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Measuring smells
Rafi Haddad1,2, Hadas Lapid1,2, David Harel2 and Noam Sobel1
Olfaction consists of a set of transforms from a physical space

of odorant molecules, through a neural space of information

processing, and into a perceptual space of smell. Elucidating

the rules governing these transforms depends on establishing

valid metrics for each of the three spaces. Here we first briefly

review the perceptual and neural spaces, and then concentrate

on the physical space of odorant molecules. We argue that the

lack of an agreed-upon odor metric poses a significant

obstacle toward understanding the neurobiology of olfaction,

and suggest two alternative odor metrics as possible solutions.
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What was required was a perfume penetrating enough to obscure
the bouquet of rutting goat, yet not so overpowering that is called
undue attention to itself : there was little to be gained by moving
from one extreme to another on the olfactory scale

Jitterbug Perfume
Tom Robbins

Introduction
An olfactory scale, complete with the notion of units (Alo-
bars), was a trivial assumption for Tom Robbins in Jitterbug
Perfume [1], yet it has eluded both the perfumers practicing

the creation of scents, and the scientists studying the

mechanisms of their perception. The notion of probing

neural coding in a sensory space not bound by a metric is

puzzling. Imagine studying the neurobiological mechan-

isms of color vision without knowing that the color orange is

a reflection of a stimulus at�620 nm, red at�700 nm, and

blue at �450 nm. Moreover, imagine studying such a

system without a predictive framework that allows you

to assume that orange looks more like red than like blue. . .
Such is the current plight of olfaction research.
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In studying sensory coding we are probing a transform

from an olfactory physicochemical space, through an

olfactory neural space, into an olfactory perceptual space.

Elucidating the rules of these transforms depends on

obtaining valid metrics for each of those spaces. Here

we will briefly comment on the two latter spaces, and then

concentrate on the notion of the olfactory physicochem-

ical metric space as a necessary component toward un-

derstanding olfactory coding.

Olfactory perceptual space
Perceptual spaces order odors such that distance in the

space confers similarity: odors near one another in the

spaces are expected to smell similar, and odorants distant

from one another are expected to smell dissimilar. Initial

efforts to develop a perceptual space assumed boundaries

defined by odor primaries, namely a small set of odors

from which all odor percepts could be composed [2–4].

This approach, however, failed to predict olfactory

experience, and as the number of potential primaries

grew, the strategy shifted from searching for individual

odor primaries to searching for perceptual axes, along

which these odorants may lay, and then use these axes to

define a space. In practice, this amounted to applying

various scaling methods to either similarity scores

obtained from odorant comparisons [5–9], or to verbal

descriptors applied to odorants [10–12,13��]. In contrast to

the intuition of many, such verbal measures obtained

from humans are highly reliable and stable across time

and location [9,14], and spaces derived from such descrip-

tors have been validated using the above-noted criteria

whereby distance in the space predicted perceptual sim-

ilarity. Such a perceptual space recently developed in our

lab can be actively navigated by going to the odor space at

www.weizmann.ac.il/neurobiology/worg. Whereas many

studies have converged to suggest that the principal axis

of these spaces, and hence of human olfactory perception,

is odor pleasantness [15–22], there has been only minimal

exploration of higher order axes within these perceptual

spaces.

Olfactory neural space
Olfactory neural spaces can be generated from neural

responses obtained by a variety of methods in a variety of

species [23–29,30�]. The most comprehensive of these

efforts to measure the neural response to odors has given

rise to an extensive database of odorant-induced activity,

as measured with [14C]-2-deoxyglucose on the surface of

the rat olfactory bulb [31]. This database can be navigated

at http://leonserver.bio.uci.edu/. The results of such

measurements can then be used to formulate an olfactory

space where, again, the concept of similarity serves as a
www.sciencedirect.com
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guiding principal: odorants that generate similar neural

responses are proximal within such a space, and odorants

that generate divergent neural responses are distant

within the space [32,33]. Ideally, such spaces are then

further linked to behavior or perception [34�,35–39].

Comparing the spaces
As previously noted, elucidating olfactory coding depends

on comparing three spaces: the physicochemical, neural,

and perceptual. Although there are various ways to

measure the physicochemical aspects of a molecule, none

of these have given rise to an agreed-upon metric that can

serve to compare one odorant molecule to another, or a

molecule to its ensuing neural activity and percept. Here

we will review several approaches to this problem, con-

centrating on what we think may be the more promising

toward an agreed physicochemical odor space.

Measuring odor quantity
Odor magnitude is odor concentration that can be con-

trolled to a reasonable extent by odorant-generating

devices known as olfactometers [40–42], and measured

with analytical instruments such as photoionization

detectors. The ability to control and measure odor con-

centration allowed uncovering the mostly simple relations

between the physical, neuronal, and perceptual in this

realm, whereby increases in concentration lead to

increases in firing rate at the receptor [43,44] and spatial

extent of activity in the bulb [45–47], as well as increases

in perceived intensity. The latter can be captured by a

simple logarithmic power function [48] with a slope of less

than 1; that is, successive increases in stimulus concen-

tration produce successively smaller increases in per-

ceived intensity. The degree of this compression (i.e.

the slope parameter) is odorant specific, reflecting the

odorants’ solubility in water [49]. Thus, the ability to

measure and control the olfactory stimuli gave rise to a

rule relating the physical property to neural representa-

tion, and to perception.

Measuring odor quality
Whereas the physicochemical properties that determine

odorant quantity are clear, the rules linking such proper-

ties to odor quality remain unknown. A first significant

attempt at solving this problem, also referred to as the

structure-to-odor response (SOR), was conducted by

Amoore [50]. Amoore identified benzaldehyde as a pro-

totypical molecule for an almond odor note, and then

successfully predicted the almondness of other molecules

on the basis of their three-dimensional structural fit to the

reference molecule. This initial study was followed by a

myriad of SOR efforts (comprehensively reviewed in

[51]). These studies identified several molecular proper-

ties, such as molecular weight, length, bond type, electron

donor, functional groups, and others [16,52], each of

which had a somewhat predictable influence on subsets

of odor qualities. However, all these models performed
www.sciencedirect.com
relatively poorly when novel odorants were evaluated

[53]. Consequently, in probing the neurobiology of olfac-

tion, researchers had gravitated toward using the practical

approach of selecting odorants that differed in only one

specific attribute (in most cases the number of carbon

atoms). Although this approach has proved to be valuable

to some extent [51], it is certainly inadequate for compar-

ing any two randomly selected odorants. To summarize,

to date there is no agreed-upon olfactory metric that

enables universal odorant comparison.

Generating an olfactory physicochemical
metric
To measure and control olfactory stimuli qualitatively we

need to identify the molecular features that govern the

biological interaction. However, given the vast number of

molecular features and the diversity of olfactory receptors

across species, it is improbable that one particular mol-

ecular feature will dominate this interaction. In other

words, it is improbable that a single physicochemical

feature will influence an olfactory perceptual or neural

axis in the way that the single physical features of wave-

length or frequency dominate the perceptual axes of color

and pitch in vision and audition. One possible bypass of

this problem is to represent each odorant by a very large

number of molecular descriptors, albeit captured in a

single value. Here we describe two separate efforts we

have made in this direction.

A physicochemical odor metric that predicts
olfactory perception
Single odorants may have many physicochemical fea-

tures, and one expects these features to present them-

selves at various probabilities within the world of

molecules that have a smell. These probabilities can

be captured and represented by applying methods of

statistical dimension-reduction to detailed molecular

descriptions of odorants. To this end, in Khan et al.
[13��] we used structural chemistry software (Dragon:

http://www.talete.mi.it) to obtain 1664 molecular descrip-

tors for more than 1500 odorants. We then applied prin-

cipal components analysis (PCA), a well-established

method for dimension-reduction that generates an

orthogonal basis set for the profile space, in which each

successive dimension has the maximal possible variance.

Hence, the first principal component (PC), that can be

considered as the first new feature or dimension, is the

‘best’ one-dimensional reflection of the data. Thus, PC1

of the 1664 molecular features of the �1500 odorants can

be used as a physicochemical metric for olfaction, where

every odorant can be assigned a PC1 score.

The striking outcome of this exercise was that it revealed

a significant correlation between the primary dimension

(PC1) of physicochemical space and the primary dimen-

sion of perceptual space, namely odorant pleasantness.

This correlation allowed us to predict the pleasantness of
Current Opinion in Neurobiology 2008, 18:438–444
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Figure 1

The correlation between the variance metric (first principle component of

molecular structure) and the estimated pleasantness of 90 different

odorants as assessed by 20 subjects (note that these are not the same

odorants used in Khan et al. [13��]).
odorants we had never smelled before (and that were not

part of the model-building set), on the basis of their

physicochemical structure alone (Figure 1). The main

significance of this was not in identifying pleasantness as

the primary dimension of olfactory perception (a notion

well established [15–22]), nor in the ability to predict

perceptual properties from structure (a feat previously

achieved [51], albeit rarely for novel odorants not part of

the model-building set), but rather in finding that the

primary dimension of perception had a privileged link to

PC1 of structure. In other words, the single optimal axis

for explaining the variance in the physicochemical data

was the best predictor of odor pleasantness. That this

perceptual dimension is the best correlate of the most

discriminating physicochemical measures suggests that,

as with other senses, the olfactory system has evolved to

exploit a fundamental regularity in the physical world.

A physicochemical odor metric that predicts
neural response patterns
The above PC1 of physicochemical space is a single axis.

However, it is multidimensional in the sense that 1664

known features contributed to it with known weights. In

other words, we can represent each odorant as a single

value reflecting its PC1 score, or we can represent each

odorant as a vector of 1664 values. When using the former

approach, the distance between two odorants is the

difference in PC1 values. When using the latter approach,

one can compute the distance between any two odorants

by the square root of the sum of squares of the differences

between the descriptors (Euclidean distance). To ask

whether such a metric can be used to predict neural
Current Opinion in Neurobiology 2008, 18:438–444
activity in the olfactory system, in Haddad et al. [54��]
we revisited nine previously published datasets and ana-

lyzed a novel dataset, for which we knew the odorants

used but did not know the neural response. These data-

sets consisted of different olfactory neurons (e.g. recep-

tors; glomeruli), different model systems (e.g. fly; rat),

different neuronal response measurement techniques

(e.g. imaging; electrical recording), and odorants varying

along different feature types (e.g. carbon chain-length;

functional group). We found that this multidimensional

metric generated predictions of neural activity that were

not only statistically significant, but were also significantly

better at accounting for neural responses than the particu-

lar metric used in each specific study (e.g. carbon chain-

length) (Figure 2). In other words, this approach enabled

us to use odorant structure in order to predict odorant-

induced neural activity in nonhuman animals. Thus, it

provided a generic method for comparing any number of

structurally diverse odorants without predetermining the

particular features important for each species. Moreover,

the applicability of this metric across the different species

tested, suggests that odor space is conserved across organ-

isms [55��].

The relation between the two proposed
physicochemical metrics
We have presented two metrics; both on the basis of

representing odorants using a very large number of mol-

ecular descriptors. The first metric, on the basis of the first

PC of these descriptors (the axis best explaining their

variance), enabled the prediction of perceptual attributes

(pleasantness). We will call this the variance metric. The

second metric, on the basis of Euclidean distances between

odorants in the 1664 physicochemical space, enabled the

prediction of odorant-induced neuronal response patterns.

We will call this the distance metric. To probe the relation

between these two metrics, we tested whether the variance

metric that predicted perception in humans could similarly

predict neural activity in other animals. In four out of eight

datasets tested, we found a significant correlation between

the variance metric and PC1 of neuronal response. That no

correlation was found in the remaining four datasets may be

explained by the relatively small size of these datasets

combined with the sensitivity of the PCA method to noise.

In turn, in cases where the number of neurons sampled or

the noisiness of the measuring process renders the variance

metric inaccurate, the distance metric that is on the basis of

the full 1664-representation is less likely to err. Consistent

with this, the distance metric indeed predicted neural

response distances in all eight datasets we analyzed. Con-

versely, one can hypothesize a case where the distance

metric will be less accurate than the variance metric. For

example, if the direction of maximal variability of a set of

odorants in the physicochemical space and in the percep-

tual space is similar yet the internal distance between these

odorants in the two spaces is different (see Figure 3 for an

illustration). This situation may be consistent with a
www.sciencedirect.com
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Figure 2

Correlation plots of four unrelated datasets [78,79��,80,81]. Each point in the graphs represents the distances between two odorants in both the neural

space (difference in neural activity) and the distance metric (the metric used is the optimized metric described in Haddad et al. [54��]).
remapping from structural to perceptual that may occur at a

the cortical level [56�,57].

Electronic measurements of odors
A hidden assumption of the above-described physico-

chemical spaces is that they accept the general framework

regarding olfactory transduction, referred to as the odo-

tope approach [58–60]. Specifically, they assume that

different olfactory receptors have different affinities to

specific molecular structural physicochemical properties,

and that the differential activation of these receptors

gives rise to a spatiotemporal pattern of activity that

reflects the odor. Despite a preponderance of evidence

favoring this general framework, an alternative frame-

work suggesting that olfactory receptors measure the

molecular vibrational frequencies of molecules has been

considered [61–63]. In the context of an olfactory metric,
www.sciencedirect.com
this vibrational approach is of course very appealing,

because in its simplest form it would provide a single

axis (vibrational frequency) that could serve to predict

both perception and neural activity in the olfactory sys-

tem. Some psychophysical tests of this theory, however,

fail to support it [64]. Full consideration of this issue is

beyond the scope of this manuscript, but regardless of

how olfactory receptors do their business, this issue raises

the possibility of generating an olfactory metric using an

external odor measurement device, regardless of the

device’s mode of action. For example, we can use the

values reported by mass spectrography (MS), gas chroma-

tography (GC), IR spectra or Raman spectra, and most

recently, electronic noses (eNose).

eNoses are analytic devices that are playing an increasing

role as general-purpose odor analyzers [65]. eNoses are
Current Opinion in Neurobiology 2008, 18:438–444
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Figure 3

An example for a case where the distance metric will be less accurate

than the variance metric. The blue dots are four odorants plotted in 2D

(e.g. perceptual space). The red dots are the same odorants in a different

2D representation (e.g. neuronal space), where two odorants have

shifted considerably (dots 2 and 3). The axis of maximum variability of

the odorants in the two representations remains similar (the main

diagonal). Thus, the variance metric will provide a good fit within both

spaces. However, the pair wise distances between odorants in the two

representations differ considerably. Thus, the distance metric may fail to

find a relation in one of the spaces.
cheaper than GCs, and are easier to use. The main

component of an eNose is an array of nonspecific chemi-

cal sensors. An analyte stimulates many of the sensors in

the array and elicits a characteristic response pattern. The

sensors inside eNoses can be made of a variety of tech-

nologies, but in all cases a certain physical property is

measured and a set of signals is generated. The stages of

the recognition process are similar to those of biological

olfaction, where a sensor responds to more than one

odorant and one odorant activates more than one sensor.

Together, the set of activated sensors and their signals

characterize the odor. Different eNoses can be mapped

onto one another [66] and used for odor classification [67–
69] including classification of odor mixtures [70,71].

Initial efforts have been made to link eNose measurements

to olfactory perception [72] and activity in olfactory re-

ceptor neurons [73]. If these links are substantiated, an

eNose odor space can serve as a key tool to elucidating

coding in olfaction [74]. This will hold true only if research-

ers agree on a particular eNose and a particular analysis, in

order to allow comparisons across time and location.

Conclusions
Our approach to generating and testing olfactory spaces

was in fact quite fashionable in the late 1960s and

early 1970s [8,16,19,75,76]. However, the limited
Current Opinion in Neurobiology 2008, 18:438–444
computational powers commonly available at that time

limited the scope of these efforts. For example, the efforts

to generate physichochemical spaces typically used less

than 20 molecular descriptors, and the efforts to generate

perceptual spaces typically used only a few tens of odor-

ants. The limited applicability of such efforts rendered

this approach obsolete. The current availability of struc-

tural chemistry software offering thousands of molecular

descriptors, combined with modern computational

approaches such as PCA, and modern computing,

together have allowed us to generate spaces consisting

of thousands of odorants each described by thousands of

molecular physicochemical descriptors and hundreds of

verbal perceptual descriptors. These efforts have gener-

ated meaningful spaces, capable of predicting perception

[13��], and neural responses [54��] to novel odorants. It is

noteworthy that the increase in number of physicochem-

ical descriptors represents more than merely an increase

in power, but rather a shift toward describing the relevant

space much in the way the mammalian olfactory system

itself has tackled this task, with more than a thousand

receptor types [77].

To conclude, Galileo said: ‘Count what is countable,

measure what is measurable. What is not measurable,

make measurable’. Here we have highlighted two pro-

posed odor metrics. Whether it is these metrics, some

refined version of them, or some new metric, that end up

deemed representative of the world of odor, the avail-

ability of such a metric remains a crucial must if we are to

elucidate the neurobiology of olfaction.
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