
Steps Towards Scenario-Based Programming

with a Natural Language Interface

Michal Gordon and David Harel

Weizmann Institute of Science, Rehovot Israel

Abstract. Programming, i.e., the act of creating a runnable artifact
applicable to multiple inputs/tasks, is an art that requires substantial
knowledge of programming languages and development techniques. As
the use of software is becoming far more prevalent in all aspects of life,
programming has changed and the need to program has become relevant
to a much broader community. In the interest of broadening the pool of
potential programmers, we believe that a natural language interface to
an intuitive programming language may have a major role to play. In
this paper, we discuss recent work on carrying out scenario-based pro-
gramming directly in a controlled natural language, and sketch possible
future directions.

1 Introduction

Imagine a future home, with a slew of smart home devices installed, such that
the various parts of the controlling software can communicate. Now imagine the
owners have a new idea about the desired behavior of the system, something
that none of the vendors had considered, and which is therefore not a new
configuration. They would like the shades to be lowered, whenever the TV is
turned on and the light outside is too bright. However, if the kids are home, they
do not want to dim the living room. Will they have to contact the professional
designers of their smart home, or the vendors? We hope not. In fact, we would
like to believe that in the future more people will be able to program, or enhance
existing programs by adding requirements, on their own. In fact, throughout
the paper, when we refer to the “programmer”, we mean the person (or team
of people) who creates a program, not necessarily a professional programmer in
the usual sense of the word, perhaps more like a system’s engineer.

The art of programming is already available to a broad community, with
the open architecture of mobile phone applications, languages and toolkits that
let children program games, robots and more [27,37], and methods that allow
programming by demonstration and end-user programming [7]. Here we discuss
an approach, whereby, the computer is able to derive an executable program
directly from the human’s language, or something very close thereto.

Computerized understanding of natural language is an extremely compli-
cated and broad problem, and has been studied widely (see, e.g., [41,38,7]). It is
a central facet of intelligence, and its difficulty is thus closely related to tackling

the Turing test. We do not attempt to solve this problem, nor is it the focus
of our discussion. Rather, we concentrate on programming in controlled natural

language (PiCNL). Subsets of natural language have been used to allow intuitive
yet formal interfaces for various tasks. They are often called simplified or con-

trolled language [1,7]. We review these in Section 2.1. Our main question here
is whether we can use controlled language to ‘explain’ to the computer what
we want our system to do under all possible circumstances (very much like the
way we would have explained it to a person), and cause it to generate a fully
executable program.

The reader may claim that we can already talk to computers: For example, we
can ask our smart-phone, to call a particular friend, schedule dinner and make a
two-person reservation in our favorite restaurant. These activities, however, are
not programming. Such natural language interactions are often called command

and control [38,12], and can be carried out using voice or natural text interfaces.
In Section 2 we discuss the quest for programming in natural language, con-

trolled natural language and various interfaces that we distinguish from program-
ming. In Section 3 we review several efforts at programming in natural language.
Finally, in Section 4 we discuss in some detail a relatively new scenario-based
programming paradigm, called behavioral programming [22], and show how we
use natural language to program reactive systems, and how it can be enriched
with GUI-based play-in [21].

2 The Quest for Programming in Natural Language

The concept of programming in controlled natural language, i.e., PiCNL, has
been suggested in the past, however it has not become prevalent as a program-
ming method. In this section we discuss controlled natural language, we define
programming in natural language, and distinguish PiCNL from various natu-
ral language interfaces. We review how PiCNL has developed over the years,
including the obstacles encountered and proposed solutions.

The simplest form of using natural language with a computer is dictation.
The text can be entered to the computer by typing or by speech, and all the
computer does is the parsing into words and sentences. There is no requirement
that the text be analyzed or understood in any way. Thus, if typing is used, this
task is trivial. If the text is spoken we get into the realm of speech recognition,
which we will not discuss here. For our purposes in this paper, entering the text
can be done either way, depending on the preference of the user.

2.1 Using Controlled Natural Language

Controlled natural language (CNL) is created by restricting the grammar of a
natural language to reduce ambiguity and complexity. It can be made more
formal than unrestricted NL, well-structured and better amenable to semantics,
since due to its restrictions, relevant constructs can be semantically annotated.
CNLs enjoy some of the advantages of natural language; they are easy to use and

understand, have a quick learning curve, and are close to the application domain.
They also avoid much of the ambiguity and vagueness of natural language, and
thus also enjoy some of the advantages of formal languages. However, their use
is mostly in the technical arena. You probably wouldn’t want to try to write
“controlled poetry”....

Controlled languages can be learned, and then easily written, with the aid
of appropriate editors and parsers. Due to their relative simplicity, they support
automation of tasks, and are used in automatic translation, formal document
writing, reasoning, robot-controllers, specifications, and ontologies [1,11,29].

Simplified English, as controlled English was originally called, was developed
for the aerospace industry’s maintenance manuals. It was also referred to as plain
language or in its trademarked version as simplified technical English (STE) [1].
The idea was to restrict the lengths of sentences and paragraphs, avoid slang
and jargon, use active voice, etc. The STE dictionary includes approved words
that can be used only according to their specific meaning. For example, the verb
close can be used in the sense of “close a door” but not as the adjective, “stand
close to the landing gear”. An alternative word is often suggested — here it was
near, as in “stand near the landing gear”.

2.2 Programming vs. Command & Control

A more advanced form of using natural language with a computer involves the
variety of operations that employ familiar natural language for controlling or
manipulating systems. These activities fall under the general term of command

& control, or natural language interactions ; see, e.g., [38].
Natural language is used for search, for personal assistance, and in general

as an interface for commanding other applications [25,38]. A user can say to her
smart-phone “call Martin Jones”. The word “call” will be recognized semanti-
cally, the contacts will be searched for the person in question, and if successful,
the command will be performed, i.e., the call will be placed. Command & control
systems can retrieve answers that may be given in natural language, or some-
times in more appropriate forms. For example, a user can ask a mobile phone
“how far am I from the Fairview Green restaurant?”, and the answer may be
given as “1.7 miles”. Smarter applications can take into account the moving
speed of the mobile phone and provide a more relevant answer, like “a fifteen
minute walk” or “a three minute drive”.

Natural language has been used as a conversational user interface to describe
and manipulate visualizations of data [39]. Thus, in a specific setting the user
can ask (taken verbatim from [39]): “What is the correlation between the depth
and water’s temperature”, and receive a graph plotting the two. He/she can then
add a command “please color by pH”, and obtain a color code layered atop the
graph. This kind of interface is more advanced and permits complex connections
between various commands.

Although the interfaces we described so far are quite elaborate, none of them
is considered programming. In programming, the directions/recipes are to be
applicable in the future to many inputs, most often to infinitely many of them.

Thus, one may say that a central characteristic of a program (as opposed to a
command & control system) is its being reusable when different inputs arrive
from the environment.

The difference is similar to that between giving one-time directions for some-
one to do something, and teaching that person a skill to use when applicable.
For example, showing a child how to wash some specific dishes is different from
explaining when and how you decide whether to do the dishes, and how to do
so in general. In the latter case, the child will know how to handle a sink full
of dishes, an empty sink, or a sink with a single dish. Untreated cases, such as
a blocked sink, would require additional directions, or an extension of the “pro-
gram”. Similarly, command & control is telling the car radio to turn on and to
tune to channel Z-100. A program is when I tell the car radio that whenever

I turn on the radio and switch to Z-100, if the channel is airing conversation,
rather than music for more than one full minute, switch to another channel.

Although programming has to do with multiple runs of the same program,
this is not the same as creating recurrent behavior. Anyone can easily set a
recurrent event in an electronic calendar, like a family dinner every Saturday
night. Indeed, advance interfaces, such as Google Calendar’s Quick Add feature,
permit setting such recurrent scheduling in natural language. Entering “Family
dinner every Saturday” will set the recurring event, with a weekly reminder.
However, this is not programming, as it does not depend on varying inputs.

In programming there are multiple different inputs to the same general set
of commands and instructions, and the program can deal with all of them, even
those that have not been considered explicitly by the programmer. Programming
is not something that can be achieved merely by using different menus, or by
configuring the system. An example is “whenever it rains, and my calendar shows
a soccer game the same day, cancel the event and notify all participants”. It is
not only the addition of the notification action that makes this programming,
but the constant monitoring of rain as an external event. This is a lot more than
a command. It is a program rule; a kind of program snippet. And this raises the
harder question of how to deal with multiple program snippets, which constitute
a full program. For example, how to manage several of these program-rules that
interact, and perhaps even contradict one another? We discuss this further in
Section 4.

2.3 Programming in Natural Language

Natural language has been used in software engineering for tasks that are highly
related to programming. For example, some database queries can be specified by
natural language and may be considered a type of programming [42]. Viewing
and displaying data can be done with natural language, e.g., with the Articulate
system [39]. Natural language has also been used in computer aided software
engineering (CASE) tools, to help the process of modeling or creating software
engineering artifacts. For example, in [13], natural language is used to help create
better use cases for system development, and other papers produce other UML
documents, etc.

Methods, that use statistical NLP, combine learning techniques with NLP
to analyze natural language and automatically create partial code. For example,
transforming English specifications of input file format (with additional infor-
mation from sample input files) to automatically generate C++ code for input
parsers [30], or analyzing API documents to infer API library specifications [43].

As to full programming in natural language, Dijkstra claimed in 1978 [10]:

“In order to make machines significantly easier to use, it has been proposed
(to try) to design machines that we could instruct in our native tongues. This
would, admittedly, make the machines much more complicated, but, it was
argued, by letting the machine carry a larger share of the burden, life would
become easier for us. It sounds sensible provided you blame the obligation to
use a formal symbolism as the source of your difficulties. But is the argument
valid? I doubt. [...] Instead of regarding the obligation to use formal symbols
as a burden, we should regard the convenience of using them as a privilege:
thanks to them, schoolchildren can learn to do what in earlier days only genius
could achieve.”

In our opinion, programming with controlled natural language, should be also
viewed as a privilege. Those willing to express their system requirements in a
CNL and disambiguate their input to the computer when it is not clear enough,
can gain the benefits of instantly executable programs.

A 2004 study by Liu and Lieberman [31] discussed how natural language de-
scriptions could be used to make human-machine communications more natural.
Those authors state that “several developments might now make programming
in natural language feasible”.

Sloppy programming [7] initially used unstructured text, yet later found that
the unstructured approach caused too many false interpretations. Sloppy pro-
gramming uses a specific grammar, based on an existing set of scripts, to allow
the user to enter something simple and natural. The essence of sloppy program-
ming is to interpret and make sense of the ’sloppy’ input. Controlled natural
language is similar, in that it is simple and natural enough, yet it restricts the
grammar, and requires the user to learn the restrictions from examples and by
feedback.

Chickenfoot and CoScripter [7] allow users to write web-customization scripts
using simplified Java script commands. They use a domain specific vocabulary
to allow performing various programming tasks in the web domain. End-user
programming and scenario-based programming are similar in that they aim to
create a more natural means of authoring behavioral fragments.

In [34], the authors show how some of the more subtle aspects of procedural
programming — steps and loops — can be handled effectively, and express their
believe that advances in natural language processing can contribute to the task
of natural language programming, for descriptive and procedural programming
paradigms.

Indeed, one large community that can benefit from PiCNL are children, too
young to acquire formal education of programming. Several advances in natural
interfaces to programming for children have been made, most notably with lan-
guages like Scratch [37], which enable children to formally describe their system

requirements via visual blocks that help them overcome syntax problems. Scratch
is available in multiple languages, and allows children the feel of programming
naturally. Although, not precisely PiCNL, Scratch allows formal programming
with blocks containing natural English text.

In [10], Dijkstra also remarks that

“there is a sharp decline in people’s mastery of their own language [...], and
many people are no longer able to use their own native tongues effectively.”

He says that this “New Illiteracy”

“should discourage those believers in natural language programming that lack
the technical insight needed to predict its failure.”

Despite Dijkstra’s gloomy statements, we feel that the time is ripe for major
efforts to program in natural language.⋆⋆ Dijkstra’s pessimism can be overcome
by a careful choice of the limited CNL to be used, and the appropriate program-
ming paradigm into which it will be translated. PiCNL will be suitable only for
those willing to master CNL, disambiguate problems, and understand how faults
may occur. In Section 4, we shall discuss how such a paradigm can reduce some
of the technicalities that make natural language programming difficult.

3 Approaches to Programming in Natural Language

Several research efforts have led to languages that can create executable code
from a CNL. Each one defines its own CNL style and translates the CNL into
a different notation, each with its own merits and areas of applicability. We
describe some of these, focusing not on methods that support computing, but
rather on those that create executable artifacts.

In [6], use-case templates, written a CNL, are translated into process algebra

(in the CSP notation). This method was implemented in a Microsoft WordTM

plug-in that checks adherence of use-case specifications to a CNL grammar and
translates them into process algebra. It then allows carrying out system property
verification. This technique supports user-view use-cases, which can be used to
specify user operation and expected system responses, and component-view use-
cases, with one component that invokes an action and another that provides
the service. After automatic translation to the CSP notation, a model checker
is used to check refinement between user and component views.

The CNL in [6] is used to write imperative sentences, which describe actor
actions, and affirmative sentences, which describe system characteristics. Re-
quirements are written in tabular form, in numbered steps. For the user-view
use-case, each step includes a user action, a system state, and the system’s re-
sponse. The CNL reflects the selected domain. Besides automatically generating

⋆⋆ The second-listed author’s work on visual languages has given him an earlier reason
to believe that Dijkstra’s pessimism need not always be taken too seriously.

formal models, the use of the CNL in [6] prevents the introduction of ambigu-
ous formatted sentences in the use-case specification, thus helping to increase
document quality.

Attempto controlled english (ACE) [11] is an example of a CNL that was
designed to serve as a knowledge representation language, and its output is fully
executable. ACE accepts a sequence of anaphorically interrelated sentences. This
means that references to objects mentioned in previous sentences are acceptable,
creating a coherent text of linked sentences. These can include coordination,
subordination, quantification and negation. One can describe something that
is the case — a fact, an event, a state. The interpretation of the sentences is
deterministic, and a paraphrase reflects the interpretation to the programmer.

The lexicon can be modified by the programmer for domain specific content.
Questions can be written in CNL and are translated into Prolog queries, which
are then answered by logical inference. The knowledge can be executed for sim-
ulation or prototyping. Execution involves adding statements that would start
the simulation, e.g., “customer1 is a customer”, “card1 is a card”, etc.

ACE is used in a variety of applications: as an NL interface in database query
languages and robot controllers, in planning medical reports, for the semantic
web (translation to and from web-languages) for protein ontologies, and as a
reasoner that performs deductions [29].

Two-level-grammar (TLG) [5], is an object-oriented requirements specifica-
tion language with a natural language style. It is sufficiently formal to allow
automatic transformations into UML class diagrams and into object-oriented
code, such as Java. The methods are described in natural language as a se-
quence of behaviors, allowing services and functions to be referred to and called
upon. This formalism allows one to describe object-oriented behavior naturally,
and each function definition is composed of logical rules executed in the order
they are given.

TLG is natural-language-like in style, but is sufficiently formal to be auto-
matically translated into object-oriented formal specifications.

In spoken Java [3], programmers can describe their Java program orally in
natural language. The method was developed for programmers who suffer from
repetitive strain injuries, and therefore the natural language is very similar to
Java and programming knowledge is a prerequisite.

The efforts in references [5,11], are general. However, domain specific appli-
cations also exist; e.g., for robot controllers. In [28] linear temporal logic mis-

sion planning toolkit (LTLMoP) is used for writing specifications in structured
English. The language is used to specify safety and liveness properties. The
implementation is through a grammar that translates into LTL.

The MOOIDE system [7], based on the Metaphor system tests the idea of
describing behavior with stories in the domain of a virtual reality storytelling
game. The game itself is a reactive system. The interface in MOOIDE takes
the form of a dialog in natural language about a growing set of terms that
are added to the world, and it uses common sense semantics. The MOOIDE

system, although domain specific, has many elements similar to the scenario-
based programming approach that we describe in the next section.

4 Behavioral Programming in Controlled Natural

Language

Behavioral programming (BP) is a recently proposed programming paradigm in
which system behavior is described in scenarios, similar to the way people natu-
rally specify behavior [22]. This naturalness appears to be a crucial component of
the quest for liberating programming [19]. We have developed a natural language
input interface for BP [14], in which scenarios are described with CNL and are
transformed automatically into a BP formalism called live sequence charts (LSC)
[9]. These, in turn can be executed, using play-out [20], planning algorithms or
synthesis [32].

We focus on two of the main concepts underlying behavioral programming,
namely, inter-object programming and unification.

In the inter-object approach a behavior is usually described as a “story” that
considers the operations that occur between objects, rather than focusing on
the operations within objects, as is the case in the intra-object style of object-
oriented programming. Although in both cases each object has unique operations
and properties, in intra-object behavior the programming process focuses on the
objects, whereas in inter-object programming, the focus is on the interaction
between the objects. Shifting the focus to the between-objects behavior, allows
for a far more natural and “liberated” style of programming. See [19,21].

Here are examples of inter-object specifications: “If the alarm of a watch is
set, then whenever the current time reaches the alarm time, the beeper turns
on”. “Whenever the beeper is on, it beeps every two seconds”.

These scenarios may be easy to describe and follow, but they cannot be ex-
ecuted together as a single system, unless the idea of unification is introduced.
Unification means that events of the same type between the same objects, rep-
resent the same event. Since in the specifier’s mind the operation of sending a
text message (which is also an event) is the same in both scenarios, in order to
execute what the programmer meant, these two events should be unified.

4.1 Live sequence charts

Live sequence charts, constitute a visual formalism for specifying multi-modal
scenarios. An LSC can assert mandatory behavior (termed “hot”), possible be-
havior (termed “cold”), as well as forbidden behaviors and their combinations.
The LSC language [9,21] extends message sequence charts (MSC) [26] (termed
sequence diagrams in UML [40]). In an LSC, objects are represented by vertical
lines, called lifelines, and messages between objects are represented by horizon-
tal arrows between objects. Time advances along the vertical axis and messages
entail an obvious partial ordering.

A cold monitored event (dashed blue arrows) is monitored, and if it occurs
the next event in the partial order should be monitored or executed. A hot
executed event (solid red arrows) means that the system should perform the
event eventually. The LSC language also includes conditions, assertions, loops,
switch cases, time, symbolic instances, and several additional constructs. Figure
1 shows a typical LSC.

A set of LSCs can be executed using the play-out mechanism [21], which mon-
itors at all times what must be done, what may be done and what is forbidden,
and proceeds accordingly. This results in a full execution of the LSC specification
using a näıve strategy, considering the current state and progressing by choosing
arbitrarily from all possible next events to be triggered.

Since different fragmented scenarios are combined into a single functional
executable system, there is a risk of contradictory requirements that can produce
violations during execution.

Contradictions can subtly, arise from multiple scenarios. Finding an execution
order that makes it possible to execute without violations requires considering
future states when choosing an event. Techniques that use model-checking, plan-
ning and synthesis, have been developed, to look ahead and choose an execution
order in a smarter fashion [18,32]. Synthesis can often be used to verify that the
specification is valid or to exhibit inconsistencies [33].

4.2 Natural language play-in

In [14], we describe a natural language interface to the LSC formalism, named
NL-play-in. The programmer can write in a controlled English, using terms, e.g.,
nouns, verbs, adjectives, that are relevant to the system being described, and
reusing them in further requirements to allow unification during execution. The
terms used become part of a growing system model that includes the system’s
objects, and their methods and properties.

The interface consists of a context-free grammar (CFG) bottom-up parser
and a dialog system that help the programmer create both a system model and
a set of LSC scenarios. The resulting system is fully executable. The controlled
natural language accepts declarative requirement sentences. The parser includes
semantic information for creating the LSCs, adding loops and conditions, and
specifying which events should be monitored and which should be executed. The
grammar is general: it analyzes all terms with the help of the WordNet dictionary
[35], in order to determine whether a word is a noun, a verb, or an adjective and
whether it is meant as an object, a method or a persistent property.

When a sentence is analyzed, terms that are not completely understood by
the system are disambiguated using a quick-fix interface to the programmer.
The word in question is marked with a squiggly line, and hovering over it with
the mouse provides the programmer with additional information, and a list of
possible solutions. Disambiguation includes resolving grammar problems and
semantic issues.

Grammar problems include incomplete sentences, sentences without a verb,
or sentences that are not part of the grammar. Semantic problems include

phrases that can be either a target object or a parameter for a method. Semantic
problems are more prevalent at early stages. As the requirements accumulate,
and the programmer resolves problems, the information becomes part of the
model and is used to resolve further ambiguities automatically.

The process of developing a system and its requirements is intermixed. Some-
times the programmer knows what the system should do, and only then considers
what the system model will be, while often it is the other way around. The pro-
cess continues throughout development, adding requirements and extending the
model. Our method supports both development directions: creating the model
as it becomes necessary when adding requirements, or adding the requirements
for an existing model.

In one development direction, when a requirement is parsed, non-existing
model parts, e.g., objects, classes, methods, and properties, are verified with the
programmer as necessary, and the model is augmented with new model parts.
Any addition of model parts is explicit, to verify that new parts are introduced
only when they cannot be unified with existing parts. We call this process model

disambiguation. Only after the model is complete, a new LSC is created that
captures the requirement. Viewing the LSC allows the programmer to verify
that the requirement was parsed correctly. Finally, the system created can be
executed at any stage with the existing model and the LSCs.

In the other development direction, when a system model exists, it is possible
for the programmer to specify requirements, and any references to the model
parts are immediately understood, and require no additional user interaction.
Many times the model is actually a non-behaving graphical user interface (GUI)
of the final system. In this case, the model will be created automatically from
the GUI objects.

When objects and methods are created automatically, they can be later re-
placed by graphical entities, or augmented with low-level code. For example, a
button object may have a method click that is referenced in a scenario. The
same click can later be implemented, to show and accept clicks from the user.

For a thorough guide we refer the reader to [14], in which an example
of a wristwatch is described (also available in http://www.weizmann.ac.il/

mediawiki/playgo/index.php/Wristwatch_Example).

The following CNL demonstrates the style of programming with NL-play-in:

When the time value changes, if the time value equals the alarm value
and the alarm state is enabled, the beeper turns on.
When the beeper state changes to on, as long as the beeper state is on and
two seconds elapse, the beeper beeps, the display mode may not change.
When the user clicks any button, the beeper turns to off.

The fully executable diagrams that result automatically from these NL re-
quirements are shown in Figures 1, 3 and 2.

http://www.weizmann.ac.il/mediawiki/playgo/index.php/Wristwatch_Example
http://www.weizmann.ac.il/mediawiki/playgo/index.php/Wristwatch_Example

Fig. 1. A simple LSC created for the sentence “when the time value changes, if the
time value equals the alarm value and the alarm state is enabled, the beeper turns on”.

Fig. 2. The LSC created for the requirement “When the user clicks any button, the
beeper turns to off.”

Fig. 3. The LSC created for the requirement “When the beeper state changes to on,
as long as the beeper state is on and two seconds elapse, the beeper beeps, the display
mode may not change.”

It is possible to extend the model disambiguation to suggest connections
between different terms according to word similarity or synonyms. For example,
if “opening the radio”, and “unlocking the radio”, both appear, the parser can
suggest to the programmer to make the connection between the methods, causing
unification between these terms during execution.

4.3 Show & tell

In [15] we describe an extension of the NL-play-in interface for LSCs, which com-
bines it with the play-in method [17], by interweaving CNL and user interaction.
In play-in, the programmer specifies scenarios by playing-them-in directly from
a graphical user interface (GUI) of the system being developed, similar to pro-
gramming by demonstration [8]. Show & tell means that the programmer can
combine writing in natural language with actual showing. Some parts of a sce-
nario, for example, the when-then, or the if, are easier to write than to show,
while other parts, like the click of a button, are easier to show. Show & tell
also helps avoid typos and the necessity to specify the names or the operations
with their exact terms.

While play-in is similar to programming by demonstration [8], show & tell
is similar to the put-that-there method [4], and other multi-modal user inter-
faces, see http://www.wisdom.weizmann.ac.il/~michalk/Projects/SaT/ for
a demo. Experiments we have carried out [16] show that when the interface is
a mouse and keyboard, show & tell combinations may not be more convenient
for people who type quickly. Our experiments also expose the learnability of the
NL-play-in approach.

4.4 Limitations and Future Work

NL-play-in meant for the high-level programming of reactive systems — dy-
namic systems that respond to events, depending on their current state [23].
The method, as part of the BP paradigm, supports incremental development
of systems by continuously adding requirements. NL-play-in can help bridge
the gap between the requirement engineering process and the development of
the final system, and allow a shorter life cycle. NL-play-in is suitable for inter-
weaving fragmented requirements, including negative requirements, and can be
combined with other programming styles, e.g., statecharts [2]. The systems we
have already created include a wristwatch, a chess game, a baby monitor, and
parts of an ATM machine.

The programmer’s identity can range from the professional to the end-user,
and the vocabulary and level-of-detail can change according to the programmer’s
needs. When programming the behavior of a robot, pertaining to where it heads,
what it sees, or what directions it receives, the terms will be different from the
case of programming at the level of the robot moving body parts.

For modifying existing systems, e.g., augmenting existing behavior with ad-
ditional requirements or forbidden behaviors, the programmer should be familiar

http://www.wisdom.weizmann.ac.il/~michalk/Projects/SaT/

with the details of the model. However, even if the model is less known, show &
tell can help the programmer refer directly to relevant objects and terms.

The natural language interface can be improved substantially, with, e.g.,
reference resolutions, verbal shortcuts and the use of synonyms, all of which can
make the writing more friendly, as is the case with ACE [11] or MOOIDE [7].

Another challenge in using natural language for programming is its assimila-
tion. For non-programmers this requires developing teaching methods. The BPJ
library [22] lets expert programmers use BP concepts in their own programming
environment, supporting a gradual transition from procedural programming to
BP and later to natural language programming.

When broader groups of people will program, software engineering activities
will probably broaden too, and will require better visualization and navigation
methods; some research on these approaches in the content of LSCs has already
started [24], and this work can be adopted to the NL interface too.

Another consideration is requirement coverage. The one responsibility of the
programmer is to enter the requirements. However, since requirements need to
cover multiple possibilities and many system states, he may require help in con-
sidering all possibilities. Such support could include supplying many views that
will help him understand the system. For example, complex systems may benefit
from requirements analysis by other formats than natural language, e.g. tabular
visualization, that will help the programmer see the bigger picture and uncover
gaps in the specification. Precise documentation in software engineering [36] be-
comes extremely relevant when programming in natural language because in a
way the documentation becomes the final program.

It is not only the understanding of how to program, but also the need to
program that is still elusive. What will new programmers want to program? Prior
to the introduction of smartphones, few people thought of creating their own
applications. However, at present there is an astonishing variety of applications,
and their number is growing rapidly. We hypothesize that as technology comes
to play a much larger role in people’s lives, the need to program or re-program
such systems will increase dramatically. This, in fact, constitutes a major part
of the motivation for PiCNL.

5 Acknowledgments

The research was supported in part by the John von Neumann Minerva Center
for the Development of Reactive Systems at the Weizmann Institute of Science,
and by an Advanced Research Grant to DH from the European Research Council
(ERC) under the European Community’s FP7 Programme.

References

1. AECMA Official Site. http://www.simplifiedenglish-
aecma.org/Simplified English.htm.

2. D. Barak, D. Harel, and R. Marelly. InterPlay: Horizontal Scale-Up and Transition
to Design in Scenario-Based Programming. IEEE Trans. Soft. Eng., 32(7):467–485,
2006.

3. A. Begel and S. Graham. Spoken programs. In Proc. IEEE Symp. on Visual
Languages and Human-Centric Computing, (VL/HCC’05), pages 99–106, 2005.

4. R. A. Bolt. “Put-that-there”: Voice and Gesture at the Graphics Interface. SIG-
GRAPH Comput. Graph., 14(3):262–270, 1980.

5. B. R. Bryant and B.-S. Lee. Two-Level Grammar as an Object-Oriented Require-
ments Specification Language. In Proc. 35th Annual Hawaii Int. Conf. on System
Sciences, (HICSS’02), pages 280–289, 2002.

6. G. Cabral and A. Sampaio. Formal Specification Generation from Requirement
Documents. Electron. Notes Theor. Comput. Sci., 195:171–188, Jan. 2008.

7. A. Cypher, M. Dontcheva, T. Lau, and J. Nichols. No Code Required: Giving Users
Tools to Transform the Web. Morgan Kaufmann Publishers Inc., 2010.

8. A. Cypher, D. C. Halbert, D. Kurlander, H. Lieberman, D. Maulsby, B. A. Myers,
and A. Turransky, editors. Watch What I Do: Programming by Demonstration.
MIT Press, 1993.

9. W. Damm and D. Harel. LSCs: Breathing Life into Message Sequence Charts.
Formal Methods in System Design, 19(1):45–80, 2001.

10. E. W. Dijkstra. On the Foolishness of “Natural Language Programming”. In
Program Construction, Int. Summer School, Marktoberdorf, Germany, volume 69
of Lecture Notes in Computer Science, pages 51–53. Springer, 1978.

11. N. E. Fuchs and R. Schwitter. Attempto Controlled English (ACE). In Proc. 1st
Int. Workshop on Controlled Language Applications, pages 124–136, 1996.

12. T. Geller. Talking to Machines. Commun. ACM, 55(4):14–16, 2012.
13. R. T. Giganto. A Three-Level Algorithm for Generating Use Case Specifications. In

Proc. Software Innovation and Engineering New Zealand Workshop, (SIENZ’07),
2007.

14. M. Gordon and D. Harel. Generating executable scenarios from natural language.
In Proc. 10th Int. Conf. on Computational Linguistics and Intelligent Text Pro-
cessing, (CICLing’09), pages 456–467. Springer-Verlag, 2009.

15. M. Gordon and D. Harel. Show-and-Tell Play-In: Combining Natural Language
with User Interaction for Specifying Behavior. In Proc. IADIS Interfaces and
Human Computer Interaction, (IHCI’11), pages 360–364, 2011.

16. M. Gordon and D. Harel. Evaluating a Natural Language Interface for Behavioral
Programming. In Proc. IEEE Symp. on Visual Languages and Human-Centric
Computing, (VL/HCC’12), pages 17–20, 2012.

17. D. Harel. From Play-In Scenarios To Code: An Achievable Dream. Computer,
34(1):53–60, 2001.

18. D. Harel. Playing with Verification, Planning and Aspects: Unusual Methods for
Running Scenario-Based Programs. In Proc. 18th Int. Conf. on Computer Aided
Verification, (CAD’06), pages 3–4, 2006.

19. D. Harel. Can Programming be Liberated, Period? Computer, 41(1):28–37, 2008.
20. D. Harel, H. Kugler, R. Marelly, and A. Pnueli. Smart Play-Out of Behavioral

Requirements. In Proc. 4th Int. Conf. on Formal Methods in Computer-Aided
Design, (FMCAD’02), pages 378–398, 2002.

21. D. Harel and R. Marelly. Come, Let’s Play: Scenario-Based Programming Using
LSC’s and the Play-Engine. Springer-Verlag, 2003. (See also paper in Software
and System Modeling, 2(2);82-107, 2003).

22. D. Harel, A. Marron, and G. Weiss. Behavioral programming. Commun. ACM,
55(7):90–100, 2012.

23. D. Harel and A. Pnueli. Logics and Models of Concurrent Systems. chapter On
the Development of Reactive Systems, pages 477–498. Springer-Verlag New York,
1985.

24. D. Harel and I. Segall. Visualizing Inter-Dependencies between Scenarios. In Proc.
4th ACM symp. on Software visualization, (SoftVis’08), pages 145–153, 2008.

25. M. A. Hearst. “Natural” Search User Interfaces. Commun. ACM, 54(11):60–67,
2011.

26. ITU: International Telecommunication Union. Recommendation Z.120: Message
Sequence Chart (MSC). Technical report, 1996.

27. S.-H. Kim and J. W. Jeon. Programming LEGOMindstorms NXT with Visual Pro-
gramming. In Proc. Int. Conf. on Control, Automation and Systems, (ICCAS’07),
pages 2468–2472, 2007.

28. H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas. Translating Structured English
to Robot Controllers. Advanced Robotics Special Issue on Selected Papers from
IROS 2007, 22(12):1343–1359, 2008.

29. T. Kuhn and N. E. Fuchs, editors. Proc. 3rd Int. Workshop on Controlled Natural
Language (CNL), volume 7427 of Lecture Notes in Computer Science. Springer,
2012.

30. T. Lei, F. Long, R. Barzilay, and M. Rinard. From Natural Language Specifications
to Program Input Parsers. In Proc. Annual Meeting Assoc. for Computational
Linguistics, (ACL’13), 2013.

31. H. Liu and H. Lieberman. Toward a Programmatic Semantics of Natural Lan-
guage. In Proc. IEEE Symp. on Visual Languages and Human-Centric Computing,
(VL/HCC’04), pages 281–282, 2004.

32. S. Maoz, D. Harel, and A. Kleinbort. A Compiler for Multimodal Scenarios: Trans-
forming LSCs into AspectJ. ACM Trans. Softw. Eng. Methodol., 20(4):18, 2011.

33. S. Maoz and Y. Sa’ar. Two-way Traceability and Conflict Debugging for As-
pectLTL Programs. In Proc. 11th Int. Conf. on Aspect-oriented Software Develop-
ment, (AOSD’12), pages 35–46, 2012.

34. R. Mihalcea, H. Liu, and H. Lieberman. NLP (Natural Language Processing) for
NLP (Natural Language Programming). In Proc. 7th Int. Conf. Computational
Linguistics and Intelligent Text Processing, (CICLing’06), pages 319–330, 2006.

35. G. A. Miller, R. Beckwith, C. Fellbaum, D. Gross, and K. Miller. Introduction to
WordNet: An On-line Lexical Database. http://wordnet.princeton.edu/, 1993.

36. D. L. Parnas. Precise Documentation: The key to Better Software. In The Future
of Software Engineering, pages 125–148. Springer, 2011.

37. M. Resnick et al. Scratch: Programming for All. Comm. of the ACM, 52(11):60–67,
2009.

38. B. Shneiderman. Designing the User Interface: Strategies for Effective Human-
Computer Interaction. Addison-Wesley Longman, 1986.

39. Y. Sun, J. Leigh, A. Johnson, and S. Lee. Articulate: a Semi-automated Model
for Translating Natural Language Queries into Meaningful Visualizations. In Proc.
10th Int. Conf. on Smart Graphics, (SG’10), pages 184–195, 2010.

40. UML. Unified Modeling Language Superstructure, v2.1.1. Technical Report
formal/2007-02-03, Object Management Group, 2007.

41. T. Winograd. Understanding Natural Language. Cognitive Psychology, 3(1):1 –
191, 1972.

42. Y. W. Wong and R. J. Mooney. Learning Synchronous Grammars for Semantic
Parsing with Lambda Calculus. In Proc. 45th Annual Meeting of the Assoc. for
Computational Linguistics, (ACL’07), 2007.

43. H. Zhong, L. Zhang, T. Xie, and H. Mei. Inferring Resource Specifications from
Natural Language API Documentation. In Proc. IEEE/ACM Int. Conf. on Auto-
mated Software Engineering, (ASE’09), pages 307–318, 2009.

	Steps Towards Scenario-Based Programming with a Natural Language Interface

