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Abstract. We investigate the classical notion of object composition in
the framework of scenario-based specification and programming. We con-
centrate on live sequence charts (LSC), which extend the classical par-
tial order semantics of sequence diagrams with universal/existential and
must/may modalities. In order to tackle object composition, we extend
the language with appropriate syntax and semantics that allow the spec-
ification and interpretation of scenario hierarchies — trees of scenarios —
based on the object composition hierarchy in the underlying model. We
then describe and implement a composition algorithm for scenario hier-
archies, and discuss a trace-based semantics and operational semantics
(play-out) for the extension. The extension has been fully implemented,
and the ideas are demonstrated using a small example application.

1 Introduction

Building upon the preliminary (unpublished) work in [3], we integrate object
composition with scenario-based specification and programming. Object com-
position, that is, the ‘part-of’ hierarchical relation, is a fundamental concept
in object oriented analysis and design [5]. We consider strong composition, for
which part-objects are intrinsically associated with their whole, and do not ex-
ist independently. Scenarios, depicted using variants of sequence diagrams, are
popular means for specifying the inter-object behavior of reactive systems (see,
e.g, [8,12,18,20]), are included in the UML standard [19], and are supported
by many modeling tools. To specify scenarios we use a UML2 compliant variant
of live sequence charts (LSC) [7,10], a visual formalism that extends classical
message sequence charts (MSC) [13], mainly by making a distinction between
possible and mandatory behavior. The LSC language has an executable (opera-
tional) semantics (play-out) [11], and thus may be used not only for requirements
and specification but also as a programming language.

We define an appropriate extension of the syntax and semantics of LSC,
which allows the specification and interpretation of a scenarios hierarchy that
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is based on the object composition hierarchies in the model. Combining object
composition with scenario-based specifications supports information hiding to-
gether with a scalable and decentralized design, where high level scenarios are
refined by specifying the inner behavior of their participating objects modulo
the scenario-based context.

The main mechanism we introduce is LSC-trees; hierarchies of modal scenar-
ios induced by the system model’s object composition hierarchy. LSC-trees are
created by allowing lifelines to be decomposed into part-scenarios. Semantically,
part-scenarios are indeed parts; i.e., not only do they specify the interaction
between part-objects, but in addition their lifespan (as scenario instances) and
scope (in terms of binding and unification) are restricted by the parent scenario.
We define syntactic rules and (operational) semantics for LSC-trees and present
a composition algorithm that checks the consistency of a given LSC-tree and
outputs a semantically equivalent (implicit) annotated flat-LSC. The semantics
of LSC-trees and the composition algorithm handle the classical partial order
semantics of sequence diagrams and the must/may modalities of LSC.

An implementation of LSC play-out using aspects was presented in [16] and
has been implemented in the S2A compiler [9]. In way of implementing the
ideas of the present paper, we have implemented object composition in S2A by
supporting the compilation of LSC-trees. The implementation is compliant with
the UML2 standard notion of part-decomposition ([19], pp. 496-499) and the
modal profile as defined in [10].

Combining object composition with scenario-based specifications has been
studied before (see, e.g., [12,15]). The main contributions of our work are these:
we explicitly describe and implement a composition algorithm; we focus on the
operational semantics and the execution of the composed scenarios; and, finally,
we not only handle the classical partial order semantics of sequence diagrams
but consider the part-decomposition extension in the context of the more expres-
sive must/may (hot/cold) modal semantics of LSC. We consider the extended
semantics along with the concepts presented in Sec. 4 and Sec. 5, as the main
contributions of this paper.

The paper is organized as follows. In Sec. 2 we briefly discuss LSC and object
composition. Sec. 3 presents syntax and semantics for the integration of the two,
and defines LSC-trees. Sec. 4 describes the lifeline composition algorithm and
discusses its complexity. Some more advanced issues are discussed in Sec. 5. In
Sec. 6, we illustrate our work using a simple example. Sec. 7 discusses related
work and Sec. 8 concludes. Additional technical details, proof sketches, an op-
timized version of the basic composition algorithm, and an extended example
appear in [4].

2 Preliminaries
2.1 Live Sequence Charts and Play-out
Live Sequence Charts We use a UML2 compliant variant of live sequence

charts (LSC) [7, 10, 11], a visual formalism for scenario-based inter-object speci-
fications which extends the partial order semantics of classical message sequence



charts (MSC) [13] with universal and existential modalities. LSC is defined as
a proper UML profile that extends UML2 Interactions [19] with a <<modal>>
stereotype consisting of two attributes: mode and execution mode. Each element
in an LSC, e.g., a message, a constraint, has a mode attribute which can be
either hot (universal) or cold (existential), and an execution mode, which can
be either monitor or execute. Thus, LSC allows not only to specify traces that
“may happen”, “must happen”, or “should never happen”, but also to divide
the responsibility for execution between the environment, the participating ob-
jects, and the coordination mechanism. Notice that this LSC variant is a proper
extension of the original LSC language. For example the notion of prechart is
generalized, since cold fragments inside universal interactions serve prechart-like
purposes: a cold fragment does not have to be satisfied in all runs but if and
when it is satisfied it necessitates the satisfaction of its subsequent hot frag-
ment; and this is true in all runs. LSC notation extends the classical sequence
chart notation as follows: hot (resp. cold) elements are colored red (resp. blue),
execution (resp. monitoring) elements use solid (resp. dashed) lines.

Play-out An operational semantics for LSC, termed play-out, was presented
in [11]. Each event in a chart includes a number of locations and covers (vi-
sually and logically) one or more lifelines. The covered lifelines are those that
participate in the execution of the event or need to synchronize on it. A minimal
event in a chart is an event, which no other event precedes it in the partial order
of event induced by the chart. Minimal events are important in our execution
mechanism: whenever an event e occurs, a new copy of each chart that features
e as a minimal event is instantiated and start being monitored/executed. Each
active LSC, instantiated following the occurrence of a minimal event, has a cut,
which is a mapping from each lifeline to one of its locations. Roughly, the exe-
cution mechanism reacts to events that are statically referenced in one or more
of the LSCs; for each LSC instance the mechanism checks whether the event is
enabled with regard to the current cut; if it is, it advances the cut accordingly;
if it is wiolating and the current cut is cold (a cut is cold if all its elements are
cold and is hot otherwise), it discards this LSC instance; if it is violating and
the current cut is hot, an exception is thrown; if the event does not appear in
the LSC, it is ignored (an LSC does not restrict the occurrence of events not
explicitly appearing in it). Conditions (UML2 state-invariants), are evaluated
as soon as they are enabled in a cut; if a condition evaluates to true, the cut
advances accordingly; if it evaluates to false and the current cut is cold, the
LSC instance is discarded; if it evaluates to false and the current cut it hot, an
appropriate exception is thrown. If the cut of an LSC instance reaches maximal
locations on all lifelines, the instance is discarded. Once all the cuts have been
updated, the execution mechanism chooses an event to execute from among the
execution-enabled methods that are not violating any chart, if any exist.
Play-out requires careful event unification and dynamic binding mechanism.
Roughly, two methods are unifiable if their senders (receivers) are concrete
instance-level (or are already bound) and equal, or are symbolic class-level of
the same class and at least one is still unbound. When methods with arguments



are considered, an additional condition requires that corresponding arguments
have equal concrete values, or that at least one of them is free.!

The LSC MvCSetState (Fig. 1), specifies an interaction between 3 objects:
view, controller and model of types: IView,IController, and IModel re-
spectively. The three lifelines in the chart are interface-level, i.e, each of them can
represent any instance that implements the corresponding interfaces. This LSC
specifies part of a variant of the behavior of the classic Model-View-Controller
design pattern (MVC): Whenever the view informs the controller that the user
has input, and the input is not null, then a series of actions must eventually
occur: the controller should eventually set the model’s state 2; the model should
eventually inform the view that the state has changed, and then the view should
eventually update itself according to the new state. Finally, the controller should
order the view to start listening for new input.
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Fig. 1. The LSC MVCSetState

Scenario aspects and S2A An implementation of play-out using aspects was
suggested in [16], and has been implemented in the S2A compiler [9]. Each LSC
is translated into a scenario aspect, which simulates a small automaton whose
states correspond to the LSC cuts. S2A exploits the inherent similarity between
the scenario-based approach and the aspect-oriented approach to software spec-
ification: in both cases part of the system’s behavior is specified in a way that
explicitly crosses the boundaries between objects. The compilation scheme takes

! Full definitions of the play-out algorithm for LSCs, including unification, can be
found in [11].

2 This method is marked as ‘monitored’ so this LSC is not responsible for executing
it.



advantage of the similar unification semantics of play-out and AspectJ pointcuts.
The work described in the present paper was implemented in S2A, see Sec. 4.

2.2 Object composition

Object composition, that is, a ‘part-of’ hierarchical relation, is a fundamental
concept in object oriented analysis and design [5]. We consider composition to
imply strong ownership, that is, part-objects are intrinsically associated with
their whole, and do not exist independently (in the UML standard this is termed
composite aggregation in contrast to other types of aggregation). A part instance
is included in at most one composite (‘whole’) at a time. The composite object
(the ‘whole’) has the responsibility for the existence and storage of its part
objects. If a composite is deleted, all of its parts are deleted with it [6, 19)].

We assume that a system is equipped with a directed acyclic graph (DAG)
of objects (representing the part-of binary relation). The DAG has a transitive
deletion characteristics; deleting an object results in the deletion of the subgraph
below it (i.e, deleting its parts). The graph can be symbolic, with objects being
replaced by classes. Notice that since a part object can be included in at most
one composite, the object graph is actually a forest (at the class level, we allow
classes to be part-of more than one class — the single owner restriction applies
only for instances — hence the use of a DAG rather than a tree).

We use the directed acyclic graph of objects (or classes) in order to answer
relation queries about objects (at run-time) or classes (statically, during LSC
compilation). We say that a class (object) A is a part-of a class (object) B iff
there is a direct edge from B to A in the DAG. B has-a A iff A is part-of B.
We say that A is recursively part-of B if there is a directed path from B to
A. Thus, ‘recursively part-of’ is a strict partial order (transitive, antisymmetric,
and irreflexive) between objects (classes).

The package PhoneBook in Figure 4 displays a simple part-of graph. For
example, in the figure, the class InputPane is part-of the class PhoneBookView.

3 Object Composition in Scenario-Based Programming

We are now ready to present our integration of object composition and scenario-
based programming. We use UML2 terminology.

3.1 The basics

Syntactically, we use PartDecomposition as the main mechanism to introduce
object composition into a scenario-based specification. In every scenario, each
lifeline may be decomposed into a new set of lifelines, which collectively form a
new scenario. Thus, a forest-like hierarchical structure is created.

More formally, Let L be an LSC with a set of lifelines I = {I,...,I,}.
Each lifeline I; has a property I;.decomposedAs, which can either be null (and
then we call I a flat lifeline) or hold a reference to another LSC Lj,, which
specifies the inner behavior of I;’s parts modulo the scenario described in L. We
call L a parent-LSC and Ly, a part-LSC. Lifelines of part-LSCs may be further
decomposed and an LSC may have several non-flat lifelines, giving rise to the
depth and width of the hierarchical structure. An LSC is flat if all its lifelines



are flat. The part-of relation defined between objects in the model is naturally
extended to scenarios. An LSC Ly is part-of an LSC Lo iff Lo contains a lifeline I
s.t. I.decomposedAs = Li. We call the resulting hierarchical structure an LSC-
tree. In the following we adopt tree terminology and use parent-LSC, LSC-node,
LSC-leaf (necessarily flat), and LSC-root.

We require two basic syntactic constraints on the part-of relation between
LSCs, as follows (we refine these rules in Sec. 5):

R1 Lifelines of a part-LSC may only represent classes (objects) that are part-of
the class (object) represented by the decomposed lifeline.

R2 Given a lifeline I decomposed into part-LSC L, all events covering I must
appear in L and induce the same partial order.

A specification that violates the above rules is considered inconsistent.

Fig. 2 shows an example LSC-tree. The LSC-root, MVCSetState, has two non
flat lifelines. The view lifeline is decomposed into the part-LSC ViewDetailed
and the model lifeline is decomposed into the part-LSC ModelDetailed. The
restrictions described above hold for both part-LSCs. In the following we refer
to this LSC-tree by its root’s name.

The second restriction above induces a natural correspondence relation be-
tween the events that appear in a parent-LSC and cover the decomposed lifeline
and (some of) the events that appear in its part-LSC. We call these corre-
sponding events. For example, the method changeView(state) in the part-LSC
ViewDetailed corresponds to the method with the same signature in the parent-
LSC MVCSetState. For the time being we require that corresponding events pre-
serve temperature and execution modes. In Sec. 5 we present a setting where this
rule is refined, and we discuss additional issues regarding corresponding events.

3.2 Operational semantics

The notions of cuts, enabled/violating events, and minimal events, are carried
over from the semantics of flat LSC to the semantics of the LSC-tree. The differ-
ences manifest themselves mainly by modifications in the definitions of minimal-
events, violating-events, and most importantly lifeline bindings and event unifi-
cation rules.

We start by adding restrictions to the lifeline binding rules. Consider an LSC
L and a lifeline I in L that is decomposed into a part-LSC Lj. Lifelines in L; can
only be bound to objects that are indeed parts-of the object (class) represented
by I in L. During execution, for a given instance of L, once I binds to an object
O, all the lifelines in L; that represent its parts may be bound to O’s parts only.
Bindings may occur in the other direction too: when a lifeline in an instance of
L; binds to a (part) object P, I binds to the owner of P.

Message unification rules are also extended in a natural way. Messages that
are unifiable in the flat setting are still unifiable. In addition, instead of requiring
identical callers (receivers) or unifiable types, we also allow a setting where
one caller (receiver) is (recursively) part-of the other (specifically, corresponding
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Fig. 2. The MVCSetState LSC-tree; the tree is composed of a root (MVCSetState) and
two part-LSCs, (ViewDetailed and ModelDetailed).

events are unifiable). Note that this still allows identical lifeline bindings and
message unification across different LSCs in the specification, including between
different LSC-trees (see the examples in [4]).

The set of minimal events must be considered with regard to the partial
order induced by the LSC-tree as a whole. Thus, a minimal event of an LSC-
node might not be minimal for the tree. When a minimal event with regard to
the tree occurs, an active instance of the whole tree is created (see the examples
in [4]). Allowing part-LSCs to introduce new minimal events has its advantages
and disadvantages. In Sec. 5.5 we discuss a setting where part-LSCs are not
allowed to introduce new minimal events.

Recall that a cut of an LSC induces a set of violating events and a set of
enabled events. When dealing with LSC-trees, each LSC-node in an instance
of an LSC-tree has its own (local) cut, and hence its own sets of enabled and
violating events. The rule for enabled events does not change: when an enabled
event in an LSC-node occurs, the cut of this node advances accordingly. As usual,
due to event unification, a single event might cause several cuts in several LSCs
in the same tree to advance simultaneously.



When an event that violates one of the LSCs in an LSC-tree occurs, we
interpret it as violating the tree. The violation is hot if one of the LSCs in the
tree (not necessarily the one where the local violation ‘occurred’) was in a hot
cut when the violation occurred, and it is cold otherwise. When a cold violation
occurs in an instance of an LSC-tree, the entire instance is discarded; when a hot
violation occurs an appropriate exception is thrown, as in the flat LSC setting.

4 Lifeline Composition Algorithm

The composition algorithm receives as input a single LSC-tree and if the LSC-
tree is consistent it outputs an annotated (implicit) flat-LSC that captures ex-
actly the behavior specified by the tree. If the LSC-tree is inconsistent, i.e., it
violates rules R1, R2 defined in Section 3.1, an appropriate output message is
given. For example, Fig. 3 displays the (implicit) flat-LSC created as a result of
running the algorithm on the LSC-tree MVCSetState (of Fig. 2).
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Fig. 3. The (implicit) composed flat-LSC

The basic procedure used by the algorithm merges two LSCs, a part-LSC and
its parent-LSC, into a single annotated flat-LSC. We use a DAG to represent the
partial order of events of each LSC, and merge the two DAGs using a merging
algorithm inspired by the classic way to merge sorted lists [14].

By applying the merging procedure recursively from leaves to root, the algo-
rithm collapses the tree into a single flat-LSC. The resulting LSC’s set of lifelines



is the union of all the LSC-node’s sets of lifelines, where we (recursively) replace
each decomposed lifeline with the lifelines of its corresponding part-LSC. The
pseudo-code for the (essence of the) merging procedure appears in Proc. 1. A
proof of correctness and a detailed explanation of the algorithm are given in [4].

procedure 1 composeLSCS(LSC Lpgrent,LSC Lpgrt)

: let I be the lifeline in Lyparent that is decomposed into Lpart
create new LSC Lyq¢
set Lyiq¢ lifelines to be Lparent’s lifelines but replace I with Lyare’s lifelines
let Eparent be Lparent’s event graph
let Epart be Lpart’s event graph
while Epqrent # 0 do
let e be a minimal event in Epqrent
Eparent — Fparent \ {e}
if e does not cover I then
10: append e to Lyfjat
11: else {//e covers I}
12: addPartLSCEvents(Epart, €, Liiat)
13: end if
14: end while
15: addPartLSCEvents(Epart, null, Lfiqt)
16: return Lyiat

procedure 2 addPartLSC Events(Event graph Ep,.,Event epqrent,LSC Lyiqt)

1: while E,qt # 0 do

2: let epart be a minimal event in Epqrt
3 if epqrt corresponds to epgrent then

4 Epa,rt — Epa,rt \ {epa,rt}

5 let e, be the static unification of epqrt and eparent
6: append ey to Lyiqt

7 return
8
9
10

else if e,q,¢ corresponds to another event in Lyarent then
if there are more minimal events in F,q,+ then
choose another minimal event and continue the loop with it.

11: else {//no more minimal events}

12: throw ‘Error: Violation of the partial order’

13: end if

14: else {// epart does not correspond to any event in the parent-LSC}
15: append epart t0 Lfiat

16: end if

17: end while

18: if e, == null then

19: return

20: else

21: throw ‘Error: No corresponding event for eparent in the part-LSC’
22: end if

Complexity The composeLSC's procedure runs in time linear in the total
number of events in the two input LSCs, since it traverses each event in the
two DAGs only once. We assume that operations such as static event unification
and adding an event to a list take constant time. To allow extraction of minimal
events in constant time we keep a dynamic set of sources for each DAG.

Let T be an LSC-tree with n LSC-nodes. Denote the set of events of an
LSC L by Er. Let k = max{|E|: L € T}. The complexity of the composition
algorithm is O(n%k). The report in [4] contains a detailed analysis of the al-
gorithm’s complexity and suggests a simple optimization (already used in our
implementation), which results in a running time of O(nk).



4.1 Implementation

We have implemented the algorithm in the S2A compiler [9] by adding the
ability to compile LSC-trees. S2A uses the optimized version of the composition
algorithm presented above to reduce each LSC-tree in the specification to a
single annotated flat-LSC. It then translates this implicit flat-LSC into a scenario
aspect [16]. Some modifications of the original scenario aspect code are required
in order to support the extended lifeline binding and unification rules.

5 Advanced Issues
‘We now discuss several advanced issues that arise in our work.

5.1 Lifeline bindings and scope

Integrating object composition into scenario-based specifications introduces a
new notion of scope, which materializes in lifelines binding and event unification
rules. Consider a parent-LSC L; with lifeline I; of type C4, decomposed into
a part-LSC Ls. Let Iy be a symbolic lifeline in Ly representing a class Cs. I
cannot be bound to any object of type Cs. Rather, it may be bound only to
an object of type Cs that is also part-of an object of type Ci. The part-LSC
scenario is thus considered only within the scope of its parent.

5.2 The partial order

In general, the events covering a decomposed lifeline must all appear in the
part-LSC and must induce the same partial order. It is possible, however, that
the total order of events along a decomposed lifeline is relaxed in the cor-
responding part-LSC. For example, in the LSC ViewDetailed, the methods
changeView(state) and listenforInput() are unordered, while in the parent-
LSC MVC the corresponding methods are ordered (see Fig. 2).

We consider two possible design intentions. The designer may have intended
to indeed specify a total order between the events but could not express this
in the part-LSC due to the disjoint sets of covered lifelines. Alternatively, the
designer may have intended an explicit partial order but could not express it in
the parent-LSC because the events share a covered lifeline.

The S2A compiler produces a warning when this issue occurs in an LSC-
tree. In our current work and its implementation, we support the first design
intention by default. That is, in addition to compiling the composed annotated
implicit flat-LSC, each LSC-node in the tree is compiled separately. This allows
monitoring the order specified in any parent-LSC, and enforcing the total order
of execution (or reacting otherwise in case this order is violated).

The second design intention can be supported by allowing the user to use
the co-region operator, which relaxes the total order along a single lifeline (see
[3,7,19]). Our current implementation does not support this.

5.3 Identifying corresponding events

Our composition algorithm depends on the ability to decide whether two events
on different levels of the tree correspond. This assumption, however, is not ob-
vious. For example, a given method in a parent-LSC may have several legal



corresponding methods in the part-LSC. The use of conditions and symbolic
parameters may create similar complex situations. One may consider this as a
form of under-specification.

In practice, this problem can be partly addressed by requiring the designer
to statically mark corresponding events, or, as in our current implementation,
when more than one possibility exists, the composition algorithm could emit an
appropriate warning message and make a non-deterministic choice.

5.4 Hot/cold modalities in an LSC-tree

Recall that LSCs are modal scenarios. Each event has a temperature attribute:
cold events may eventually occur, while hot events must eventually occur (see [7,
10]). These modalities should also be considered in the semantics of LSC-trees.
The simplest approach is to require that corresponding events be given identical
temperatures. This constraint, however, is neither sufficient nor necessary. To see
that it is not sufficient consider a cold event added in the part-LSC in between
two hot events that have corresponding parent-LSC events (e.g., Fig. 2, the
cold condition vCtrl.isLegal (state) in the ViewDetailed part-LSC) . A cold
violation that occurs at this part-LSC when this cold event is enabled will always
result in a hot violation for the LSC-tree. Thus, in terms of trace languages
(see [10]), a run accepted by the composed flat-LSC may not be accepted by the
parent-LSC.

Therefore, to carry over the modal characteristics of the language from the
single LSC to the LSC-tree, we define the following rules, which ensure the
consistency between a part-LSC and its parent in terms of accepted runs:

R3 Hot events in a parent-LSC must remain hot in the part-LSC. (Cold events
in a parent-LSC can be either cold or hot in the part-LSC)

R4 For any event that appears in a part-LSC and does not appear in the parent-
LSC, if there is a next (minimal) event after it that has a corresponding hot
event in the parent-LSC, then the new event must be hot.

Roughly, these additional rules ensure that a finite trace inducing a hot cut in the
parent-LSC, will also induce a hot cut in the LSC-tree (that is, in the composed
flat-LSC). In [4] we show that they are indeed necessary for the soundness of
our work. Note that a check for these restrictions can be easily integrated into
our composition algorithm. Indeed, our implementation checks these conditions
and outputs an appropriate warning if necessary.

5.5 Minimal events in an LSC-tree

Recall that minimal events have a special role in LSC semantics: whenever a
minimal event of a chart occurs, an instance of the chart is created and becomes
active. Thus, every occurrence of a minimal event must be followed eventually by
a successful completion of the chart. Accordingly, whenever a minimal event in
the partial order induced by an LSC-tree (essentially, its corresponding composed
flat-LSC) occurs, an instance of the LSC-tree is created and becomes active.
Note, however, that if part-LSCs introduce new minimal events with respect
to their parent, a run accepted by the composed flat-LSC may not be accepted by



the parent-LSC. Depending on the context and usage of LSC-trees (e.g., formal
verification, testing, execution), this may or may not be considered problematic.
Thus, to ensure trace containment between an LSC-tree and its root-LSC, we
suggest restricting part-LSCs from introducing new minimal events:

R5 Every minimal event in a part-LSC must have a corresponding event in the
parent-LSC.

In [4] we give the formal definition of R5 and show that it is necessary for the
trace containment property. Still, we believe that deciding whether or not to
apply R5 should depend on the specific application.

5.6 Existential LSC-trees

The language of LSC defines two types of charts, universal and existential [7, 10].
We have concentrated on universal LSCs here, since they are the ones involved
in play-out. The lifeline decomposition extension, however, may be applied to
existential LSCs too (which can be used, e.g., for testing and monitoring), creat-
ing existential LSC-trees that specify, as usual, scenarios that must be satisfied
by at least one possible run of the system model. Existential LSCs do not use
the hot/cold modalities and their minimal events have no special semantic sig-
nificance. Hence, the basic rules defined in Sec. 3.1 (R1 and R2) suffice to ensure
the consistency of an existential LSC-tree. Specifically, the composition algo-
rithm checks the consistency of existential LSCs too and outputs a correspond-
ing existential flat-LSC. Thus, our implementation works for existential LSCs
and indeed checks the consistency of ‘classical’ UML2 sequence diagrams that
use part-decomposition with an existential interpretation and no modalities.

6 Example: Phone Book Application

We demonstrate the key features of our work using a small example of a Phone
Book application®. It has a simple user interface, allowing a user to add name/number
pairs to the phone book, search a number by name, etc. A detailed description
appears in [4]. The example UML model and code are available for download
from the S2A website [1].

Fig. 4 displays the class diagram of the application and the application’s
GUI. The application uses the MVC design pattern. The classes in the diagram
are implemented in Java. The code for the interactions between these classes,
however, was generated from a UML2 compliant LSC specification using the
S2A compiler.

The application uses three interfaces, IView, IController, and IModel, im-
plemented by the classes PhoneBookView, PhoneBookController, and PhoneBookModel
respectively. The generic interaction between the three interfaces is specified in
the MVCSetState LSC (Fig. 1) mentioned earlier. The behavior described in
MVCSetState is relevant for many applications that are based on this design
pattern; i.e, it is reusable. In order to use it in the phone book application we

3 The example was partly inspired by an IBM tutorial for Rational Software Architect
written by Tinny Ng, available from http://www.ibm. com/developerworks//.
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Fig. 4. The Phone Book application’s class diagram and GUI

apply the part-of decomposition mechanism to two lifelines: the IView lifeline
is decomposed into the ViewDetailed part-LSC, and the IModel lifeline is de-
composed into the ModelDetailed part-LSC (for additional LSCs used in the
application, see [4]).

The class PhoneBookView is responsible for the phone book’s GUI (Fig. 4),
consisting of two visible parts, the MessagePane (which is where the messages
for the user are displayed), and the InputPane (which is where the user en-
ters textual input). In addition, PhoneBookView has another (logical) part, the
ViewController, which coordinates between the GUI parts and is used as
a gateway object. The inner behavior of the PhoneBookView with respect to
MVCSetState is specified in the ViewDetailed part-LSC (Fig. 2).

The class PhoneBookModel is responsible for the phone book’s storage and
holds the current state of the application. Its inner behavior (with respect to
the MVCSetState scenario) is specified in the ModelDetiled LSC (Fig. 2), which
reveals the events that take place ‘inside’ the PhoneBookModel after its state is
changed. The specific behavior depends on the new state.

Note that while the MVCSetState LSC describes the behavior of general in-
terfaces that can be implemented in different applications, the decomposed part-
LSCs are application specific. This shows the power of symbolic instances [17]
and their implementation in S2A in creating reusable behavioral specifications.

Also note the flexibility and modularity that object-composition adds to the
scenario-based specification. For example, we have created another implementa-
tion of the IView interface, replacing the class PhoneBookView with a new class



PhoneBookExtendedView of enhanced GUI. The inner behavior of the latter (in
the context of this scenario!) is specified in a new LSC ExtendedViewDetailed
which by itself is not flat; i.e., it contains a lifeline that is decomposed into
another LSC, involving the new GUI elements. We were able to change the
application’s behavior by simply replacing a subtree in the original LSC-tree.

The complete example, including UML model and code is available from the
S2A website [1]. Additional details including a snippet from the generated code
appear in [4].

7 Related Work

The notion of lifeline decomposition appears already in [13] and in the UML2
standard [19], which includes syntactic restrictions for part-decomposition. These
were used as a basis for our basic syntactic rules.

STAIRS [12] is an approach for the compositional development of UML inter-
actions. Among the refinement relations formally defined in STAIRS is detailing,
which is based on lifeline decomposition.

Kriiger [15] defines various refinement relations between MSCs, one of which
is structural refinement, which relates object refinement in the system model
with MSC refinement. Kriiger suggests syntactic rules for the substitution of
one MSC with another, based on the object composition in the system model.

The Rhapsody tool [2] allows the user to define a ‘decomposed-as’ reference
from a lifeline to a sequence diagram. However, no syntactic rules are checked
by the tool.

Our work uses the part-decomposition mechanism presented in the standard
and defines similar syntactic restrictions for part-LSCs. We explicitly describe
and implement a composition algorithm that reduces an LSC-tree into a flat-
LSC and checks the consistency of the LSC-tree with respect to the basic rules
adopted from the standard (R1, R2) and the more advanced rules (R3, R4); we
not only handle a trace-based semantics but focus on the operational semantics
and the execution of the composed scenarios. Also, we handle both the classical
partial order semantics of sequence diagrams and the part-decomposition exten-
sion in the context of the more expressive must/may (hot/cold) modal semantics
of LSC. Most of our work is applicable to the aforementioned work too.

8 Discussion and Future Work

We have extended the LSC language to allow the specification and interpretation
of scenario hierarchies — trees of scenarios — based on an object composition
hierarchy in the underlying model. The present paper grew out of previous work
done in our group [3], in which LSC was extended with support for object com-
position by defining LSC-trees. Here we have decided to omit some of the more
complicated issues dealt with in [3].

Composition and inheritance are two complementary concepts in OOD. Par-
tial support for inheritance was introduced to LSC using symbolic instances
in [17], and was implemented in the Play-Engine tool [11]. In [9, 16] this was
explicitly extended to support class inheritance and interface implementation in



Java. The present paper integrates object composition into the scenario-based
context, and thus may be viewed as complementing this previous work.

While we focus on LSCs and their direct execution, the presented ideas are
applicable to UML2 sequence diagrams in general, and to their use throughout
the development cycle. Planned future work includes the development of design
methodologies that will take advantage of our work, the implementation of addi-
tional case studies using the S2A compiler, and related compiler optimizations.
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