow deficiency that inhibits
the synergy between iterative and model-based development.

A common deficiency is lack of implementation automation, resulting in the
need for manual coding of the implementation or significant parts of it. This
results in inherent incosistency between the modeling and implementation arti-
facts, as the manual implementation is error prone. In addition lack of automa-
tion also results in lower productivity , which is also an inhibitor to an effective
process by itself.

The main reason for this deficiency is lack of support for model executabil-
ity. Model executability requires complete semantic interpretation of the model,
accompanied by algorithms for translating the model into artifacts that can be
executed and support a run-time execution model, that facilitates validation of
the model. In the absence of a model-execution facility, validation is done only to
the implementation artifacts, resulting in late detection of inconsistencies with
the specification, as well as the non-validated model remaining an informal arti-
fact used only at the beginning of the process and not throughout the iterative
life-cycle.

Another common deficiency is the discontinuity between the implementation
artifacts and modeling artifacts representing the analysis and design stages. It-
erative life-cycles require that the implementation artifacts created in the nth
iteration are augmented and refined during the n+1 iteration. In the absence of
proper traceability support, changes to the implementation during integration
of iteration n, invalidate the model for iteration n + 1.

The next inhibiting factor is disintegration with the implementation platform.
Modeling languages offer rich semantic abstractions of structure and behavior,
but they do not normally provide rich sets of operations at the detailed level.
In contrast, implementation languages offer rich constructs at the detailed level,
such as arithmetic, memory manipulations and other kinds of detailed level oper-
ations, but lack proper abstractions for concepts above these. The lack of proper
integration between the two results in a compromise, either of usability or of
efficiency of the resulting implementation.

4 Rhapsody’s Key Enabling Technologies

Rhapsody embodies several principles that are instrumental for effective model-
based development, and which address the common automation and traceability
deficiencies. The key enabling technologies are model-code associativity, auto-
mated implementation generation, implementation framework, model execution
and back animation, and model-based testing .

We now describe each of these in some detail.



4 Eran Gery, David Harel, and Eldad Palachi

4.1 Model-Code Associativity

Model-code associativity is a key enabler for software developers to effectively
leverage the benefits of model-based approaches, but without compromising the
benefits of direct access to the implementation language/platform. The funda-
mental principle here is that the model does not replace the implementation
language, but rather being augmented by it in a synergistic manner, where ab-
stractions are described and viewed by models, but detailed implementation is
carried out by an implementation language.

To achieve this in Rhapsody, the model and code are viewed as two viable
development artifacts of the system. This is done using the following design
principles:

– Detailed behaviors (also known as “actions”) are written in the target imple-
mentation language. This avoids unnecessary translation of detailed compu-
tational expressions from one language (the “action language”) to another,
although the two are essentially isomorphic. Using the implementation lan-
guage as the action language also contributes to the readability of the re-
sulting code, as well as to the expressiveness of low-level manipulation.

– The implementation language is augmented by an execution framework (see
subsection 4.3 below), which provides additional semantic constructs not
supported by the implementation language. The framework is essentially the
interface between the implementation language and the modeling language
abstractions.

– Code resulting from the model is intuitive and self-explanatory. This is
achieved by using common translation patterns for UML’s abstract con-
structs, and by attaching notes and constraints to the resulting code. In
addition, using the implementation language as the action language, and
the implementation framework itself, contribute to the readability of the
implementation source code.

– Rhapsody supports online navigability between the model artifacts and their
code counterparts, and vice versa. It is always possible to trace the code
resulting from certain model elements and to trace the model element cor-
responding to a particular section of the code.

– Model and code are always synchronized: changes in the model are instanta-
neously reflected in the code view, and changes in the implementation code
are “round-tripped” back, to be reflected in the model. This facility is in-
strumental to the entire idea of model-based development. It addresses the
inherent discontinuity problem, whereby changing the code invalidates the
model and thus also the entire model-based development workflow.

4.2 Automated Implementation Generation

The core of Rhapsody support for model executability is its implementation gen-
erator. The generator generates fully functional, production-ready implementa-
tions, employing all the behavioral semantics specified in the UML model. These



Rhapsody 5

include system construction, object life-cycle management (construction and de-
struction), object behavior as specified by statecharts or activity-graphs, as well
as methods directly specified by the implementation language.

The implementation generator maps every model artifact into a set of imple-
mentation artifacts (source code, make-files) based on generation rules and a set
of predefined parameters for each model element type (metaclass). The genera-
tion parameters may specify translation tradeoffs (size/speed, size/modularity)
as well as code style. In addition, the parameters specify implementation domain
objects to be reused in the translation. These may come from the Rhapsody ex-
ecution framework or be defined by the user. All this enables the user to choose
from a wide range of implementation strategies that realize the model semantics.

The implementation generator supports various implementation languages
(C++, C, Java) and component frameworks (COM, CORBA).

4.3 The Execution Framework

The execution framework is an infrastructure that augments the implementation
language to support the modeling language semantics. The framework based ap-
proach is an open architectural mode of work, providing a set of architectural
and mechanistic patterns to support modelling abstractions like active objects,
signal dispatching, state based behaviors, object relationships and life-cycle man-
agement.

The execution framework is given in several forms of APIs, based on the im-
plementation language. These APIs are used by the modeler to perform manip-
ulation at model abstraction level, including sending signals, creating composite
objects, creating object relationships, and interacting with the state model.

The Rhapsody framework consists of 3 domains of architectural and mecha-
nistic patterns:

– The active objects base framework: a set of architectural patterns that sup-
ports the active object set of semantics, including concurrency, signal dis-
patching, synchronization, and life-cycle management.

– The operating system abstraction layer (OSAL): a layer that encapsulates
a set of basic services typically supported by an operating system, such
as creation of threads, event queues, semaphores, memory management, etc.
The OSAL needs to be implemented specifically for every targeted operating
system. It allows easy retargeting of models to different platforms without
any change to the model.

– Utilities for mechanistic design: a set of containers to implement the various
relationships and life-cycle management between objects in the system.

The execution framework API serves as an abstraction layer used by the
code-generator to facilitate model semantics in the context of a particular im-
plementation language. Developers may specialize and augment the basic seman-
tics by specializing or changing the implementation of the framework pattern.
The latter is achieved by changing the open code generator mappings to use a
different set of framework classes.



6 Eran Gery, David Harel, and Eldad Palachi

The set of patterns provided by the framework comprises common struc-
tural and behavioral patterns used by applications based on the active object
paradigm; specifically, real-time embedded applications. The framework implies
a high level of reuse of these validated pattern implementations, which contribute
to the modularity and quality of the generated application. A fairly detailed de-
scription of the framework can be found in [6].

4.4 Model Execution (Model-Based Debugging)

Model execution is a key enabler for effective model-based development, as it
facilitates the ability to effectively validate what has been constructed. The key
theme behind model execution is expanding the specification model with a run-
time model that provides the ability to trace and control the execution of the
system at the same level of abstraction as that of the system specification.

There are two main approaches two model execution. The first, which is
often referred to as simulation, is to construct an interpreter that executes the
model based on the runtime semantics. The other one, which is manifested in
Rhapsody, is to provide a runtime traceability link between the implementation
execution and the runtime model. This technique is also called model-animation.

The fact that the model execution is linked to the actual implementation ex-
ecution has several advantages. From a methodological point of view, it enables
shorter iterations of model-implement-debug cycles, while maintaining full con-
sistency between the model and its implementation. Another advantage is the
ability to have concurrent source-level and model-level debugging by allowing
the use of a code level debugger in the process. Such a combination also allows
an easier mapping between the UML design and its source code implementation.

Figure 1 is a screen-shot of the runtime model, instantiated during a model
execution session. The model consists of all instances of objects, their links and
internal states. It also includes event queues and call-stacks for active objects,
and also a trace that logs all the events in the system.

As shown in the figure, one can view individual instances, including their cur-
rent state configuration, attributes values and association references. The system
trace is reflected as instantiations of animated sequence diagrams. Other avail-
able views are an output window that can be used to textually trace the run,
call-stack and event queue windows that relate to a specified “focus” thread,
a browser view showing the instances of each class, and more. As for control
capabilities, Rhapsody provides a set of animation commands that can be in-
voked using the animation toolbar. These include injecting events, setting focus
threads, running step-by-step in different granularities (for example, “go event”,
which means run until the application is finished dealing with the current event
in the queue) setting filters for the output window, logging the trace to external
files, and more.

The architecture behind our model-execution technique consists of the fol-
lowing components: (1) Source code instrumentation hooks, inserted by the im-
plementation generator; (2) A runtime trace framework, implemented in the
implementation language, which provides a set of services to trace and control



Rhapsody 7

Fig. 1. Model execution using Rhapsody.



8 Eran Gery, David Harel, and Eldad Palachi

the application; (3) A trace and control communication protocol between the
application and Rhapsody (implemented over TCP/IP), which allows Rhapsody
to debug applications running on remote embedded devices using embedded op-
erating systems; (4) A runtime model maintained within Rhapsody; (5) A set of
runtime views, as described above.

4.5 Model-Based Testing

Model-based testing provides the ability to specify and run tests based on the
specifications in the model, as well as the ability to pinpoint defects from the
test results by visualizing points of failure within the model. A good model-based
testing component also facilitate a trace between the modelled requirements and
the constructed system.

Currently, most testing cycles have the following characteristic steps: write or
record test scripts based on the specification documents and existing prototypes;
run the scripts; review the results; report defects and/or confirm fixes. From the
developer’s perspective, handling such defects consists of the following: try to
reproduce the defect by repeating the reported scenario; debug the application
and try to diagnose the source of the failure; fix the defect and . . . hope for the
best . . .. Usually, towards new releases, this cycle seems to repeat itself endlessly,
where the number of defects constantly fluctuates, until the system meets the
required level of quality according to the available set of tests. Another well-
known fact is that using traditional approaches, most of the bugs are introduced
during the early stages of the development, but are found towards the release.
This observation is one of the main motivations for incremental and iterative
approaches.

Rhapsody’s model-based testing features the following canonical usage se-
quence:

1. Specify tests using scenarios specified in the model.
2. Run the tests. Rhapsody will drive and monitor the model execution.
3. Review results and pinpoint failures, by having the tool show the actual trace

rendered as a sequence diagram that highlights where the scenario that was
expected was violated.

4. Fix the defect and verify by rerunning the test.

The scenarios in clause 1 were specified explicitly as requirements throughout
the analysis and design stages, or may have been recorded using the model
execution feature described earlier to serve as a baseline for regression-testing.
The scenarios are specified as extended sequence diagrams, following concepts
proposed in the live sequence charts of [LSC]. Scenarios can be referred to as
monitors or also drivers. Driver scenarios also provide stimuli to the system
during test execution.

This approach to testing has the following main advantages:

– Abstract modeling concepts can be reused to specify tests, as an alternative
to script files.



Rhapsody 9

– The requirements from the model and execution traces can be reused as
tests.

– Both black-box and white-box scenarios can be used for testing, unlike the
traditional approach that executes only black-box scenarios. Also, one can
easily elaborate a black-box into a white-box scenario by adding the relevant
instances during the run, or offline, as part of the test specification.

– It is easier to diagnose the source of the defect, since the exact point of
failure is shown by the tool using sequence diagram notation.

– Testers and developers alike can specify and execute tests: no specialized
tools or knowledge of scripting languages is required.

– Earlier detection of bugs throughout the development process is possible:
tests can be defined and executed as part of the development effort and then
routinely executed from that point on.

– Consistency is maintained between requirements and tests: updating require-
ments automatically updates test criteria and in many cases the other way
around too.

5 Conclusion

In this brief paper we have attempted to discuss the rationale behind the ap-
proach taken in designing the Rhapsody tool [3,4], and its main advantages in
model-based system development. We talked about the problems Rhapsody was
intended to solve, and its key enabling technologies.

Model-code associativity facilitates the seamless integration with the devel-
opment platform and full associativity between the implementation and mod-
eling artifacts, addressing the discontinuity and the disintegration inhibiting
factors mentioned in Section 3. Automated implementation generation and the
implementation framework address model to implementation consistency as well
as the productivity factor. Model-execution addresses validation of the model
throughout the iterative life-cycle and early detection of defects originating from
requirements through design to detailed implementation. Model-based testing
contributes to effective model-based development by maintaining consistency
between model requirements and tests, by facilitating early testing throughout
the iterative life-cycle, and by increasing the productivity of specifying tests and
detecting defects.

References

1. B.P. Douglass Doing Hard Time. Addison-Wesley Object Technology Series, 1999.
2. W. Damm and D. Harel. LSCs: Breathing Life into Message Sequence Charts.

Formal Methods in System Design, 19(1), 2001. (Preliminary version in Proc. 3rd
IFIP Int. Conf. on Formal Methods for Open Object-Based Distributed Systems
(FMOODS’99 ), (P. Ciancarini, A. Fantechi and R. Gorrieri, eds.), Kluwer Aca-
demic Publishers, 1999, pages 293–312.)



10 Eran Gery, David Harel, and Eldad Palachi

3. D. Harel and E. Gery. Executable Object Modeling with Statecharts. IEEE Com-
puter, pages 31–42, July 1997. Also, Proc. 18th Int. Conf. on Software Engineering ,
Berlin, IEEE Press, March, 1996, pp. 246–257.)

4. Rhapsody’s user guide. www.ilogix.com
5. I. Jacobson, G. Booch, J. Rumbaugh. The Unified Software Development Process.

Addison-Wesley Object Technology Series, 1998.
6. E. Gery, R. Rinat, J. Ziegler. Octopus Concurrency Design with Rhapsody.

www.ilogix.com
7. OMG Unified Modeling Language Specification, Version 1.4. OMG Document

formal/01-09-67
8. OMG Architecture Board MDA Drafting Team. ”Model Driven Architecture - A

Technical Perspective”. OMG Document ormsc/01-07-01
9. UML 1.4 with Action Semantics. OMG Document ptc/02-01-09, p. 2-209 - 2-349

10. http://www.projtech.com/prods/bp/info.html


	1 Introduction
	2 Iterative Development
	3 Problems with Model-Based Development
	4 Rhapsody's Key Enabling Technologies
	4.1 Model-Code Associativity
	4.2 Automated Implementation Generation
	4.3 The Execution Framework
	4.4 Model Execution (Model-Based Debugging)
	4.5 Model-Based Testing

	5 Conclusion
	References

