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Abstract. The play-in/play-out approach is a method for specifying
and developing complex reactive systems. It is built upon a scenario-
based philosophy, and uses the language of live sequence charts (LSCs)
and a support tool called the Play-Engine. We present some conclusions
from the initial experience we have had using the approach on several
projects, and discuss methodological aspects rising from this experience.
The projects are from aviation, telecommunication and system manufac-
turing domains.

1 Introduction

Understanding system and software behavior by looking at various “stories”
or scenarios seems a promising approach, and it has focused intensive research
efforts in the last few years. One of the most widely used languages for specifying
scenario-based requirements is that of message sequence charts (MSCs), adopted
long ago by the ITU [Z1296], or its UML variant, sequence diagrams [UML].
Sequence charts (whether MSCs or their UML variant) possess a rather weak
partial-order semantics that does not make it possible to capture many kinds
of behavioral requirements of a system. To address this, while remaining within
the general spirit of scenario-based visual formalisms, a broad extension of MSCs
has been proposed, called live sequence charts (LSCs) [DHO1]. LSCs distinguish
between behaviors that may happen in the system (existential) from those that
must happen (universal). A universal chart contains a prechart, which specifies
the scenario which, if successfully executed, forces the system to satisfy the
scenario given in the actual chart body. The distinction between mandatory
(hot) and provisional (cold) applies also to other LSC constructs, e.g., conditions
and locations, thus creating a rich and powerful language, which among many
other things can express forbidden behavior (‘anti-scenarios’).
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In [HMO03a,HMO03b] a methodology for specifying and validating require-
ments, termed the “play-in/play-out approach” is described. According to this
approach, requirements are captured by the user playing in scenarios using a
graphical interface of the system to be developed or using an object model dia-
gram. The user “plays” the GUI by clicking buttons, rotating knobs and send-
ing messages (calling functions) to objects in an intuitive manner. By similarly
playing the GUI, the user describes the desired reactions of the system and the
conditions that may, must or may not hold. As this is being done, the supporting
tool, called the Play-Engine, constructs a formal version of the requirements in
the form of LSCs. Note that it is not always necessary to spend much time de-
signing a fancy graphical interface. In many cases, it is enough to use a standard
object model diagram. Our tool, the Play-Engine, support class diagrams and
allows to work with, so called, internal objects that are not reflected in the GUI.

Play-out is a complementary idea to play-in, which, rather surprisingly, makes
it possible to execute the requirements directly. In play-out, the user simply plays
the GUI application as he/she would have done when executing a system model,
or the final system implementation, but limiting him/herself to “end-user” and
external environment actions only. While doing this, the Play-Engine keeps track
of the actions and causes other actions and events to occur as dictated by the
universal charts in the specification. Here too, the engine interacts with the GUI
application and uses it to reflect the system state at any given moment. This pro-
cess of the user operating the GUI application and the Play-Engine causing it to
react according to the specification has the effect of working with an executable
model, but with no intra-object model having to be built or synthesized.

The play-in/play-out approach is supported by a prototype tool called the
Play-Engine, described in detail in [HMO03a]. The approach appears to be useful
in many stages in the development of reactive software, including requirements
engineering, specification, testing and verification. In the long run it might also
pave the way to systems that are constructed directly from their requirements,
without the need for intra-object or intra-component modeling or coding.

Play-Engine=ScenariosDB + Input Mechanism + Execution Engine + Analysis Tools
(LSCs) (Play-In) (Play-Out) (Smart Play-Out)

Fig. 1. Play-Engine Scheme

Being a new approach that suggests a different way of developing systems,
there are many aspects that are not yet fully understood when one attempts to
apply the methodology and tools to real-world applications. In this paper we de-
scribe the initial experience we have had using the approach on several projects,
and discuss methodological aspects arising from this experience. The projects
are from aviation, telecommunication and system manufacturing domains. We
should add that another important application of the play-in/play-out approach
is in modeling biological applications [KHKT03], a domain that will not be de-



scribed here but which has also significantly contributed to our methodological
experience.

This paper is not intended as a technical introduction to LSCs. We instead,
try to keep the discussion at a high level, trying to emphasize more general ideas.
Although the focus is on working with LSCs, we believe that our observations
are relevant to other formalisms and modeling methods.

2 Applications

In this section we briefly overview the applications in which the play-in/play-out
approach and Play-Engine tools were applied. This provides an initial idea of
what kinds of systems are well fitted to the approach. Later on in the paper,
these applications will be used to demonstrate and discuss the methodological
issues arising while using the play-in/play-out approach.

2.1 IAI - Sensor voting and monitoring

In this application, provided by the Israeli Aircraft Industry (IAI), a subsystem
of a flight control computer in an unmanned air vehicle (UAV) is modeled us-
ing LSCs and the Play-Engine. The main role of a flight control computer is to
implement control loops of servo actuators controlling the air vehicle surfaces.
The computer computations are influenced by the actual values provided period-
ically by different sensors installed in the air vehicle. To achieve high reliability,
a redundancy of sensors and flight control computers is used. A voting and mon-
itoring procedure samples the redundant sensors determining that they are in a
reasonable range, disqualifying sensors that are out of range for several consec-
utive rounds. The communication between the sensors and computers is via a
central bus. Timing play a critical role in this application, and among the goals
of our work is to prove the correctness of the voting and monitoring algorithm
and to suggest optimized time delays that can still guarantee correctness.

2.2 NLR - MARS application

The Medium Altitude Reconnaissance System (MARS) is deployed by the Royal
Netherlands Air Force on the F16 aircraft. The system employs two cameras to
capture high resolution images, and corrects the image degradation caused by the
forward motion of the aircraft. The system is responsible for producing frame
annotation, performing health monitoring and alarm processing functions. A
high level description of system requirements of a subsystem of MARS dealing
with data capturing and processing activities has been modeled using LSCs and
the Play-Engine. Again, timing information plays a very important part in the
requirements.



2.3 FTRD - Depannage

This application is a telecommunication service called Depannage, provided by
France Telecom. The Depannage service allows a user to make a phone call and
ask for the help of a doctor, fire brigade, car maintenance, etc. The service invo-
cation software first asks for authentication of the calling user, and then searches
for the calling location. Once the calling location is found, the software searches
in a data base for numbers of potential service providers corresponding to the
Depannage society members in the vicinity of the caller. Once various numbers
are found, the service tries to connect the caller to one of the potential called
numbers (in a sequential or parallel way). In any case the caller should be con-
nected to a secretary or to a vocal box. In parallel a second logic will make
periodic location requests to the Depannage society members in order to record
their latest locations in the data base. The Depannage service is implemented
as a layered application consisting of several components. Each layer or compo-
nent is described by a group of scenarios; the connection between layers is very
clean and precise. The objects in each layer communicate only among themselves
and with the objects in the adjacent layers. This architecture enables applying
methodological approaches to break down the complexity of the system as is
described later on.

2.4 Cybernetix - Smart-Card manufacturing

This application involves a smart-card personalization machine. For a more com-
prehensive description see [A1b02]. The personalization machine is a typical pro-
duction line consisting of a belt that moves artifacts (smart cards) between
production stations that handle different aspects of the manufacturing, until at
the end of the belt final smart-card products are collected. CYBERNETIX man-
ufactures machines for smart-card personalization. These machines take piles of
blank smart-cards as raw material, program them with personalized data, print
and test them. The machines have a throughput of thousands of cards per hour.
It is required that the output of cards occurs in a predefined order. Unfortu-
nately, some cards are defective and they have to be discarded, but without
changing the output order of personalized cards. Decisions on how to reorganize
the flow of cards must be taken within fractions of a second, if no production
time is to be lost. The aim of this case study is to model the desired production
requirements, the timing requirements of operations of the machine and on this
basis synthesize the coordination of the tracking of defective cards. The goal is
to maximize the throughput of the machine under certain error assumptions.
Another design objective, specified by CYBERNETIX, is to shorten the machine,
i.e., use less slots. This means that we would like to show that it is possible to
handle all errors using the minimal number of belt slots.



3 Methodology

3.1 How to build the GUI

A central idea in the play-in/play-out approach is that a graphic user interface
(GUI) of the system is constructed and then used to specify the requirements
in the play-in stage and to show the execution during play-out. How do we go
about starting the job of building an appropriate GUI? How do we define the
objects and corresponding attributes and methods, that will later be used in
play-in/play-out?

These questions lead to the observation that there are certain applications
for which a graphical representation is natural and straightforward. For these
the play-in/play-out approach seems particularly effective. An example is the
smart-card manufacturing system described in Section 2.4. The GUI used for
this application appears in Fig. 2.
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Fig. 2. Smart Card Manufacturing GUI - CYBERNETIX

Our experience showed that building the GUI is a task that should be done
carefully, as much as possible considering in advance the scenarios and properties
that we later plan to specify and analyze. In a case where several developers and
domain experts are involved, early feedback from all participants is crucial. In
the TAT application (Section 2.1) such feedback helped in building a model that
was natural, useful and relevant to different members of the team. The GUI used
for this application appears in Fig. 3. Building the GUI should be considered to
be a full-fledged modeling activity, and the GUI should reflect interesting and
important parts of the system but not the system in full detail.

An iterative approach for developing the GUI can be useful, starting with a
simple GUI, playing scenarios in via it and then extending it after gaining better
understanding of the application. When refining a GUI in such a manner, for a
certain class of changes, e.g., adding new objects or adding a new attribute to an
existing object, the tool allows performing the changes in the GUI without the



need to re-play in the already existing scenarios. For more complex changes, such
as deleting objects and attributes, the existing scenarios must be re-played on the
new GUI. Being a research prototype tool, emphasis was not put on supporting
complex GUI refinements in an automatic fashion, but such directions may be
explored in future versions of the tool.
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Fig. 3. Voting and monitoring GUI - TAI case study

3.2 GUI vs. Internal Objects

Internal objects, described in the form of an object model diagram [UML], can be
used to describe objects that do not have a meaningful or convenient graphical
representation. The Play-Engine supports describing some of the objects in the
GUI and others as internal objects represented in an object model diagram. An
example from the FTRD application appears in Fig. 4. In object model diagrams
each object is depicted by a box, showing its attributes and methods. During
play-out the values of attributes are updated in the diagram as they change,
and arrows are drawn dynamically by the PlayEngine to reflect the message



communication between objects. The play-in and play-out processes are fully
supported in the Play-Engine for internal objects. This capability also provides
an alternative to building a specially tailored GUI, thus saving valuable time.

In two of our applications, those of NLR (Section 2.2) and FTRD (Sec-
tion 2.3), most of the system was described using internal objects, partly due to
the fact that the systems were not graphical in nature, and also to allow quick
progress to the scenario elucidation phase. This success causes us to believe that
using variants of object model diagrams is a practical approach. We expect that
better tool support for this, which would allow, for example, the use of multiple
diagrams and the application of layout algorithms, would enhance the usage of
internal objects. We indeed plan this as part of future versions of the engine.
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Fig. 4. Internal objects in the FTRD case study

Although using internal objects and object model diagrams proved practical,
we still think that building a GUI is very worthwhile. The ability to work with
an executable model reflected in a friendly GUI seems important during project
meetings, makes it easier to get feedback and explain issues by the the various
members of the team — not only the programmers.



3.3 GUTI’s for ever-growing systems

When modeling real-world systems using the Play-Engine, maintaining the com-
plexity of the graphical representation, either the GUI or internal object dia-
grams becomes quite a challenge. Using a GUI rather than only object diagrams
allows a more succinct representation and so enables capturing larger systems.
Still, even for GUTI’s there is a limitation on the amount of information that can
be represented. Recently, the Play-Engine has been extended to support multi-
ple GUI forms. The basic extension allows different objects to be displayed in
different GUI forms, thus making it possible to decompose the application into
subsystems, maintaining full support for the play-in and play-out activities.

A more advanced extension is presented in the recent work on InterPlay
[BHMO04]. InterPlay is a simulation engine coordinator that supports cooperation
and interaction of multiple simulation and execution tools. It enables connecting
several Play-Engines and also connecting a statechart-based executable model to
the Play-Engine. GUI forms and internal object diagrams can thus be distributed
between various Play-Engines, which makes it possible to handle larger systems.
These new features have not yet been used in the applications described in
this paper, but we hope to use them soon. Our experience in the applications
showed that the internal object diagrams are very useful, and we plan to support
multiple object diagrams within the same Play-Engine in the future. We believe
that experience in other tools that handle large systems in diagrammatic forms
is relevant here and in time will be integrated into the Play-Engine tool.

3.4 Large LSCs vs. small ones

One of the methodological questions raised while working on the case studies was
whether we should describe scenarios using large LSCs that specify rich behavior
or to break the behavior into several smaller LSCs that activate and interact with
each other. Although there is no clear answer to this, our experience shows that
a single LSC should not be too large and complex, and that understanding the
relationship between many smaller LSCs can provide insight into the developed
system. We thus suggest that, at least in the initial modeling stages, one should
specify smaller LSCs that describe the basic scenarios. In later stages, more
complex charts can be constructed either separately, or by composing the basic
charts. Our experience also shows that from the perspective of efficient analysis,
handling many small and simple charts that can be interleaved in numerous
ways is harder, thus for the process of applying smart play-out pre-merging
small charts into larger ones has an advantage.

At this stage it is still hard to define precisely what is small vs. large when it
comes to LSCs, and this probably also depends on the context of the application.
However, we believe that being aware of this tradeoff even without a precise
definition is important for users of scenario-based approaches.

To illustrate the above discussion, we describe our experience with the smart
card case study described above. In this case study, a manufacturing machine is
modeled. The machine is composed of a belt and stations that put/take cards



from belt slots and sometimes carry some manufacturing steps. To allow mod-
ularity, we assigned each station with its own scenarios. This defines reusable
objects that can be combined in different ways in order to test various design
options for the machine. To improve the performance of the analysis, we merged
many small scenarios to one big LSC. This improved the speed of properties val-
idation by several orders of magnitude. In principle, merging charts is a formal
process that can be mechanized, e.g., using algorithms developed in [Gil03]. We
used both models, interchangeably, depending on which aspect of the system we
wanted to examine.

3.5 Refinement of LSCs

The counterexample guided abstraction refinement approach is a known method
for model-checking multilayered systems [CGJT00,CGLZ95,Kur95]. It consists of
an iterative double phase process. The abstraction phase hides the internal logic
of various objects, hence considering them as inputs. This type of abstraction
may lead to traces that cannot be simulated on the complete model. The refine-
ment phase consists of checking whether the counterexample is real or spurious.
If the example turns out to be incompatible with parts of the model abstracted
out, one can refine the abstraction based on the counterexample. The process is
repeated until the abstraction is good enough to carry an analysis on the objects
that are not abstracted.
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Fig. 5. Abstracting the behavior of the Flight Control Computer

This technique is particularly useful for layered models. Layers separation is
conveniently facilitated by putting each layer in a different use-case. Occasionally,
some interesting analysis involves only one layer so it can be carried out on that



layer only. Other properties can be analyzed progressively by breaking them to
separate properties of the layers.

The process of abstraction and refinement of LSCs goes as follows. The user
chooses a part of the system to analyzed. Other parts of the system are removed
from the execution configuration. The specification for objects that are interfac-
ing with the part that is analyzed is only given in a coarse level or not given at
all (over-approximation of the interface). Then, the part that is fully specified is
analyzed in the usual way (by simulation or smart play-out [HKMPO02] or both).

Clearly, such an analysis can lead to traces that are not compatible with the
full system. To verify that a trace is not spurious, the designer can save it as
an existential chart and see if the remaining components can satisfy this chart.
If this is not the case, it is possible to refine the abstraction by adding more
objects and charts to the analyzed part or by addition of more constraints to
the specification of the abstracted part.

We found that it is useful to alter the “External” flag for some objects. As
the name suggests, objects with an “External” flag turned on are considered part
of the environment. Therefore, one way to abstract out the internal behavior of
an object is to remove the charts that specify this behavior from the execution
configuration and make the object external.

A simple example of abstracting behavior appears in the chart of Fig. 5.
Instead of modeling the exact behavior of the flight control computer, which is
quite complex, we can assume at the initial modeling stages that its values are
correlated with those of the CalcVal object. When CalcVal is assigned a new
value, the flight control is nondeterministically assigned either the same value
or that value incremented by 7. In later modeling stages this behavior becomes
more precise, until at the final stages we may model the flight control behavior
in full detail.

3.6 Generic Scenarios

The Play-Engine allows generic scenarios in several ways. One is facilitated by the
use of symbolic instances [MHKO02]. This is extremely useful when big systems are
modeled. Specifically, when there are classes of objects with common behavior,
one would like to play-in the behavior using one sample instance but have the
specification apply to all, or some of, the other objects in the class. This is done
by adding annotations to the played-in chart. The annotations specify the range
of objects of the class that the chart should apply to and information that tells
the play-out mechanism how the messages in the chart generalize.

An example of specifying generic behavior in the smart-card application ap-
pears in the chart of Fig. 6. In part (a) an exact scenario of personalization of
a card in personalization site 1 is described, and in part (b) it is turned into a
generic scenario, which holds for any of the personalization sites.

Methodologically, generic charts allow better modularity but are more dif-
ficult to maintain. Once a behavior is well modeled by generic charts that use
symbolic features, it can be used even if objects are added, deleted or moved.
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Fig. 6. Symbolic Instances - Smart-Cards

On the other hand, it is more difficult to carry out changes to generic charts
because all possible instantiations need to be considered.

Our conclusion is that scenarios should be made generic only after some
testing and verification has been done. First, some copies of concrete charts
should be created and tested. Once the specification is stable to the satisfaction
of the modeler, annotations can be added and redundant charts eliminated.
Sometimes it is possible to model a small part of the system for testing and to
extend the specification to other objects by symbolic annotations once the test
is passed satisfactorily.

3.7 Applying Smart Play-Out

Formal modeling alone is useful, but the true power shows when advanced anal-
ysis tools are incorporated. Once you have a formal LSCs model of a system,
you can use an analysis tool called Smart play-out [HKMP02,HMO03a] to analyze
and execute it. In particular, it is useful to compute a smart execution for the
model.

Let us explain what a smart execution is: the standard execution called “naive
play-out” does not involve backtracking. The naive play-out chooses one execu-
tion option arbitrarily, i.e., it makes decisions without thinking ahead. Surpris-



ingly, this execution is very useful for many models. Nevertheless, there are sys-
tems for which such a naive execution is not relevant. For these systems, Smart
play-out comes handy. After some analysis, if possible, the engine computes an
execution that doesn’t get stuck.

The smart play-out mechanism allows an LSCs designer to run advanced
queries and get answers based on state-space exploration. Such queries are proved
useful as guidance toward a refinement of a specification or a validation of prop-
erties. The queries come in the form of scenarios that the designer want to verify.
The designer plays-in a scenario and asks the tool if this scenario can be exe-
cuted without violating the model. For example, one can ask if some error can
be fixed within a given time or resources limits.

Verification by state-space exploration, often referred to as model checking, is
the technological basis for smart play-out, and is an effective method for analyz-
ing concurrent reactive systems (e.g., communication protocols). Smart play-out
performs an exploration of the model state space. This search recursively explores
all successor states of all states encountered during the search, starting from the
initial state, by executing all enabled transitions in each state. Of course, the
number of visited states can be very large: this is the well-known state-explosion
problem, which limits the applicability of state-space exploration techniques.

Since it is rarely possible to model-check industrial sized problems, we suggest
a semi-automatic methodology for smart play-out. In various case studies, a
manual refinement process supported by state space exploration proved fruitful.
Methodologically, we found that it is better to invoke the smart play-out module
only when the degrees of freedom of the model have been reduced. First, the
designer performs a coarse strategy based on simulations with the naive play-
out and intuition. When the strategy is formed such that only a few parameters
are left unknown, smart play-out should be used. The tool is useful both for
the verification of a strategy and for resolving unknowns. Even if a strategy is
refuted, a counter example will be given. This counter example can guide the
designer towards a better strategy.

Before applying smart play-out, the user should provide any available knowl-
edge and understanding of the system in terms of invariants, preconditions and
postconditions. More technically, in LSCs this is done using forbidden elements
which are drawn at the bottom of the chart, as shown in Fig. 7, and have as
their scope the chart, prechart or subchart (see Chapter 17 of [HMO03a]). These
impose necessary conditions for the execution of the entire chart or parts of it. If
it clear that it is only relevant to execute a chart under a known condition, the
designer can render the negation of this condition forbidden. Forbidden condi-
tions reduce the explored state-space dramatically and allow smart play-out to
handle much larger designs.

Another way to reduce the explored state space is to remove unnecessary
nondeterminism. Occasionally, LSC models leave the order of messages unre-
solved. Such nondeterminism can arise when different time-lines on a chart are
not synchronized. Adding synchronization may help facilitate the use of smart
play-out. Also, when the model consists of many small scenarios, we often get



loadAlt

Contraller

Collector | Belt |

< i - Hoad)
Col = Callestor crd ) :
i Inicol
e
< B
e et
i -2 B3]
Forbidden Elements
| PRE Beltﬁgtol\eclol.@
[MaIN F g ‘

Fig. 7. Forbidden Conditions

numerous symmetric executions that model the same behavior. Thus, one way
to allow better performance of the smart play-out is to merge charts.

3.8 Queries supported by smart play-out

As described in Section 3.7, smart play-out can be used to execute LSCs directly
or answer queries. For direct LSC execution, naive play-out seems currently more
useful than smart play-out due to its quick response time. The main use we have
made of smart play-out in our applications is for answering queries. Given an
existential chart and a set of universal charts (an execution configuration) smart
play-out can be asked to try to satisfy the existential chart and all activated
universal charts. If it manages to do so, the satisfying run is played out, providing
full information on the execution and reflecting the behavior in the GUI.

An example of a simple existential chart to be satisfied appears in Fig. 8. This
existential chart requires that eventually the Collector obtain the value 7, which
can occur after six cards have been manufactured successfully. Thus applying
smart play-out to this query finds and exhibits a strategy for manufacturing six
cards.

Two modes of satisfying an existential chart are supported, the standard one
tries to satisfy the existential chart from the current system configuration, i.e.,
starting from the current given attribute values of all objects. The second mode
tries to satisfy the existential charts from any system configuration, allowing
the system to nondeterministically guess the values of the object attributes.
Currently, in this mode, smart play-out can set the values of attributes that
are designated as “externally changeable”. Our experience shows that it may
be useful to allow advanced users of smart play-out to designate more precisely
which attributes should be set to initial values by smart play-out while satisfying
an existential chart.
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Work on the NLR case study raised several issues regarding spontaneous ini-
tiation of system events while satisfying an existential chart. This has led to a
modification of smart play-out to support an additional mode of queries. Accord-
ing to the default mode, system events appearing in the existential chart to be
satisfied can be taken in a spontaneous manner, even without the event appear-
ing in the main chart of an activated universal chart. This mode is useful during
initial stages of building the requirements model, to check whether a certain
behavior is still possible and is not contradicted by the existing universal charts,
or to make sure that a certain ‘bad’ behavior is explicitly ruled out. In later
development stages, the new mode does not allow spontaneous system events to
occur, thus a chart can be satisfied only if it can be satisfied by direct execution
of the LSC specification, e.g., using a play-out mechanism were nondeterminism
is resolved in a certain way. The user has full control over which mode is to be
used by selecting the appropriate checkbox in the smart play-out menu.

4 Related Work

A large amount of work has been done on scenario-based specifications. Amyot
and Eberlein [AE03] provide an extensive survey of scenario notations. Their
paper also defines several comparison criteria and then uses them to compare
the different notations. The idea of using sequence charts to discover design errors
such as race conditions, time conflicts and pattern matching at early stages of
development has been investigated in [AHP96,MPS98]. The language used in
these papers is that of classical Message Sequence Charts, with the semantics
being simply the partial order of events in a chart. In order to describe actual
system behavior, such MSC’s are composed into hierarchal message sequence
charts (HMSC’s) which are basically graphs whose nodes are MSC’s. As has
been observed in several papers, e.g. [AY99)], allowing processes to progress along
the HMSC with each chart being in a different node may introduce non-regular
behavior and is the cause of undecidability of certain properties. Undecidability



results and approaches to restrict HMSC’s in order to avoid these problems
appear in [HMKT00a, HMKT00b,GMPO01]. In [MR96] a notion of refinement is
defined for the Interworkings scenario-based graphical language. Refinements for
message sequence charts are studied in [Krii00]. The enhanced expressive power
of LSCs makes a definition and application of the refinement concepts more
challenging.

The more expressive language of live sequence charts (LSCs) has been used
for testing and verification of system models. Lettrai and Klose [LK01] present
a methodology supported by a tool called TestConductor, which is integrated
into Rhapsody [IL]. The tool is used for monitoring and testing a model using a
restricted subset of LSCs. Damm and Klose [DK01,KWO01] describe a verification
environment in which LSCs are used to describe requirements that are verified
against a Statemate model implementation.

We believe that one contribution of the present paper is summarizing the ex-
perience we have gained in applying LSCs and the play-in/play-out approach to
several real-world applications. A significant amount of the actual work was car-
ried by industrial partners, allowing us to get effective evaluation and feedback.
We believe that this experience is interesting also for the general application of
related scenario-based methods and tools.
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