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ABSTRACT 

Live sequence charts (LSCs) have been defined recently as an extension of message 
sequence charts (MSCs; or their UML variant, sequence diagrams) for rich inter-object 
specification. One of the main additions is the notion of universal charts and hot, manda
tory behavior, which, among other things, enables one to specify forbidden scenarios. 
LSCs are thus essentially as expressive as statecharts. This paper deals with synthesis, 
which is the problem of deciding, given an LSC specification, if there exists a satisfy
ing object system and, if so, to synthesize one automatically. The synthesis problem 
is crucial in the development of complex systems, since sequence diagrams serve as the 
manifestation of use cases — whether used formally or informally — and if synthesizable 
they could lead directly to implementation. Synthesis is considerably harder for LSCs 
than for MSCs, and we tackle it by defining consistency, showing that an entire LSC 
specification is consistent iff it is satisfiable by a state-based object system, and then 
synthesizing a satisfying system as a collection of finite state machines or statecharts. 
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6 D. Harel & H. Kugler 

1. Introduction 

1.1. Background and motivation 

Message sequence charts (MSCs) are a popular means for specifying scenarios 
that capture the communication between processes or objects. They are particularly 
useful in the early stages of system development. MSCs have found their way into 
many methodologies, and are also a part of the UML [30], where they are called 
sequence diagrams. There is also a standard for the MSC language, which has 
appeared as a recommendation of the ITU [33] (previously called the CCITT). 

Damm and Harel [8] have raised a few problematic issues regarding MSCs, most 
notably some severe limitations in their expressive power. The semantics of the 
language is a rather weak partial ordering of events. It can be used to make sure 
that the sending and receiving of messages, if occurring, happens in the right order, 
but very little can be said about what the system actually does, how it behaves 
when false conditions are encountered, and which scenarios are forbidden. This 
weakness prevents sequence charts from becoming a serious means for describing 
system behavior, e.g., as an adequate language for substantiating the use-cases 
of [15, 30]. Damm and Harel [8] then go on to define live sequence charts 
(LSCs), as a rather rich extension of MSCs. The main addition is liveness, or 
universality, which provides constructs for specifying not only possible behavior, 
but also necessary, or mandatory behavior, both globally, on the level of an entire 
chart and locally, when specifying events, conditions and progress over time within a 
chart. Liveness allows for the specification of "anti-scenarios" (forbidden ones), and 
strengthens structuring constructs like subcharts, branching and iteration. LSCs are 
essentially as expressive as statecharts. As explained in [8], the new language can 
serve as the basis of tools supporting specification and analysis of use-cases and 
scenarios — both formally and informally — thus providing a far more powerful 
means for setting requirements for complex systems. 

The availability of a scenario-oriented language with this kind of expressive 
power is also a prerequisite to addressing one of the central problems in behavioral 
specification of systems: (in the words of [8]) to relate scenario-based inter-object 
specification with state machine intra-object specification. One of the most pressing 
issues in relating these two dual approaches to specifying behavior is synthesis, i.e., 
the problem of automatically constructing a behaviorally equivalent state-based 
specification from the scenarios. Specifically, we want to be able to generate a 
statechart for each object from an LSC specification of the system, if this is possible 
in principle. The synthesis problem is crucial in the development of complex object-
oriented systems, since sequence diagrams serve to instantiate use cases. If we 
can synthesize state-based systems from them, we can use tools such as Rhapsody 
(see [13]) to generate running code directly from them, and we will have taken 
a most significant step towards going automatically from instantiated use-cases to 
implementation, which is an exciting (and ambitious!) possibility. See the discussion 
in the recent [12]. And, of course, we couldn't have said this about the (far easier) 
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Synthesizing State-Based Object Systems 7 

problem of synthesizing from conventional sequence diagrams, or MSCs, since their 
limited expressive power would render the synthesized system too weak to be really 
useful; in particular, there would be no way to guarantee that the synthesized system 
would satisfy safety constraints (i.e., that bad things — such as a missile firing with 
the radar not locked on the target — will not happen). 

In this paper we address the synthesis problem in a slightly restricted LSC 
language, and for an object model in which behavior of objects is described by 
state machines with synchronous communication. For the most part the resulting 
state machines are orthogonality-free and flat, but in the last section of the paper 
we sketch a construction that takes advantage of the more advanced constructs of 
statecharts. 

An important point to be made is that the most interesting and difficult aspects 
in the development of complex systems stem from the interaction between different 
features, which in our case is modeled by the requirements made in different charts. 
Hence, a synthesis approach that deals only with a single chart — even if it is an 
LSC — does not solve the crux of the problem. 

The paper is organized as follows. Section 2 introduces the railcar system of 
[13] and shows how it can be specified using LSCs. This example will be used 
throughout the paper to explain and illustrate our main ideas. Section 3 then goes 
on to explain the LSC semantics and to define when an object system satisfies an 
LSC specification. In Section 4 we define the consistency of an LSC specification 
and prove that consistency is a necessary and sufficient condition for satisfiability. 
We then describe an algorithm for deciding if a given specification is consistent. 
The synthesis problem is addressed in Section 5, where we present a synthesis 
algorithm that assumes fairness. We then go on to show how this algorithm can be 
extended to systems that do not guarantee fairness. (Lacking fairness, the system 
synthesized does not generate the most general language as it does in the presence 
of fairness.) In Section 6 we outline an algorithm for synthesizing statecharts, with 
their concurrent, orthogonal state components. 

1.2. Related work 

As far as the limited case of classical message sequence charts goes, there has 
been quite some work on synthesis from them. This includes the SCED method 
[18, 19] and synthesis in the framework of ROOM charts [22]. Other relevant work 
appears in [28, 4, 2, 7, 16, 32, 23]. In addition, there is the work described in 
[21], which deals with LSCs, but synthesizes from a single chart only: an LSC is 
translated into a timed Biichi automaton (from which code can be derived). 

In addition to synthesis work directly from sequence diagrams of one kind or 
another, one should realize that constructing a program from a specification is a 
long-known general and fundamental problem. There has been much research on 
constructing a program from a specification given in temporal logic (e.g., [25]). 

We now provide brief descriptions of some of these efforts. 
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8 D. Harel & H. Kugler 

1.2.1. ROOM charts 

The message sequence chart language used in [22] contains basic (existential) 
MSCs, called bMSCs, and high level MSCs (hMSCs). The hMSCs provide opera
tors for describing the composition and hierarchical arrangement of bMSCs. The 
semantics assumes mutually exclusive charts: during a run, the system is always in 
exactly one bMSC. 

The synthesis in [22] generates both structural and behavioral components of 
ROOM models [29]. The structural components are actors, protocols, ports and 
bindings, and the behavioral components are a variant of statecharts with no con
currency, i.e., no orthogonal components. The mutual exclusion semantics between 
the charts allows a fairly simple synthesis algorithm. 

One of the questions addressed in [22] is how many events should be executed 
during a single transition. Two main synthesis algorithms are developed according 
to the answer to this question, one for maximum traceability and one for maximum 
progress. In the former case each actor has a state for each bMSC, and each such 
state has substates corresponding to the local state of the chart. The number of 
events executed during one transition here is relatively small, since events can be 
sent only if they appear before the end of the bMSC, and moving to a new bMSC 
must be done by an additional transition. This approach produces ROOMcharts 
with many states, but the simple traceability to the structure of the MSCs contains 
important high level design information. 

In the maximum progress approach, events are sent during a single transition 
until the next received event is reached, possibly in a different bMSC. The syn
thesized ROOMcharts in this approach are flat state machines with a potentially 
smaller number of states in comparison to the maximum traceability approach. In 
this approach, the state machines of the different actors will not have identical 
structure (which is unlike the situation in the maximum traceability approach). 

Here, when synthesizing a state machine for an object O the information used 
by the synthesis algorithm involves only the set of messages directly relevant to O, 
i.e., those in which O is either the sender or the receiver. We will show later that 
when the specification language allows both existential and universal quantification 
and does not assume mutual exclusion semantics, like in LSCs, this projection 
information is not enough. 

1.2.2. SCED 

In the SCED project [18, 19], the semantics of the MSC language used allows 
overlapping of scenarios: the system can be in different scenarios at the same time. 
This assumption makes the synthesis more difficult than in the case of mutually 
exclusive MSCs, and the work is thus of special interest. The synthesis algorithm 
produces a state machine for an object selected by the user, and it is basically an 
application of an early algorithm of Biermann and Krishnaswamy that deals with 
constructing programs from example computations [6]. 

The work in [6] describes a setting in which the user performs example compu-
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Synthesizing State-Based Object Systems 9 

tations that are stored by the system. The system then automatically synthesizes 
the shortest (in the number of states) possible program capable of executing the 
observed examples. Furthermore, it is proved in [6] that if the user has a program 
P in mind, and shows the system example execution traces Ti,T2,... from any enu
meration of the executions of P , after a finite number of examples the system can 
synthesize a program P$ capable of executing all the traces of P. This is known as 
identification in the limit in learning theory. 

The SCED synthesis algorithm of [18, 19] adapts the algorithm of [6] to the case 
of synthesizing state machines from standard (existential) message sequence charts. 
The MSC language from which the synthesis takes place has been extended with 
conditional and repetition constructs, subscenarios, assertions, actions and states. 

A limitation in SCED is the constraint that requires the synthesized state ma
chine to be deterministic. In some situations this causes synthesizing state machines 
with disjoint sets of states. An additional problem is that the initial state is not 
fully defined by the synthesis algorithm, which can lead to underspecified state ma
chines that are not executable. For synthesized state machines with disjoint sets of 
states it is not possible to define an initial state without violating determinicity. 

SCED also lacks the ability to express partial traces in the message sequence 
chart language, by constraining only some of the events relevant to an object but 
not others, letting any event not listed as participating be free to occur at any time. 
This is important in order to support appropriate levels of abstraction, but it makes 
the synthesis problem harder. 

Like in ROOM, here too the information used by the synthesis algorithm is only 
those messages relevant directly to the object in question, which is not sufficient for 
LSCs. 

1.2.3. Verification of timing diagrams 

Timing diagrams [5, 1] constitute a graphical specification language especially 
appropriate for the description of hardware designs. In [28] timing diagrams and 
their semantics are formally defined based on a translation into temporal logics. 
The timing diagrams allow to express partial order of events as well as causality 
constraints. In fact, they were one of the driving motivations behind the LSCs of 
[8]. It is shown in [28] that the resulting type of formula has an efficient model 
checking procedure. 

1.2.4. Model checking of MSCs 

The problem of verifying whether an MSC or an HMSC (hierarchical MSC) satis
fies a temporal requirement given by an automaton is studied in [4]. The complexity 
of different cases is derived for synchronous and asynchronous interpretations. For 
the MSC case, an automaton with states corresponding to the cuts is constructed 
and a bound on the size of the automaton is given. Interestingly, this construction 
and the one we have in Section 4.2 were carried out independently, and have turned 
out to be very similar. 
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10 D. Harel & H. Kugler 

1.2.5. Interaction interfaces 

Interaction interfaces [7] are used to formally specify the interaction between two 
or more components that co-operate as subsystems of a distributed system. Their 
format uses predicates to characterize sets of interaction histories. It is shown in [7] 
how to derive component specifications from a general interaction interface spec
ification (though for liveness properties some external intervention is required to 
assign responsibilities to specific components). The issue of realizability of compo
nents is also studied in that paper. The same authors also co-designed a synthesis 
algorithm from MSCs to state machines, appearing in [16]. 

1.2.6. Synthesis from temporal logic 

The early work on this kind of synthesis considered closed systems, that do not 
interact with the environment [24, 10]. In this case a program can be extracted 
from a constructive proof that the formula is satisfiable. This approach is not 
suited to synthesizing open systems that interact with the environment, since satis
fiability implies the existence of an environment in which the program satisfies the 
formula, but the synthesized program cannot restrict the environment. Later work 
in [25, 26, 3, 31] dealt with the synthesis of open systems from linear temporal logic 
specifications. The realizability problem is reduced to checking the nonemptiness of 
tree automata, and a finite state program can be synthesized from an infinite tree 
accepted by the automaton. The problems of realizability checking and synthesis 
from linear temporal logic are shown to be 2EXPTIME-complete. Work on synthe
sis from branching temporal logics, based on alternating tree automata [20], show 
that the synthesis problems for CTL and CTL* are EXPTIME and 2EXPTIME 
complete, respectively. 

In [27], synthesis of a distributed reactive system is considered. Given an archi
tecture — a set of processors and their interconnection scheme — a solution to the 
synthesis problem yields finite state programs, one for each processor, whose joint 
behavior satisfies the specification. It is shown in [27] that the realizability of a 
given specification over a given architecture is undecidable. Previous work assumed 
the easy architecture of a single processor, and then realizability was decidable. In 
our work, an object of the synthesized system can share all the information it has 
with all other objects, so the undecidability results of [27] do not apply here. 

Another important approach discussed in [27] is first synthesizing a single pro
cessor program, and then decomposing it to yield a set of programs for the different 
processors. The problem of finite-state decomposition is an easier problem than 
realizing an implementation. Indeed, it is shown in [27] that decompositionality 
of a given finite state program into a set of programs over a given architecture is 
decidable. The construction we present in Section 5 can be viewed as following 
parts of this approach by initially synthesizing a global system automaton describ
ing the behavior of the entire system and then distributing it, yielding a set of state 
machines, one for each object in the system. However, the work on temporal logic 
synthesis assumes a model in which the system and the environment take turns 

In
t. 

J.
 F

ou
nd

. C
om

pu
t. 

Sc
i. 

20
02

.1
3:

5-
51

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 W
E

IZ
M

A
N

N
 I

N
ST

IT
U

T
E

 O
F 

SC
IE

N
C

E
 o

n 
03

/2
0/

24
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



Synthesizing State-Based Object Systems 11 

making moves, each side making one move in its turn. We consider a more realistic 
model, in which after each move by the environment, the system can make any 
finite number of moves before the environment makes its next move. 

2. An Example 

In this section we introduce the railcar system, which will be used throughout 
the paper as an example to explain and illustrate the main ideas and results. A 
detailed description of the system appears in [13], while [8] uses it to illustrate LSC 
specifications. To make this paper self contained and to illustrate the main ideas of 
LSCs, we now show some of the basic objects and scenarios of the example. 

The automated railcar system consists of six terminals, located on a cyclic path. 
Each pair of adjacent terminals is connected by two rail tracks. Several railcars are 
available to transport passengers between terminals. 

Here now is some of the required behavior, using LSCs. Fig. 1 describes a car 
departing from a terminal. The objects participating in this scenario are cruiser, 
car, carHandler. The chart describes the message communication between the 
objects, with time propagating from top to bottom. The chart of Fig. 1 is universal. 
Whenever its activation message occurs, i.e., the car receives the message setDest 
from the environment, the sequence of messages in the chart should occur in the 
following order: the car sends a departure request departReq to the car handler, 
which sends a departure acknowledgment departAck back to the car. The car 
then sends a start message to the cruiser in order to activate the engine, and the 
cruiser responds by sending started to the car. Finally, the car sends engage to 
the cruiser and now the car can depart from the terminal. 

A scenario in which a car approaches the terminal is described in Fig. 2. This 
chart is also universal, but here instead of having a single message as an activation, 
the chart is activated by the prechart shown in the upper part of the figure (in dashed 
line-style, and looking like a condition, since it is conditional in the cold sense of 
the word — a notion we explain below): in the prechart, the message depart Ack 
is communicated between the car handler and the car, and the message alert 100 
is communicated between the proximity sensor and the car. If these messages 
indeed occur as specified in the prechart, then the body of the chart must hold: the 
car sends the arrival request arrivReq to the car handler, which sends an arrival 
acknowledgment arrivAck back to the car. 

Figs. 3 and 4 are existential charts, depicted by dashed borderlines. These 
charts describe two possible scenarios of a car approaching a terminal: stop at 
terminal and pass through terminal, respectively. Since the charts are existential, 
they need not be satisfied in all runs; it is only required that for each of these charts 
the system has at least one run satisfying it. In an iterative development of LSC 
specifications, such existential charts may be considered informal, or underspecified, 
and can later be transformed into universal charts specifying the exact activation 
message or prechart that is to determine when each of the possible approaches 
happens. 

The simple universal chart in Fig. 5 requires that when the proximity sensor 
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12 D. Harel & H. Kugler 

setDest 

car carHandler 

start 

started 

engage 

departReq 

departAck 

Fig. 1. Perform departure. 

proxSensor car carHandler 

\ 

alertlOO 

departAck 

arrivReq 

arrivAck 

Fig. 2. Perform approach. 
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proxSensor cruiser car carHandler 

alertStop 

disengage 

stop 

arrivReq 

arrivAck 

Fig. 3. Stop at terminal. 

car carHandler 

arrivReq 

arrivAck 

departReq 

departAck 

Fig. 4. Pass through terminal. 
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14 D. Harel & H. Kugler 

comingClose 

proxSensor car 

alertlOO 

Fig. 5. Coming close to terminal. 

receives the message comingClose from the environment, signifying that the car 
is getting close to the terminal, it sends the message alertlOO to the car. This 
prevents a system from satisfying the chart in Fig. 2 by never sending the message 
alertlOO from the proximity sensor to the car, so that the prechart is never satisfied 
and there is no requirement that the body of the chart hold. 

The set of charts in Figs. 1-5 can be considered as an LSC specification for (part 
of) the railcar system. Our goal in this paper is to develop algorithms to decide, for 
any such specification, if there is a satisfying object system and, if so, to synthesize 
one automatically. As mentioned in the introduction, what makes our goal both 
harder and more interesting is in the treatment of a set of charts, not just a single 
one. 

3. LSC Semantics 

The semantics of the LSC language0 is defined in [8], and we now explain some 
of the basic definitions and concepts of this semantics using the railcar example. 

Consider the Perform Departure chart of Fig. 1. In Fig. 6 it appears with a 
labeling of the locations of the chart. The set of locations for this chart is thus: 

{(cruiser, 0), (cruiser, 1), (cruiser, 2), (cruiser, 3), (car, 0), (car, 1), (car, 2), 
(car, 3), (car, 4), (car, 5), (carHandler, 0), (carHandler, 1), (carHandler, 2)} 

a A more detailed description of the semantics and the embedding of LSCs into branching 
temporal logic CTL* appears in the appendix. 
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setDest 

cruiser 

Oi 

1 

2 

3 

start 

started 

engage 

car carHandler 

Oi 0 | 1 

1 

2 

departReq 

departAck 

3 

4 

5 

1 

2 

Fig. 6. 

The chart defines a partial order < m on locations. The requirement for order 
along an instance line implies, for example, (car, 0) < m (car, 1). The order induced 
from message sending implies, for example, (car, 1) < m (carHaudier, 1). From 
transitivity we get that (car, 0) <m (carHandler, 1). 

One of the basic concepts used for defining the semantics of LSCs, and later on 
in our synthesis algorithms, is the notion of a cut. A cut through a chart represents 
the progress each instance has made in the scenario. Not every "slice", i.e., a set 
consisting of one location for each instance, is a cut. For example, 

((cruiser, 1), (car, 2), (carHandler, 2)) 

is not a cut. Intuitively the reason for this is that to receive the message start by 
the cruiser (in location (cruiser, 1)), the message must have been sent, so location 
(car, 3) must have already been reached. 

The cuts for the chart of Fig. 6 are thus: 

{((cruiser, 0), (car, 0), (carHandler, 0)), ((cruiser, 0), (car, 1), (carHandler, 0)), 
((cruiser, 0), (car, 1), (carHandler, 1)), ((cruiser, 0), (car, 1), (carHandler, 2)), 
((cruiser, 0), (car, 2), (carHandler, 2)), ((cruiser, 0), (car, 3), (carHandler, 2)), 
((cruiser, 1), (car, 3), (carHandler, 2)), ((cruiser, 2), (car, 3), (carHandler, 2)) 
((cruiser, 2), (car, 4), (carHandler, 2)), ((cruiser, 2), (car, 5), (carHandler, 2)) 
((cruiser, 3), (car, 5), (carHandler, 2))} 
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16 D. Harel & H. Kugler 

-^ setDest 

Fig. 7. 

The sequence of cuts in this order constitutes a run. The trace of this run is: 

{(era;, car.setDest), {car, car Handler.departReq), {car Handler, car.depart Ack), 
{car, cruiser.start), {cruiser, car.started), {car, cruiser.engage)} 

This chart has only one run, but in general a chart can have many runs. Consider 
the chart in Fig. 7. From the initial cut (0,0,0,0)6 it is possible to progress either 
by the car sending departReq to the car handler, or by the passenger sending 
pressButton to the destPanel. Similarly there are possible choices from other 
cuts. Fig. 8 gives an automaton representation for all the possible runs. This 
will be the basic idea for the construction of the synthesized state machines in 
our synthesis algorithms later on. Each state, except for the special starting state 
so, represents a cut and is labeled by the vector of locations. Successor cuts are 
connected by edges labeled with the message sent. Assuming a synchronous model 
we do not have separate edges for the sending and receiving of the same message. 
A path starting from so that returns to SQ represents a run. 

Here are two sample traces from these runs: 

{(era;, car.setDest), {car, car Handler.departReq), {car Handler, car.depart Ack), 
{passenger, destPanel .pressButton), {destPanel, passenger. flashSign)} 

{(era;, car.setDest), {car, car Handler.departReq), {passenger, destPanel.press 
Button), {car Handler, car.depart Ack), {destPanel, passenger. flashSign)} 

bWe often omit the names of the objects, for simplicity, when listing cuts. 
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Fig. 8. 

As part of the "liveness" extensions, the LSC language enables forcing progress 
along an instance line. Each location is given a temperature hot or cold, graphically 
denoted by solid or dashed segments of the instance line. A run must continue down 
solid lines, while it may continue down dashed lines. Formally, we require that in 
the final cut in a run all locations are cold. Consider the perform approach 
scenario appearing in Fig. 9. The dashed segments in the lower part of the car and 
carHandler instances specify that it is possible that the message arrivAck will not 
be sent, even in a run in which the prechart holds. This might happen in a situation 
where the terminal is closed or when all the platforms are full. 

When defining the languages of a chart in [8], messages that do not appear in 
the chart are not restricted and are allowed to occur in-between the messages that 
do appear, without violating the chart. This is an abstraction mechanism that 
enables concentrating on the relevant messages in a scenario. In practice it may be 
useful to restrict messages that do not appear explicitly in the chart. Each chart 
will then have a designated set of messages that are not allowed to occur anywhere 
except if specified explicitly in the chart; and this applies even if they do not appear 
anywhere in the chart. A tool may support convenient selection of this message set. 
Consider the perform departure scenario in Fig. 1. By taking its set of messages 
to include those appearing therein, but also alert 100, arrivReq and arrivAck, we 
restrict these three messages from occurring during the departure scenario, which 
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proxSensor car carHandler 

\ 
\ 

alertlOO 

departAck 

arrivReq 

arrivAck 

/ 

Fig. 9. 

makes sense since we cannot arrive to a terminal when we are just in the middle of 
departing from one. 

As in [8], an LSC specification is defined as: 

LS = (M, amsg, mod), 

where M is a set of charts, and amsg and mod are the activation messages0 and 
the modes of the charts (existential or universal), respectively. 

A system satisfies an LSC specification if, for every universal chart and every 
run, whenever the activation message holds the run must satisfy the chart, and if, 
for every existential chart, there is at least one run in which the activation message 
holds and then the chart is satisfied. Formally, 

Definition 1 A system S satisfies the LSC specification LS — (M, amsg, mod), 
written S |= LS, if: 

1. Mm e M, mod{m) = universal => V77 C7^ C Cm 

2. Vra G M, mod(m) = existential => 3n C7^ D Cm ^ 0 

Here C7^ is the trace set of object system S on the sequence of directed requests 
n. We omit a detailed definition here, which can be found, e.g., in [14]. Cm is the 
language of the chart m, containing all traces satisfying the chart. We say that an 
LSC specification is satisfiable if there is a system that satisfies it. 

cIn the general case we allow a prechart instead of only a single activation message. However, in 
this paper we provide the proofs of our results for activation messages, but they can be generalized 
rather easily to precharts too. 
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setDest 

cruiser 

"^ 

start 

started 

engage 

car carHandler 

departReq 

departAck 

Fig. 10. 

4. Consistency of LSCs 

Our goal is to automatically construct an object system that is correct with 
respect to a given LSC specification. When working with an expressive language 
like LSCs that enables specifying both necessary and forbidden behavior, and in 
which a specification is a well-defined set of charts of different kinds, there might 
very well be self contradictions, so that there might be no object system that satisfies 
it. 

Consider an LSC specification that contains the universal charts of Figs. 10 and 
11. The message setDest sent from the environment to the car activates Fig. 10, 
which requires that following the departReq message, departAck is sent from the 
car handler to the car. This message activates Fig. 11, which requires the sending 
of engage from the car to the cruiser before the start and started messages are 
sent, while Fig. 10 requires the opposite ordering. A contradiction. 

This is only a simple example of an inconsistency in an LSC specification. Incon
sistencies can be caused by such an "interaction" between more than two universal 
charts, and also when a scenario described in an existential chart can never oc
cur because of the restrictions from the universal charts. In a complicated system 
consisting of many charts the task of finding such inconsistencies manually by the 
developers can be formidable, and algorithmic support for this process can help in 
overcoming major problems in early stages of the analysis. 
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' departAck 

cruiser car carHandler 

engage 

start 

started 

Fig. 11. 

4-1. Consistency = Satisfiability 

We now provide a global notion of the consistency of an LSC specification. 
This is easy to do for conventional, existential MSCs, but is harder for LSCs. In 
particular, we have to make sure that a universal chart is satisfied by all runs, from 
all points in time. 

We will use the following notation: A{n is the alphabet denoting messages sent 
from the environment to objects in the system, while Aout denotes messages sent 
between the objects in the system. 

Definition 2 An LSC specification LS = (M, amsg, mod) is consistent if there 
exists a nonempty regular language C\ C (Ain • A*ut)* satisfying the following prop
erties: 

' 1 — I ImjGM, mod(mj)=universal rnj 

2. Vw e C\ Va e Ain 3r e A*out, s.t w-a-reCi. 

3. \/w G £ i , w = x-y - z, ye Ain => x e L\. 

4. Vm € M, mod(m) — existential => Cm C\C\ ^ 0. 

The language C\ is what we require as the set of satisfying traces. Clause 1 in the 
definition requires all universal charts to be satisfied by all the traces in C\, Clause 
2 requires a trace to be extendible if a new message is sent in from the environment, 
Clause 3 essentially requires traces to be completed before new messages from the 
environment are dealt with, and Clause 4 requires- existential charts to be satisfied 
by traces from within C\. 

In
t. 

J.
 F

ou
nd

. C
om

pu
t. 

Sc
i. 

20
02

.1
3:

5-
51

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 W
E

IZ
M

A
N

N
 I

N
ST

IT
U

T
E

 O
F 

SC
IE

N
C

E
 o

n 
03

/2
0/

24
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



Synthesizing State-Based Object Systems 21 

We now want to prove the first central result of the paper, showing that the 
consistency of an LSC specification is a necessary and sufficient condition for the 
existence of an object system satisfying it. As to object systems, we adopt the 
definitions of an object system appearing in [14], somewhat modified. In [14] a 
basic computational model for object-oriented designs is presented. It defines the 
behavior of systems composed of instances of object classes, whose behavior is given 
by conventional state machines. In our work we assume a single instance of each 
class during the entire evolution of the system — we do not deal with dynamic 
creation and destruction of instances. We assume all messages are synchronous and 
that there are no failures in the system — every message that is sent is received. 

We have made several other modifications to [14]: 
When considering the languages of words generated by a system, we take the 

order of requests in the generated behavior to correspond to the order in which the 
requests were made and not to the order in which they were accomplished (which is 
the decision made in [14]). This ordering seems more natural when relating systems 
to LSCs, which specify the order between messages but do not relate explicitly to 
the accomplishment of requests. 

In our setting, systems generate languages over the alphabet A = (O U env) x 
((D.£), where the letter (Oj, Oi.a) corresponds to object Oj requesting a from object 
0{. The letter (env, Oi.a) corresponds to the environment requesting a from Oi. 
In [14], the sender is not taken to be part of the language, so the alphabet is simply 
C.E. 

We do not allow deadlocks. If a request is made to an object that is in a state 
with no relevant outgoing transitions, or to an object that is in the midst of making 
a transition and is therefore suspended, the request is received but it does not affect 
the receiving object. 

We allow objects in the system to have null transitions. The semantics pre
scribes that after entering a new state the transition is completed by taking null 
transitions, if possible. We add a fairness requirement: a null transition that is 
enabled an infinite number of times is taken an infinite number of times. A fair 
cycle is a loop of states connected by null transitions, which can be taken repeat
edly without violating the fairness requirement. We require that the system has no 
fair cycles, thus ensuring that the system's reactions are finite. 

Now comes the result: 

Theorem 1 A specification LS is satisfiable if and only if it is consistent. 

Proof. 
(=>) Let the object system S be such that S f= LS. We let Cs = U ^ A * £5 , and 

show that Cs satisfies the four requirements of C\ in the definition of a consistent 
specification, Def. 2. 

(1) From the definition of an object system it follows that Cs is regular and 
nonempty. The system S satisfies the specification LS. Hence, if we set C — 
rimjeM^modim^universa^rn^ Clause 1 of the definition of satisfaction (Def. 1) 
implies V77 Cg C C. Thus, Cs = U^C7^ C C. 

(2 and 3) Let w e Cs> There exists a sequence of directed requests sent by 
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22 D. Harel & H. Kugler 

the environment, rj = O0.a° • O1 .a1 • • • On.an, such that w is the behavior of the 
system S while reacting to the sequence of requests rj. Now, w belongs to the trace 
set of S on 77, so that w = Wo • w\ • • -wn, Wi G A*, first(wi) — (env,Ol.a1), and 
there exists a sequence of stable configurations Co, ci,..., cn + i such that Co is initial 
and for all 0 < i < n, leads(ci,Wi,Ci+\). The Zeads predicate is defined in [14]. It 
describes the reaction of the system to a message sent from the environment to the 
system that causes a transition of the system from the stable configuration ci to 
a new stable configuration c*+i, passing through a set of unstable configurations. 
The trace describing this behavior is W{. 

As to Clause 2 in Def. 2, the system reaches the stable configuration cn+1 at the 
end of the reactions to 77. For any object Oi and request cr, there is a reaction of 
the system to the directed request 0\.a from the stable configuration cn+i. If we 
denote by iun+i the word that captures such a reaction, wn+\ is in the trace set of 
S on Oi.a from cn+i, from which we obtain w • wn+i G £ 5 . 

For Clause 3, assuming that w = x-y-z,y G Ain, there exists % with x = w$ • • • Wi 
and therefore x e £ 5 . 

(4) The system 5 satisfies the specification LS. Hence, from Clause 2 of Def. 1 
we have 

Vm G M, mod(m) — existential => 3rj £v
s H Cm ^ 0 

Since Cv
s C £s = U^JC^, we obtain 

Vm G M, mod(m) — existential => £5 Pi £ m ^ 0 

(4=) Let L5 be consistent. We have to show that there exists an object system 5 
satisfying LS. To prove this we define the notion of a global system automaton, 
or a GSA. We will show that there exists a GSA satisfying the specification and 
that it can be used to construct an object system satisfying LS. 

A GSA A describing a system with objects O — {Oi,..., On} and message set 
E = Y>in U T,out is a tuple A = {Q,qo,8), where Q is a finite set of states, <?o 
is the initial state, and ^ C Q x ^ x Q i s a transition relation. Here B is a set 
of labels, each one of the form a / r , where a G A{n — (env) x (0.£^n) and r G 
Kut = ((°) x (O.Ylout))*. Let 77 = a0 • a1 • • • where a* G Ain. The trace set of 
A on n is the language £ ^ C (A* UAW), such that a word w = wo • w\ • u>2 • • • 
is in £ ^ iff Wi = a1 - xl, xz = xl° •••xZfci-1 G A*out and there exists a sequence 
of states g01,^11, ...,<7lfci,g2l,...,g2fc2,... with ^0l = ^o, and such that for all i,j 
(qij,/xi-1*,qi*+1) G 5 and {qiki,a*/xio,q**1*) G 5. 

The satisfaction relation between a GSA and an LSC specification is defined as 
for object systems: the GSA A satisfies LS — (M,amsg,mod), written A (= LS, if 
Vm G M, mod(m) = universal => V77 £^ C £ m , and Vm G M, 
mod{m) — existential => 3n C\ D £ m ^ 0. 

Since L5 is consistent, there exists a language £1 as in Def. 2. Since £1 is 
regular, there exists a DFA A — (A, 5, So> />, -F) accepting it. We may assume that 
A is minimal, so all states in 5 are reachable and each state leads to some accepting 
state. 
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From Clause 2 of Def. 2, for every accepting state s of A and for every a G Ain 

there exists an outgoing transition with label a leading to a state that is connected 
to an accepting state by a path labeled r G A*out. Formally, 

VseFVae Ain p(s, a) = s' => 3r G A*out s.t. p(s', r) G F 

From Clause 3 of Def. 2, no nonaccepting states of A have any outgoing tran
sitions with label a G A{n. This is true since if there were such a state s £ F 
reachable from the initial state by x, we would have p(so,x) = s and p(s,a) = s', 
and from sf we can reach an accepting state p(sf, z) G F. Then w = x • a • z would 
violate Clause 3. 

We have shown that A has transitions labeled by A{n only for accepting states, 
and for an accepting state there is such a transition for every letter from A{n. We 
now convert A into an NFA A' with the same properties, but, in addition, accepting 
states do not have outgoing transitions labeled Aout. This can be done by adding, 
for each state s G F , an additional state s' £ F. All incoming transitions into s 
are duplicated so that they also enter s' and all outgoing transitions from s labeled 
Aout are transferred to s'. A! accepts the same language as A since it can use 
nondeterminism to decide if to take a transition to s ox s'. 

We now transform the automaton A! into a GSA B by changing all transitions 
with a label from Aout into null transitions with that letter as an action. All 
transitions with a label from Ain are left unchanged. 

We have to show that B satisfies the specification LS. From the construction of 
B, we have 

£B = UrjCg = C\ 

From Clause 1 of Def. 2, we have 

mj£M,mod(mj)=universal 

Hence, 
Vm G M,mod(m) — universal => C\ C £ m , 

yielding 
Vm G M, mod{rn) = universal => V77 C7^ C ^ C £m 

This proves Clause 1 of Def. 1. 

Now, from Clause 4 of Def. 2, we have 

Vm G M, mod(m) = existential => Cm Pi C\ ^ 0 

But since C\ = U^/^g, this becomes 

Vm G M, mod(m) — existential => 3ry CV
B D £ m 7̂  0, 

thus proving Clause 2 of Def. 1. 

• 
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As can be seen in the proof, the basic concept used is the notion of a global 
system automaton, or a GSA. A GSA describes the behavior of the entire system 
— the message communication between the objects in the system in response to 
messages received from the environment. To recap the definition appearing in the 
proof, a GSA is a finite state automaton with input alphabet consisting of messages 
sent from the environment to the system (Ain), and output alphabet consisting 
of messages communicated between the objects in the system (Aout)- The GSA 
may have null transitions, transitions that can be taken spontaneously without the 
triggering of a message. We add a fairness requirement: a null transition that is 
enabled an infinite number of times must be taken an infinite number of times. 
A fair cycle is a loop of states connected by null transitions, which can be taken 
repeatedly without violating the fairness requirement. We require that the system 
has no fair cycles, thus ensuring that the system's reactions are finite. 

In the Consistency => Satisfiability direction of the proof of Theorem 1 we show 
that it is possible to construct a GSA satisfying the specification. This implies the 
existence of an object system (a separate automaton for each object) satisfying the 
specification. Later on, when discussing synthesis, we will show methods for the 
distribution of the GSA between the objects to obtain a satisfying object system. In 
section 5.5 we show that the fairness requirement is not essential for our construction 
— it is possible to synthesize a satisfying object system that does not use null 
transition and the fairness requirement, although it does not generate the most 
general language. 

4-2. Deciding consistency 

It follows from Theorem 1 that to prove the existence of an object system sat
isfying an LSC specification LS, it suffices to prove that LS is consistent. In this 
section we present an algorithm for deciding consistency. 

A basic construction used in the algorithm is that of a deterministic finite au
tomaton accepting the language of a universal chart. Such an automaton for the 
chart of Fig. 7 is shown in Fig. 12. The initial state so is the only accepting state. 
The activation message setDest causes a transition from state so? a n d the automa
ton will return to so only if the messages departReq, departAck, pressButton 
and flashSign occur as specified in the chart. Notice that the different orderings 
of these messages that are allowed by the chart are represented in the automaton 
by different paths. Each such message causes a transition to a state representing a 
successor cut. The self transitions of the nonaccepting states allow only messages 
that are not restricted by the chart. The initial state so has self transitions for 
message comingClose sent from the environment and for all other messages be
tween objects in the system. To avoid cluttering the figure we have not written the 
messages on the self transitions. 

We use the notations and definitions of the formal LSC semantics appearing in 
the appendix. 

For a universal chart m we define the DFA A = (A, 5, so, P, F), as follows: 

• A — Ain U Aout is the alphabet. 
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comingClose 

flashSign departReq y^ departAck 

Fig. 12. 
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• the set of states S consists of the cuts through m, with an additional state SQ. 
Thus, 

S = {c | c G cuts(m)} U so-

• assuming the natural mapping / between (dom(m) U env) x XI x dom(m) to 
the alphabet ^4, the transition function p is defined as follows: 

- p(so, a) = Co if a = f(amsg(m)) and Co is the initial cut; 

- p(c, a) = c if a is not restricted by m; 

- p(c, a) = c' if succm(c, < j , lj >, c") and succm(c", < / , Zj/ >, c') 
and f(msg(m)(< j , lj >)) = a and < j , lj >, < f, lj' > are send and 

receive events of the same message and not all locations in d are cold; 

- p(c, a) = so if sizccm(c, < j , lj >,d) and f(msg(m)(< j , lj >)) = a 
and all locations in d are cold; 

• the set of accepting states is F = {so}. 

Claim: C(A) = Cm. 
Proof. 
C(A) C Cm: Assume that w = wi-itf2 • • • wn G £(A), and that Wi = f(amsg(m)). 

We have to show that the chart m is satisfied, i.e., that 3z'i,Z2, ...,«& and 3v = 
vi • V2 • • • Vfc € £^£c, such that i < ii < i<i < ... < ifc and Vj, 1 < j < fc, u^- = Vj and 
Vj', i<j'< ik, f & {n, -..,**:}, ^ f £ f(Messages(m)). 

Let g0,^1, ...,gn be the sequence of states that *4. goes through while reading 
w. Clearly, g2_1 = SQ> otherwise A will reject when reading wi since the only 
transition with amsg(m) is from so- Let ẑ  be the smallest index larger than i such 
that qik = so- (Such an index exists, since qn = so follows from the acceptance 
condition of A and the fact that w G C{A).) Now let i i , 22,..., ifc be the ordered list 
of indices in the sequence ql,...,qtk, for which q^ ^ % - i - From the definition of p, 
the cuts corresponding to the states ql,ql1, ...,qtk are successive, qi corresponds to 
the initial cut Co, and qlk implies by the definition of p a cut in which all locations 
are cold. Hence, the series of cuts is a run that corresponds to chart m, and which 
generates the trace v = v\ • V2 • • • Vk G £j£c- For a ^ indices j ' with i < jf < ik 
and jf 0 {*i,...,*fc}? w e know that qji = qj>-i. Hence, by the definition of p, 
Wjf £ f(Messages(m)). 

£m Q C(A): This direction is similar, but we have to make use of the assumption 
that the activation message is not sent before the end of the activity that follows 
the previous time it was sent. 

• 
An automaton accepting exactly the runs that satisfy all the universal charts 

can be constructed by intersecting these separate automata. This intersection au
tomaton will be used in the algorithm for deciding consistency. The idea is to start 
with this automaton, which represents the "largest" regular language satisfying all 
the universal charts, and to systematically narrow it down in order to avoid states 
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from which the system will be forced by the environment to violate the specification. 
An the end we must check that there are still representative runs satisfying each of 
the existential charts. 

Here, now is our algorithm for checking consistency: 

Algorithm 1 

1. Find the minimal DFA A = (A, 5, so, P, F) that accepts the language 

£= n £mj 
mj £ M, mod(mj )=universal 

(The existence of such an automaton follows from the construction above.) 

2. Define the sets Badi C S, for i — 0,1, . . . , as follows: 

Bad0 = {s G S | 3a G Ain, s.L Vx G A*out p(s, a-x) & F}, 

Badi = {s G S | 3a G Ain, s.t. Vx G A*out p(s, a • x) 0 F - Badi-i}. 

The series Badi is monotonically increasing, with Badi £ Badi+i, and since 
S is finite it converges. Let us denote the limit set by BadmaX' 

3. From A define a new automaton A! = (A,S,so,p,Ff), where the set of ac
cepting states has been reduced to Ff = F — Badmax 

4. Further reduce A, by removing all transitions that lead from states in S — F', 
and which are labeled with elements of Ain. This yields the new automaton 
A!'. 

5. Check whether C(A") ^ 0 and whether, in addition, Cmi n£(A") ^ 0 for each 
rrii G M with mod{mi) = existential. If both are true output YES; otherwise 
output NO. 

Theorem 2 Algorithm 1 is correct: given a specification LS, it terminates and 
outputs Y E S iff LS is consistent. 

Proof. 
(=>) Assume the algorithm outputs YES . We will show that £(A") satisfies the 

four properties of the language C\ in the consistency definition, Def. 2. 
(1) We constructed A to be the intersection of runs satisfying the universal 

charts, so C(A) = nmi€M,mod(mi)=timt,er.aZ£mi. When moving from A to A" we 
make accepting states nonaccepting and remove transitions. This cannot add words 
to the language only remove words. Hence, C(A,f) C C(A). 

(2) Assume w e C(A") and let s — p(so,w). Since w is accepted by A"', which 
is deterministic, it must be that s G F'. Therefore, s £ Badmax. In particular, 
s £ Bado; so Va G Ain 3x G A*ut, s.t. p(s,a • x) G F — Badmax. Disconnecting 
transitions labeled from Ain does not change the existence of x, since x G A*out. 
This shows that Mw G C(A") Va G Ain 3x G A*ut, s.t. w • a • x G £(A") 
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28 D. Harel & H. Kugler 

(3) Assume w G £(A"), w = x • y • z and y G Ain. Let s = /o(so> #)• Then there 
is a transition labeled i/ from state s, since otherwise iy will be rejected. From the 
construction of An we disconnected all transitions with labels in A{n from the states 
in S — Ff, so it must be that s G F'. Therefore, x is accepted by C(A!'). 

(4) This property follows directly, since the algorithm outputs Y E S if for every 
rrii G M such that mod(rrii) = existential we have Cmi fi C(A") ^ 0. 

(<=) We will show that for every C\ satisfying the four clauses of Def. 2, C\ C 
C{An). Then, the fact that for every rrii G M such that mod(mi) — existential we 
have £ m i H A ^ 0, will imply that also £ m i n C(A") ^ 0. 

Let £ i be any language satisfying the clauses of Def. 2. From Clause 1, C\ C 
£(*4). We will first show that for every w with p(so, w) G Badmax, we have w ^ C\. 
Then £ i C £(*/4'), since *A' was created from A by turning states in Badmax into 
nonaccepting states. 

Let s — p(so,w) and 5 G Badmax, and assume, for the sake of obtaining a 
contradiction, that w e C\. The fact that s G Badmax for Badmax = Bad{ implies 
that 3a G Ain V# G A*out p(s,a-x) & F — Badi-i. We assumed w G A ; hence, from 
Clause 2 we know that 3r G A*ut s.t. w-a-r G £ i , form which we get p(s,a-r) G F , 
since £ i C £(,A). Now, from p(s,a • r) G F and p(s,a • r) ^ F — Badi-i we get 
p(s,a-r) G Badi-i. Forty1 = w-a-r, w1 G A , ^(sojW1) € Bad{-\. In the same way, 
we can find w2,w3, ...,iy% so that for every j , wj G A , p(so,wi) G Badi-j. For w* 
we get that iŷ  G £ i and p(s0,Wi) G £?ado. Let s' = p(so,wz), s' G £ado therefore, 
3a G AinVx G A*ut p(s',a-x) £ F but iu* G A , so that 3r G A*out s.t. iy* -a-r G C±. 
Since £ i C £(*4), we obtain p(s',a • r) G F, which is a contradiction. 

So, we have showed that L\ C £(Af), and we still have to show that L\ C £(^4;/). 
Let u> G A and assume, again for contradiction, that w $ £(A"). Since w G C\ 
and £ i C C(Af), we have iy G £(*4"), so that p(so,w) G F ' . Now, it must be the 
case that Af, when reading iy, uses one of the transitions that were removed when 
we went from A' to A", since otherwise A" would accept w. Let w = x -y • z, with 
y G A;n and s = p(so, x), and assume that the transition p(s, a) was removed in A!'. 
From Clause 3 of Def. 2 x-y - z e £\ and y G A{n implies x G £ i , so x G £(*A') and 
5 = p(so,£) G F ' , contradicting the fact that the transition p(s,a) was removed, 
since transitions were removed only from states in S — F'. 

• 
In case the algorithm answers YES, the specification is consistent and it is 

possible to proceed to automatically synthesize the system, as we show in the next 
section. However, for the cases where the algorithm answers NO, it would be 
very helpful to provide the developer with information about the source of the 
inconsistency. Step 5 of our algorithm provides the basis for achieving this goal. 
Here is how. 

The answer is NO if £(A") — 0 or if there is an existential chart ra* such that 
Crni fl C(A") = 0. In the second case, this existential chart is the information we 
need. The first case is more delicate: there is a sequence of messages sent from the 
environment to the system (possibly depending on the reactions of the system) that 
eventually causes the system to violate the specification. Unlike verification against 
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a specification, where we are given a specific program or system and can display 
a specific run of it as a counter-example, here we want to synthesize the object 
system so we do not yet have any concrete runs. A possible solution is to let the 
supporting tool play the environment and the user play the system, with the aim of 
locating the inconsistency. The tool can display the charts graphically and highlight 
the messages sent and the progress made in the different charts. After each message 
sent by the environment (determined by the tool using the information obtained 
in the consistency algorithm), the user decides which messages are sent between 
the objects in the system. The tool can suggest a possible reaction of the system, 
and allow the user to modify it or choose a different one. Eventually, a universal 
chart will be violated, and the chart and the exact location of this violation can be 
displayed. 

5. Synthesis of FSMs from LSCs 

We now show how to automatically synthesize a satisfying object system from 
a given consistent specification. We first use the algorithm for deciding consistency 
(Algorithm 1), relying on the equivalence of consistency and satisfiability (Theo
rem 1) to derive a global system automaton, a GSA, satisfying the specification. 
Synthesis then proceeds by distributing this automaton between the objects, creat
ing a desired object system. 

The synthesis is demonstrated on our example, taking the charts in Figs. 1-5 
to be the required LSC specification. For the universal charts, Figs. 1, 2 and 5, we 
assume that the sets of restricted messages (those not appearing in the charts) are 
{ alert Stop, alert 100, arrivReq, arrivAck, disengage, stop }, { depart Req, 
start, started, engage } and { departAck}, respectively. 

Figs. 13, 14 and 15 show the automata for the perform departure, perform 
approach and coming close charts, respectively. Notice that in Fig. 14 there are 
two accepting states so and si, since we have a prechart with messages depart Ack 
and alertlOO that causes activation of the body of the chart. To avoid cluttering the 
figures we have not written the messages on the self transitions. For nonaccepting 
states these messages are the non-restricted messages between objects in the system, 
while for accepting states we take all messages that do not cause a transition from 
the state, including messages sent by the environment. 

The intersection of the three automata of Figs. 13, 14 and 15 is shown in Fig. 
16. It accepts all the runs that satisfy all three universal charts of our system. 

The global system automaton (GSA) derived from this intersection automaton 
is shown in Fig. 17. The two accepting states have as outgoing transitions only 
messages from the environment. This has been achieved using the techniques de
scribed in the proof of Theorem 1. Notice also the existence of runs satisfying each 
of the existential charts. We have used the path extraction methods of Section 5.5 
to retain these runs. 

After constructing the GSA, the synthesis proceeds by distributing the automa
ton between the objects, creating a desired object system. To illustrate the distribu
tion we focus on a subautomaton of the GSA consisting of the states qo,qi,Q2,q3, #4 
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comingClose 

engage 

Fig. 13. Automaton for perform departure. 

In
t. 

J.
 F

ou
nd

. C
om

pu
t. 

Sc
i. 

20
02

.1
3:

5-
51

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 W
E

IZ
M

A
N

N
 I

N
ST

IT
U

T
E

 O
F 

SC
IE

N
C

E
 o

n 
03

/2
0/

24
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



Synthesizing State-Based Object Systems 31 

departAck 

alertlOO 

arrivReq 

arrivAck 

Fig. 14. Automaton for perform approach. 

alertlOO 

Fig. 15. Automaton for coming close. 
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arrivAck 

comingClose 

alertlOO 

Fig. 17. The global system automaton. 
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arrivAck 

comingClose 

alertlOO 

alertlOO 

comingClose 

Fig. 17. The global system automaton. 
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(carHandler, car.arrivAck) 

(car, carHandler.departReq) 

(car, cruiser.disengai (carHandler, car.departAck) 

Fig. 18. Subautomaton of the GSA. 

and #5, as appearing in Fig. 17. This subautomaton is shown in Fig. 18. In this 
figure we provide full information about the message, the sender and receiver, since 
this information is important for the distribution process. 

In general, let A = (Q,qo,5) be a GSA describing a system with objects O = 
{Oi,..., On} and messages E = E^n U Eo u t . Assume that A satisfies the LSC speci
fication LS. Our constructions employ new messages taken from a set Eco/, where 
Yicol D E = 0. They will be used by the objects for collaboration in order to satisfy 
the specification, and are not restricted by the charts in LS. 

There are different ways to distribute the global system automaton between 
the objects. In the next three subsections we discuss three main approaches — 
controller object, full duplication, and partial duplication — and illustrate 
them on the GSA subautomaton of Fig. 18. The first approach is trivial and is 
shown essentially just to complete the proof of the existence of an object system 
satisfying a consistent specification. The second method is an intermediate stage 
towards the third approach, which is more realistic. 

5.1. Controller object 

In this approach we add to the set of objects in the system O an additional 
object Ocon which acts as the controller of the system, sending commands to all the 
other objects. These will have simple automata to enable them to carry out the 
commands. 
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Let |£ c o j | = \Ain\ + |^40ut|5 and let / be a one-to-one function 

/ • A{n U Aout —> ZJCO/ 

We define the state machine of the controller object Ocon to be (Q, qo, 5con), and 
the state machines of object Oi G O to be ({^OiJj^Oijfoi)-

The states and the initial state of Ocon are identical to those of the GSA. The 
transition relation Scon and the transition relations 5oi are defined as follows: 

If (g, a, q') G 5 where a G -Ain, a = (env, Oi.ai) then 

(q,f(a),q')€5con and (qoi,<Ti/Ocon.f(a),q0i) e S0i-

If (g, /a, </') G 5 where a G -Aout, Q> — (Oi,Oj.(Tj) then 

(q,/Oi.f(a),q') G 5con and (qOiJ^/Oj.a^qo,) G <J0<. 

This construction is illustrated in Fig. 19, which shows the object system ob
tained by the synthesis from the GSA of Fig. 18. It includes the state machine of 
the controller object 0 c o n , and the transitions of the single-state state machines of 
the objects carHandler, car and proxSensor. 

The size of the state machine of the controller object Ocon is equal to that of 
the GSA, while all other objects have state machines with one state. Section 5.4 
discusses the total complexity of the construction. 

5.2. Full duplication 

In this construction there is no controller object. Instead, each object will have 
the state structure of the GSA, and will thus "know" what state the GSA would 
have been in. 

Recalling that A — (Q,qo,S) is the GSA, let k be the maximum outdegree of 
the states in Q. A labeling of the transitions of A is a one-to-one function tn: 

tn: 5 -> {l,...,fe} 

Let |Eco/| = k and let / be a one-to-one function 

/ : { l , . . . , f c } - > £ c o / 

The state machine for object Oi in O is defined to be (Q, qo, Sot)- If (q, &5 q
f) € $, 

where a G Ain, a = (env, Oi.o~i) and a' = f(tn(q, a, qf)) G £co/, then (g, <Ji/Oi+\.a') G 
50i and for every j ^ i, (q,af/Oj+1.a

f,qf) G 50j. 
If (q, /a, q') G 5, where a G AouU a = (Oi, Oj.aj) and af = f(tn(q, /a, q')) G HCoZ, 

then (q, /Oj.cjj;Oi+i.a',q') G Sot and for every j ^ i, (q,a!/Oj+\.a!,q') G 5or 

This construction is illustrated in Fig. 20 on the sub-GSA of Fig. 18. The 
maximal outdegree of the states of the GSA in this example is 2, and the set of 
collaboration messages is £co/ = {1,2}. Again, complexity is discussed in Section 
5.4. 
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/carHandler->send_ arrivAck_to_car 

1 

proxSensor->send_ alertStop^to_car \car->send_departReq_to_carHandler 

S 

car->send/disengage_to_cruiser carHandler->send_departAck_to_car 
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carHandler: 

/car->arrivAck; car->l 

/car->departAck;car-> 1 

l/proxSensor->l 

l/proxSensor->l 

2/carHandler->departReq;proxSensor->2 

l/proxSensor->l 

proxSensor: 

Fig. 20. Full duplication. 
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5.3. Partial duplication 

The idea here is to distribute the GSA as in the full duplication construction, 
but to merge states that carry information that is not relevant to this object in 
question. In some cases this can reduce the total size, although the worst case 
complexity remains the same. 

The state machine of object Oi is defined to be (Qoi U qidie,qo,$Oi)i where 
Qoi Q Q is defined 

Q0i QZQ 

by 
3q' eQ3ae Aout s.t. 
a = (Oi, Oj.aj), (q, /a, qf) G S or 
3q' eQ 3a e Ain s.t. 
a = (era;, O^a*), (q', a,q) G 5 

Thus, in object Oi we keep the states that the GSA enters after receiving a message 
from the environment, and the states from which Oi sends messages. 

Let |£ c o j | = |Q|, and let / be a one-to-one function 

/ : Q -> Xcol 

The transition relation So* f° r object Oi is defined as follows: 
If {q,a,q') e 5, a = (env,Oi.<Ti) then (q,cri/Oi+i.f(q'),q') G 50i. 
If (q, /a, a') G 5, a — (0^,0^.(7^), then either q' G Qo6 and then 
(qJOi.ai;Oj+1.f(q

,),qf) G 60j, or q' £ Q0j and then 

(q, /Oi.<Ti]Oj+i.f(q'),qidie) € *O r 

If 9 € Qo«, qf G Qo, then {qj(q'),qf) e S0i- U q e Q0i, q' i Qo, then 
(q,f(q'),qidie) e 50i> 
For every g G Qo«, (qidie, f(q),q) € $Oi-

This construction is illustrated in Fig. 21. The states of the GSA of Fig. 18 
that were eliminated are qi,q2,q4 and q$ for car Handler, qo and q% for car and 
qo 5 92 5 93 and </4 for proxSensor. 

5.^. Complexity issues 

In the previous sections we showed how to distribute the satisfying GSA between 
the objects, to create an object system satisfying the LSC specification LS. We now 
discuss the size of the resulting system, relative to that of LS. 

We take the size of an LSC chart m to be \m\ = \dom(m)\ — | # of locations in ra|, 
and the size of an LSC specification LS — (M, amsg, mod) to be \LS\ = YlmeM lml-
The size of the GSA A = (Q,qo,5) is simply the number of states |Q|. We ignore 
the size of the transition function 5 which is polynomial in the number of states \Q\. 
Similarly, the size of an object is the number of states in its state machine. 

Let LS be a consistent specification, where the universal charts in M are charts 
{mi,777,2, . . . ,mt}. Let A be the satisfying GSA derived using the algorithm for 
deciding consistency (Algorithm 1). A was obtained by intersecting the automata 
A\,A2,...,At that accept the runs of charts mi,m2,. . . ,mt, respectively, and then 
performing additional transformations that do not change the number of states in A. 
The states of automaton Ai correspond to the cuts through chart m^, as illustrated, 
for example, in Fig. 9. 
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carHandler: 

/car->arrivAck; car->l 

/car->departAck;car->5 

/carHandler->departReq;proxSensor->3 1/proxS 

/proxSensor->2 

/cruiser->disengage; praxSensor->4 

proxSensor: 

I j 2/car->alertStop; carHandler->2 

Fig. 21. Partial Duplication. 
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Proposition 1 The number of cuts through a chart m with n instances is bounded 
by \m\n. 

Proof. A cut through a chart is specified by the locations of all the instances 
appearing in it. Since there is only one location for each instance in a cut and 
the number of locations of instance i is \dom(m, i)\, the number of cuts is at most 
Tlieinst(m) \dom(m,i)\. (Actually, the number of cuts will often be smaller because 
of the order induced by message sending that restricts some of the possibilities.) • 

This is consistent with the estimate given in [4] for their analysis of the com
plexity of model checking for MSCs. We now estimate the size of the GSA. 
Proposition 2 The size of the GSA automaton A constructed in the proof of The
orem 1 satisfies 

t 

\A\ < n i ^ r ^ \LS\nt> 
i=l 

where ni is the number of instances appearing in chart rrii, n is the total number of 

instances appearing in LS, and t is the number of universal charts in LS. 

Proof. Since intersection is multiplicative in size, we have 

i ^ i = n i ^ i < n n I*™K>J)I 
*=1 i=l j€inst(rrii) 

The result then follows immediately from Proposition 1. (Notice that in construc
tion of an automaton for a universal chart the constructed automaton was deter
ministic, hence the intersection automaton is deterministic too, and there is no need 
for a determinization procedure that could have added an exponential factor.) • 

The size of the GSA A is thus polynomial in the size of the specification LS, 
if we are willing to treat the number of objects in the system and the number of 
charts in the specification as constants. In some cases a more realistic assumption 
would be to fix one of these two, in which case the synthesized automaton would be 
exponential in the remaining one. The time complexity of the synthesis algorithm 
is polynomial in the size of A. 

The size of the synthesized object system is determined by the size of the GSA 
A. In the controller object approach (Section 5.1), the controller object is of size 
\A\ and each of the other objects is of constant size (one state). In the full dupli
cation approach (Section 5.2), each of the objects is of size \A\, while in the partial 
duplication approach (Section 5.3), the size of each of the objects can be smaller 
than \A\, but the total size of the system is at least \A\. 

5.5. Synthesis without fairness assumptions 

We have shown that for a consistent specification we can find a GSA and then 
construct an object system that satisfies the specification. This construction used 
null transitions and a fairness assumption related to them, i.e., that a null transition 
that is enabled an infinite number of times is taken an infinite number of times. We 
now show that consistent specifications also have satisfying object systems with no 
null transitions. 
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Let A = (Q,qo,S) be the GSA satisfying the specification LS, derived using 
the algorithm for deciding consistency. We partition Q into two sets: Qstable, the 
states in Q that do not have outgoing null transitions, and Qtransient, the states of 
which all the outgoing transitions are null transitions. Such a partition is possible, 
as implied by the proof of Theorem 1. Now, A may have a loop of null transitions 
consisting of states in Qtransient • Such a loop represents an infinite number of paths 
and it will not be possible to maintain all of them in a GSA without null transitions. 
To overcome this, we create a new GSA A! = (Q',qo,5f), with Q' C Q and 5' C J, 
as follows. 

Let m G M be an existential chart, mod(m) — existential. A satisfies the 
specification LS, so there exists a word w, with w e £A^ £>m- Let q°, q1,... be the 
sequence of states that A goes through when generating u>, and let S0^1... be the 
transitions taken. Since w G £m) ^ t ii, . . . , ifc, such that w^ • Wi2 • • • Wik G £^c« Let 
j be the minimal index such that j > ik and qi G Qstable- The new GSA A' will 
retain all the states that appear in the sequence g°,...,gJ and all the transitions 
that were used in <J°,..., <P. This is done for every existential chart m € M. 

In addition, for every ^ , qj G Q and for every a G Ain, if there exists a sequence 
of states qi,q1,.--,ql,qj such that (qi,a,ql) G S and for every 1 < k < I there is a 
null transition Sk G 5 between qk and </fc+1, then for one such sequence we keep in 
A! the states ql,...,qk and the transitions S1,..., Jfc. 

All other states and transition of A are eliminated in going from A to A'. 

Proposition 3 The GSA A! satisfies the specification LS. 
Proof. We know that A satisfies LS. Hence, Vra G M, mod(m) = universal => 

Vr/ C\ C £ m . When moving from yl to A! we only removed states and transitions, 
so C7^, C £^ , and therefore Vra G M, raod(ra) = universal => V77 £^, C £ m . Notice 
that the construction preserves representative paths, so that from every stable state 
the new automaton can react to every message from the environment. 

We show that Vra G M, raod(ra) = existential => 3n C7^, fl Cm ^ 0. Let 
ra be an existential chart, and w G £A H £ m , as in the construction. Let n = 
770,771,... be the sequence of directed requests sent to the GSA, that generated w. 
Let 7/ = 77°,77i, ...,rjj be a prefix of 77 which A responded to by tracing the state 
path g0,^1, . . . ,^ and using transitions 81, . . . ,5 J . Denote by wf the word generated 
by this trace. Then wf G C\, and K/ G £ m . • 

6. Synthesizing statecharts 

We now outline an approach for a synthesis algorithm that uses the main suc
cinctness feature of statecharts [11] (see also [13]), namely, concurrency, via orthog
onal states. 

Consider a consistent specification LS = (M,amsg,mod), where the universal 
charts in M are Muniversai — {rai,ra2, ...,rat}. In the synthesized object system 
each object Oi will have a top-level AND state with t orthogonal component OR 
states, si,$2,..., St- Each Sj has substates corresponding to the locations of object 
Oi in chart raj. 
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Assume that in a scenario described by one of the charts in Muniversai, object Oi 
has to send message a to object Oj. If object Oi is in a state describing a location 
just before this sending, Oi will check whether Oj is in a state corresponding to 
the right location, and is ready to receive. (This can be done using one of the 
mechanisms of statecharts for sensing another object's state.) The message a can 
then be sent and the transition taken. All the other component states of Oi and Oj 
will synchronously take the corresponding transitions if necessary. 

This was a description of the local check that an object has to perform before 
sending a message and advancing to the next location for one chart. Actually, the 
story is more complicated, since when advancing in one chart we must check that 
this does not contradict anything in any of the other charts. Even more significantly, 
we also must check that taking the transition will not get the system into a situation 
in which it will not be able to satisfy one of the universal charts. 

To deal with these issues the synthesis algorithm will have to figure out which 
state configurations should be avoided. Specifically, let Ci be a cut through chart m*. 
We say that C = (c\, C2,..., Ct) is a supercut if for every i, Ci is a cut through m^. We 
say that supercut C — (c'l5 c'2,..., c't) is a successor of supercut C = (ci, C2,..., c t), 
if there exists i with sucCm^Ci, (j,/j)jci) anc^ s u c n t n a t f° r all A: ^ i the cut c'k is 
consistent with communicating the message msg(j,lj) while in cut c^. 
Now, for i = 0,1, . . . , define the sets 

Badi C {all supercuts s.t. at least one of the cuts has at least one hot location} 

as follows: 

Bado — [C | C has no successors } 

Badi = {C\C G Badi-i or all successors of C are in Badi-i} 

The series Badi is monotonically increasing under set inclusion, so that Badi Q 
Badi+i. Since the set of all supercuts is finite the series converges. Denote its limit 
by Badmax. The point now is that before taking a transition the synthesized object 
system will have to check that it does not lead to a supercut in Badmax. 

The construction is illustrated in Figs. 22, 23, 24 and 25 which show the state-
charts for car, carHandler, proxSensor and cruiser, respectively, obtained from the 
railcar system specification. Notice that an object that does not actively participate 
in some universal chart, does not need a component in its statechart for this sce
nario, for example proxSensor does not have a Perform Departure component. 
Notice the use of the in predicate in the statechart of the proxSensor for sensing if 
the car is in the stop state. 

The number of states in this kind of synthesized statechart-based system is on 
the order of the total number of locations in the charts of the specification. Now, 
although in the GSA solution the number of states was exponential in the number 
of universal charts and in the number of objects in the system, which seems to 
contrast sharply with the situation here, the comparison is misleading; the guards 
of the transitions here may involve lengthy conditions on the states of the system. 
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Perform_Departure 

V-
Perform_Approach 

) 
I setDest/cruiser 
f->PD active 

/carHandler-> 
y departReq 

alertStop/ 

cruiser->disengage 
cruiser->stop 

Fig. 22. Statechart of car. 

carHandler 

Perform_Departure Perform_Approach 

Fig. 23. Statechart of carHandler. 

In
t. 

J.
 F

ou
nd

. C
om

pu
t. 

Sc
i. 

20
02

.1
3:

5-
51

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 W
E

IZ
M

A
N

N
 I

N
ST

IT
U

T
E

 O
F 

SC
IE

N
C

E
 o

n 
03

/2
0/

24
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



44 D. Harel & H. Kugler 

proxSensor 

Coming_Close Perform_Approach 

comingClose .active PA_over 

[car->in(stop)] 

Fig. 24. Statechart of proxSensor. 

^ 

F 
c 
F 

cruiser 1 

Perform Departure 

v̂  
>D active/ 
arHandler-> 
>D active ' \ cp \ 

start 

' 

CD / 
/car->started 

r / 

engage 

J 

Fig. 25. Statechart of cruiser. 
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In practice, it may prove useful to use OBDD's for efficient representation and 

manipulation of conditions over the system state space. 
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APPENDIX: Live Sequence Charts (LSCs) 

Basic LSC definitions 
This section defines the languages specified by a set of LSCs. The LSC definition 

is a restricted and simplified version of the one in [8]. It does not include condi
tions, and so does not have to deal with variables. We assume that all messages 
are synchronous and that there are no failures in the system. An additional restric
tion is that communication with the environment can appear only as an activation 
condition of a chart and not as part of the messages in the chart itself. 

We assume the LSC specification relates to a system composed of a set of objects 
O — {0\.. . O n }. The instance identifiers in the charts are objects from O. The 
LSC specifies the behavior of the system in terms of the message communication 
between the objects in the system. 

As explained earlier, messages sent from the environment to the system are 
distinguished from those sent within the system by the two subsets of E, E;n and 
T,out. Let Ain = (env) x (£>.Ein), Aout = Ox (O.Eo u t), and A = Ain U Aout. 

We want to define the notion of satisfiability of an LSC specification. In other 
words, we want to capture the languages £ C A* U A" generated by the object 
systems that satisfy the LSC specification. 

Let inst(m) be the set of all instance-identifiers referred to in chart m. With each 
instance i we associate a finite number of locations dom(m,i) C {0, ...,Lmax(i)}. 
We collect all locations of m in the set 

dom(m) = {< i, I >\ i € inst(m) A I G dom(m, i)} 

We associate with each location in the chart m a temperature from the set Temp = 
{hot, cold}, by the mapping: 

temp(m) : dom(m) -> Temp 

The messages appearing in m are triples 

Messages(m) — dom{m) x E x dom(m), 

where (< i,l >, a, < i\V >) corresponds to instance i, while at location Z, sending a 
to instance i' at location /'. Each location can appear in at most one message in the 
chart. The relationship between locations and messages is given by the mapping 

msg(m) : dom(m) —>• Messages(m) 

The msg function induces two Boolean predicates send and receive. We define the 
binary relation R(m) on dom(m) to be the smallest relation satisfying the following 
axioms and closed under transitivity and reflexivity: 
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• order along an instance line: 

V < i, I >e dom(m), I < Lmax(i) =>< i, I > R(m) < i, I + 1 > 

• order induced from message sending: 

Vmsg e Messages(m),msg = (< i, Z >, cr, < i', I' >) => 

< z,Z > R(m) < i',l' > 

• messages are synchronous; they block sender until receipt: 

Mmsg G Messages(m),msg = (< i, Z >, cr, < i', V >) => 

< 2',/' > ^(m) < i,Z + l > 

We say that the chart m is well-formed if the relation R(m) is acyclic. We 
assume all charts to be well-formed, and use < m to denote the partial order R(m). 

We denote the preset of a location < i, / > containing all elements in the domain 
of a chart smaller than < i, / > by 

• < ij > = {< i'j' > e dom(m)\ < i'Jf ><m< i,l >} . 

We denote the partial order induced by the order along an instance line by -<m, 
thus < i, / >^m< i', V > iff ii = if and / < /'. 

A cut through m is a set c of locations, one for each instance, such that for every 
location < i,I > in c, the preset • < z,Z > does not contain a location < i ' , / ' > 
such that < j , lj Xm< i',l' > for some location < j , lj > in c. A cut c is specified 
by the locations in all of the instances in the chart: 

c= (< i i , / i > , < 12M >,- . . ,< inJn >) 

For a chart m with instances i\, ...,zn the initial cut Co has location 0 in all the 
instances. Thus, CQ = (< i i ,0 > , < Z2,0 >, . . . ,< zn,0 >). We denote cuts(m) the 
set of all cuts through the chart m. 

Dynamic semantics of LSCs 
For chart m, some 1 < j < n and cuts c, cr, with 

C = ( < H, h > , < 22, 2̂ > , •••, < «nj n̂ > ) 

c' = (< zl51[ >, < t 2 ,^ >,..., < »n,z; >), 

we say that d is a < jf, Zj >-successor of c, and write succm(c, < j,lj >,c'), if c 
and c' are both cuts and 

l'j = lj + l A Vi^jJ'^k 

Notice that the successor definition requires that both c and c' are cuts, so that 
advancing the location of one of the instances in c is allowed only if the obtained 
set of locations remains unordered. 
A run of m is a sequence of cuts, CQ, C\, ..., c^, satisfying the following: 
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• Co is an initial cut. 

• for all 0 < i < k, there is 1 < ji < n, such that succm(ci, < ji, lj. >, Ci+i). 

• in the final cut c& all locations are cold. 

Assume the natural mapping / between (dom(m) U env) x S x dom(m) to the 
alphabet A, defined by 

/ ( < i,l >,a,<j,l' >) = (Oi,Oj.a) 

/(era;, <j, < j , I >) = (env, Oj.a) 

Using this notation, /(Messages(TO)) will be used to denote the letters in A 
corresponding to messages that are restricted by chart m: 

f(Messages(m)) = {f(v) \ v e Messages(m)} 

Let c = Co, ci,..., Ck be a run. The execution trace, or simply the trace of c, 
written w = trace(c), is the word w = w\ • w<i • • • Wk over the alphabet A, defined 
by: 

w =i «f(m 5#(m)(<-? '^ ' > ) ) if succm(ci_i,< j , / j >,Ci) A send(<j,lj >) 
2 |̂  e otherwise 

We define the trace language generated by chart m, £ ^ c C ^4*, to be 

^mC = ( ^ I 3(co, ci,..., Cfc) € Runs(m) s.t. w = trace(c0l ci,..., c^)} 

There are two additional notions that we associate with an LSC, its mode and 
its activation message. These are defined as follows: 

mod : m -> {existential, universal) 

amsg : m —>• (dom(m) U era;) x E x dom(m) 

The activation message of a chart designates when a scenario described by the 
chart should start, as we describe below. In the original LSCs [8], there were 
activation conditions, which were assertions over the variables of the system, and 
precharts which were charts that designate a communication sequence that leads 
to the activation point. Here, we take the activation condition to be a message, 
in order to simplify the model and not deal explicitly with variables. Our version 
is not too restricting because a condition being true can trigger the sending of an 
appropriate message as activation in our model. Notice that in our restricted model 
we allow activation messages to be sent from the environment while all messages in 
the chart itself are communications between the objects in the system. Although 
we will not consider precharts the results in this paper can be extended for such 
a model. The main modification involves the construction of the automaton for a 
chart. 
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The charts and the two additional notions are now put together to form a spec
ification. An LSC specification is a triple 

LS = (M, amsg, mod), 

where M is a set of charts, and amsg and mod are the activation messages and 
modes of the charts, respectively. 

The language of the chart m, denoted by £ m C A* U A°, is defined as follows: 

• For an existential chart, mod(m) = existential, we require that the activation 
message is relevant (i.e., sent) at least once, and that the trace will then satisfy 
the chart: 

An = {w = wi'W2'"\ 3i0, H,..., ik and 3v = vi • v2 • • • vk G £^ c , s.t. 

(i0 < i\ < ... < ik) A (wio = f(amsg(m))) A 

(Vj,l <j< k,w{j =Vj)A 

(Vj',io <f < ikj' &{io,h,-..,ik} =» ^ j ' i f{Messages(m)))} 

The formula requires that the activation message is sent once 
(wi0 — f(amsg(m))), and then the trace satisfies the chart; i.e., there is a 
subsequence belonging to the trace language of chart m (v = v± • v2 • • • Vk = 
Wix • Wi2 • • • Wik G JC^ 0 ) '

 a n d a ^ ^he messages between the activation message 
until the end of the satisfying subsequence (Vj',io < f < ik) that do not 
belong to the subsequence (f £ {io, ii , . . . , ik}) are not restricted by the chart 
m (WJ> £ f(Messages(m))). 

• For a universal chart, mod(m) = universal, we require that each time the 
activation message is sent the trace will satisfy the chart: 

£m — {w = w\ • w2- - - \\/i,Wi = f(amsg(m)) ^3i\,i2,...,ik and 

3v = vi • v2 • • • vk G C^c, s.t. (i <ii <i2< ... < ik) A 

(Vj,l <j< k,Wi. =VJ)A 

(Vj',2 <jf <ikjf £ { n , - , u } =>Wj> i f(Messages(m)))} 

The formula requires that after each time the activation message is sent 
(Vi,Wi — f(amsg(m))), the trace will satisfy the chart m (this is expressed in 
the formula in a similar way to the case for an existential chart.) 

Now come the main definitions, which finalize the semantics of our version of 
LSCs by connecting them with an object system: 
Definition 

A system S satisfies the LSC specification LS — (M, amsg,mod), written S \= 
LS, if: 

1. Vra G M, mod(m) — universal ==> V77 C7^ C Cm 

2. Vra G M, mod(m) = existential =>3n C^H Cm ^ 0 
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Here, £^, the trace set of object system S on the sequence of directed requests 
77, is as defined in [14]. 
Definition An LSC specification LS is satisfiable if there is a system that satisfies 
it. 

Embedding LSCs into CTL* 
We now show that LSC specifications can be embedded in the branching tem

poral logic CTL* [9], Let LS = {M,amsg,mod) be an LSC specification. For a 
chart m € M, we define the formula ipm as follows: 

• If mod(m) = universal, then ipm = AG(amsg(m) —> \Jwec
trc ^ ) * 

• If mod(m) = existential, then ipm — EF(amsg(m) A (\J,
weCtrc <t>w))-

Here, if w = mim2mz...mk is an execution of m, we define 

<f)w = NUirm A (X(NU{m2 A (X(NU(ms...))))))), 

where the formula N is given by N = -irai A ->rae... A ->mfc. 
The following can now be proved: 

Proposition Given LS = (M^amsg^mod), let ip be the CTL* formula A m € M ^ m , 
and let S be an object system. Then 

S\=^ & S{=LS. 

It is noteworthy that the reverse is not true: CTL* cannot be embedded in the 
language of LSCs. In particular, given the single level quantification mechanism of 
LSCs, the language cannot express formulas of with alternating path quantifiers. 
However, it shouldn't be too difficult to extend LSCs to allow certain kinds of 
quantifier alternation, as noted in [8]. This was not done there, since it was judged 
to have been too complex and unnecessary for real world usage of sequence charts. 
Since the writing of the current paper we have extended the translation described 
here, the details will be published separately, see [17] 
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