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Abstract. Bridging the gap between the specification of software re-
quirements and actual execution of the behavior of the specified system
has been the target of much research in recent years. We have created
a natural language interface, which, for a useful class of systems, yields
the automatic production of executable code from structured require-
ments. In this paper we describe how our method uses static and dynamic
grammar for generating live sequence charts (LSCs), that constitute a
powerful executable extension of sequence diagrams for reactive systems.
We have implemented an automatic translation from controlled natural
language requirements into LSCs, and we demonstrate it on two sample
reactive systems.

1 Introduction

Live Sequence Charts are a visual formalism that describes natural “pieces” of
behavior and are similar to telling someone what they may and may not do, and
under what conditions. The question we want to address here is this: can we
capture the requirements for a dynamic system in a far more natural style than
is common? We want a style that is intuitive and less formal, and which can also
serve as the system’s executable behavioral description [1].

To be able to specify behavior in a natural style, one would require a simple
way to specify pieces of requirements for complex behavior, without having to
explicitly, and manually, integrate the requirements into a coherent design. In
[2], the mechanism of play-in was suggested as a means for making programming
practical for lay-people. In this approach, the user specifies scenarios by play-
ing them in directly from a graphical user interface (GUI) of the system being
developed. The developer interacts with the GUI that represents the objects in
the system, still a behavior-less system, in order to show, or teach, the scenario-
based behavior of the system by example (e.g., by clicking buttons, changing
properties or sending messages). As a result, the system generates automati-
cally, and on the fly, live sequence charts (LSCs) [3], a variant of UML sequence
diagrams [4] that capture the behavior and interaction between the environment
and the system or between the system’s parts. In the current work we present an
initial natural language interface that generates LSCs from structured English
requirements.



An LSC describes inter-object behavior, behavior between objects, capturing
some part of the interaction between the system’s objects, or between the system
and its environment. LSCs distinguish the possible behavior from the necessary
behavior (i.e., liveness, which is where the term “live” comes from), and can
also express forbidden behavior — scenarios that are not allowed, and more.
Furthermore, LSCs are fully executable using the play-out mechanism developed
for LSCs in [2], and its more powerful variants [5, 6]. To execute LSCs the play-
out mechanism monitors at all times what must be done, what may be done
and what cannot be done, and proceeds accordingly. Although the execution
does not result in an optimal code, nor is the executed artifact deterministic
(since LSC are under-specified) it is nevertheless a complete execution of the
LSC specification. The execution details are outside the scope of this paper, but
are described in detail in [5, 2].

By its nature, the LSC language comes close to the way one would specify
dynamic requirements in a natural language. We suggest to take advantage of
this similarity, and to translate natural language requirements directly into LSCs,
and then render them fully executable. One interesting facet of this idea is rooted
in the fact that the natural and intuitive way to describe behavioral requirements
will generate fragmented multi-modal pieces of behavior which is also the main
underling philosophy of LSCs. The play-out mechanisms are able to consider all
the fragmented pieces together as an integrated whole, yielding a fully executable
artifact. Thus, our translation into LSCs can be viewed as a method for executing
natural language requirements for reactive systems.

As to related work (discussed more fully later), we should say here that
natural language processing (NLP) has been used in computer-aided software
engineering (CASE) tools to assist human analysis of the requirements. One use
is in extracting the system classes, objects, methods or connections from the
natural language description [7, 8]. NLP has been applied to use case description
in order to create simple sequence diagrams with messages between objects [9], or
to assist in initial design [10]. NLP has also been used to parse requirements and
to extract executable code [11] by generating object-oriented models. However,
it is important to realize, that the resulting code is intra-object — describes
the behavior of each object separately under the various conditions, and it is
usually limited to sequential behavior. The resulting OO artifact is focussed on
object-by-object specification, and is not naturally inter-object.

The paper is structured as follows: Section 2 contains some brief prelimi-
naries, Section 3 presents an overview of the translation method, and Section 4
demonstrates the details using an example. Section 5 discusses related work and
Section 6 concludes.

2 Preliminaries

In its basic form, an LSC specifies a multi-modal piece of behavior as a sequence
of message interactions between object instances. It can assert mandatory be-
havior — what must happen (with a hot temperature) — as well as possible



behavior — what may happen (with a cold temperature). The LSC language
[3] has its roots in message sequence charts (MSC) [12] or its UML variant, se-
quence diagrams [4], where objects are represented by vertical lines, or lifelines,
and messages between objects are represented by horizontal arrows between ob-
jects. Time advances along the vertical axis and the messages entail an obvious
partial ordering. Figure 1 shows a sample LSC. In this LSC the prechart events,
those that trigger the scenario, appear in the top blue hexagon; in this case, a
cold (dashed blue) click event from the user to the c button. If the prechart is
satisfied, i.e., its events all occur and in the right order, then the main chart (in
the black solid rectangle) must be satisfied too. In the example, there is a hot
(solid red) event where the light state changes to on and a cold condition, in
the blue hexagon, with a hot event in the subchart it creates. The meaning is
that if the display mode is not time, then it must change to time. There is no
particular order between the events in the main chart in the example, although
in general there will be a partial order between them, derived from the temporal
constraints along the vertical lifelines.

Fig. 1. A simple LSC. The prechart (the blue dashed hexagon) contains the cold event
(blue dash arrow) “user clicks the c button”, while the main chart (the black solid
rectangle) shows two hot events (red solid arrow): one shows the light state changing
to on and the other is a hot event with a cold condition (blue dashed hexagon) that
specifies that if the mode is not time then it must change to time.

The basic LSC language also includes conditions, loops and switch cases. In
[2], it has been significantly enriched to include time, scoped forbidden elements,
and symbolic instances that allow reference to non-specific instances of a class.

Later, we will be describing a context-free grammar for behavioral require-
ments that will serve as our controlled English language. To recall, a context-free
grammar (CFG) is a tuple G = (T, N, S, R), where T is the finite set of termi-
nals of the language, N is the set of non-terminals, that represent phrases in
a sentence, S ∈ N is the start variable used to represent a full sentence in the
language, and R is the set of production rules from N to (N ∪ T )∗. In the LSC
grammar, parts of the grammar are static TS and other parts are dynamic TD.



3 Overview of LSC Grammar

Requirements are a way of describing scenarios that must happen, those that can
happen, and those that are not allowed to happen. The static terminals describe
the flow of the scenario; e.g., “when something happens then another thing
should happen”, or “if a certain condition holds then something cannot occur”.
The dynamic terminals refer to the model, the objects and their behaviors.

The static terminal symbols are if, then, must, may etc. They are relevant
for inferring the semantics of LSCs. The dynamic terminals are all unrecognized
terminals processed by a dictionary and transformed from part of speech to pos-
sible parts of the model. They are grouped into objects, properties, methods
and property values which are not mutually exclusive.

For example in: “The user presses the button”, user and button are both
objects. Similarly, presses is a verb that is added to the methods terminal
list. Other types of terminals are properties and property values. These can be
identified as in the following example: “the display color changes to red”, where
the noun color, which is part of the noun phrase, is a property of the display
object and the adjective red is a possible property value. Property values may
also include possible variables for methods.

Fig. 2. The parse tree for the sentence “when the user clicks the button, the light
turns on”. The parts of the LSC grammar detected are shown. There is one message
Msg which is a message from object phrase (OP) user to object phrase button, and
another self message SelfMsg of object light with method turn and argument on.

Figure 2 displays the parse tree for the requirement: “when the user clicks the
b button, the light turns to on”. When analyzing the parse tree, the when and
then hint to where the prechart ends and the main chart begins, the messages



added are click from the user to the button in the prechart and turn with a
parameter on in the main chart, as seen in Fig. 3(a).

(a) (b)

Fig. 3. Sample LSCs. (a) A simple LSC created for the sentence: “when the user clicks
the b button, the light turns on”. (b) A more complex LSC created for the sentence:
“when the beeper turns on, as long as the beeper state is on, if two seconds have
elapsed, the beeper beeps and the display mode cannot change”.

The grammar is inherently ambiguous, due to use of dictionary terminals.
The same word could be used for noun, object or property value. We therefore
parse each sentence separately and update the grammar as the user resolves am-
biguities relevant to the model. Our parser is an active chart parser, bottom-up
with top-down prediction [13]. We detect errors and provide hints for resolving
them using the longest top-down edge with a meaningful LSC construct. For ex-
ample a message or a conditional expression that have been partially recognized
provide the user with meaningful information.

4 LSC Grammar Constructs

4.1 Example Requirements Translation

We now describe the main parts of our method for automatically translating
structured requirements into LSCs. We demonstrate the main language phrases
by constructing a simplified version of a digital watch described in [14]. There,
the watch behavior was described using statecharts formalism. Here, we describe
the same system in natural language and then automatically transform it into



LSCs. Generally, the watch displays the time and can switch between different
displays that show (and allow changes to) the alarm, date, time and stopwatch.
It has an option to turn on a light, and it has an alarm that beeps when the set
time arrives.

An example, taken verbatim from [14] is this: “[The watch] has an alarm that
can also be enabled or disabled, and it beeps for 2 seconds when the time in the
alarm is reached unless any one of the buttons is pressed earlier”. This require-
ment is ambiguous and unclear for our purposes: when a button is pressed should
the alarm time be cancelled or should the beeping stop? Basic user knowledge
of the system helps us infer that the beeper should stop. Also, the fact that the
alarm beeps only when it is enabled is deduced by common knowledge, as it is
not explicit in the text. The structured requirements for these will be: “when the
time value changes, if the time value equals the alarm value and the alarm state
is enabled, the beeper turns on”; “when the beeper turns on, if two minutes have
elapsed, the beeper turns to off”; “when the user presses any button, the beeper
shall turn off”. Although the original requirement is fragmented and separated
into several requirements, the combined effect of these requirements will achieve
the same goal.

4.2 Translating Constructs

In this section we show how our initial grammar translates controlled natural
language to LSCs. The grammar is structured and required rigid and clear re-
quirements, however they are natural to understand and compose. Since we allow
multiple generations of similar constructs we hope to enlarge the possible spec-
ifications. We shall describe how the basic structures — messages and property
changes, and some of the less trivial ideas that include parsing temperature,
conditions, loops and symbolic objects. Few advanced ideas such as asserts and
synchronization are not supported at the current time, nevertheless, the current
grammar allows implementing executable systems and has been tested on the
digital watch example and on an ATM machine example.

Messages. The simplest language construct in LSCs is the message between
objects, or from an object to itself. Messages can be method calls or property
changes. In the case of methods, the verb specifies the method to call. For ex-
ample “the c button is clicked” is mapped into a self message from the c button
to itself. Messages can also be specified between objects as in “the user presses
the c button”. Parameters can also be used as in: “the light turns to on”, in
which case the turn method of the light is invoked with a value of on as a
parameter. When a sentence can be fully parsed into more than one basic struc-
ture, the user is notified of the location and selects the terminal to use for the
word. For example is the button an argument for press or an object with the
method press. The user selection is integrated into the dictionary using weights
which effectively cause the button in the rest of the text to be an object, unless
specified differently.



Temperature. LSCs allow the user to specify whether something may happen,
for which we use a cold temperature (depicted in dashed blue lines), or what must
happen, which is hot (depicted by solid red lines). The grammar allows the user
to specify the temperature explicitly by using the English language constructs
may or must and some of their synonyms. If the user does not explicitly specify
the temperature of the event, it is inferred from the sentence structure. For
example, the when part is cold and the then part is hot. In English it is obvious
that the when part may or may not happen, but that if it does then the then
part must happen. See Fig. 4 for an example.

Fig. 4. The LSC created for the sentence “when the user presses the d button, if the
display mode is date, the display mode changes to time”. The message in the when
part is cold (dashed blue arrow), while the messages in the then part are hot (solid red
arrows).

Conditions. Conditions, that are frequent in system requirements are readily
translated into conditions in the LSC formalism. The grammar accepts expres-
sions that query an object’s property values, such as “if the display mode is
time”. The condition is implemented in the LSC as a cold condition, and all
phrases that occur in the then part of the phrase appear in the subchart of the
condition. The dangling-else ambiguity that appears frequently in programming
languages is resolved similar to most parsers by choosing the ’else’ that com-
plete the most recent ’if’, which is reasonable also in natural text. We allow the
user to manipulate the hierarchical structure of the sentence using commas and
conjunctions, see, for example, Fig. 5.

Symbolic Objects. In English, definite or indefinite determiners are used to
specify a specific object or a non-specific object respectively. The determiners
are part of the static terminals that differentiate between objects and symbolic
objects. Consider the sentence “when the user presses any button, the beeper
shall turn to off”. The requirement is translated into the LSC of Fig. 6, where
the button is symbolic (drawn with a dashed borderline) and can be any of the
buttons. The LSC semantics also requires that a symbolic object becomes bound



(a) (b)

Fig. 5. Conditions in LSCs. (a) The LSC created for the sentence “when the user
presses the d button, if the display mode is time, the display mode changes to date,
otherwise if the display mode is date, the display mode changes to time”. (b) Shows
what would happen if the otherwise would be replaced by an and. The second condition
is not an alternative to the first, and the behavior would not be as expected. Consider,
for example, what would happen if the display mode is time: the execution would enter
both conditions and nothing would happen to the display mode. This behavior could
also be avoided by separating the single requirement into two different requirements,
resulting in two separate LSCs.

using an interaction with another object or a property. Thus, the sentence “when
the user presses a button, a display turns on” is not valid, since the display
is not bound at all and is supposedly symbolic. It is clear that the sentence
is ambiguous also to an English reader, and the user is prompt to resolve the
problem.

Forbidden Elements. Our grammar also supports forbidden elements when
using negation of messages. For example, “the display mode cannot change”
would result in a forbidden element. The scope of forbidden elements is important
to the semantics of LSCs; i.e., to what parts of the LSC they are relevant. We
use the syntax tree and the location of the forbidden statement in it to resolve
the scope, conjunction can be used to verify that a forbidden phrase is inside a
subchart. See Fig. 3 (b) for an example.

Forbidden Scenarios. In addition to specifying negative events as forbidden
elements, one can also specify forbidden scenarios — scenarios that cannot hap-
pen. These are specified using language phrases such as ”the following can never
happen”, prefixing the scenario that is to be forbidden. In the LSC, the scenario
described is created in the prechart with a hot false condition in the main chart,
which entails a violation if the prechart is completed. To separate the ’when’
from the ’then’ parts of the scenario, we add a synchronization of all the objects



Fig. 6. The LSC created for the sentence “when the user presses any button, the beeper
shall turn to off”. The button object referred to by the user is a non-specific object and
is therefore translated as a symbolic object of the button class, shown using a dashed
box.

referenced in the scenario at the end of the ’when’ part as extracted from the
syntax tree.

Additional Constructs. The grammar supports translation into additional
LSC constructs, such as local variables, time constraints, loops and non-determinism.
It is currently of preliminary nature and is being extended to deal with addi-
tional ways of specifying new and existing constructs to make it more natural to
users. The fact that sentences are parsed separately allows the use of the ambigu-
ous grammar. Resolution of ambiguity is achieved by interaction with the user
to obtain information about the model and by propagating model information
between different sentences.

4.3 Implementation and Execution

Once the requirements are parsed and the model is known, the objects and their
basic methods are implemented separately with the names extracted from the
text. We use the dictionary to extract word stems and we also support word
phrases for methods or objects by concatenating the words with a hyphen. We
implemented the watch’s simple interface with the Play-Engine GUIEdit tool
described in [2]. In the final implementation, logical objects that have properties
or methods, that do not effect the system visually and do not need additional
implementation, are created automatically in the Play-Engine.

The GUI was set up to include the objects low level behavior (e.g., the
button’s click, the light’s turn on, the time’s increase). In the future we plan
to attempt to connect directly to an existing model by extracting the object
names and methods by using reflection on the model and matching them to the
specification using synonyms [15].

Requirements were written to describe all aspects of the watch’s behavior
depicted in the statechart of the watch. A demonstration of the implemented
watch is available in [16]. We also implemented another system — an ATM —
to test the grammar. Since currently the grammar requires explicit repetition
of objects and often needs the user to specify the behavior using a particular



sentence, we would like to extend the grammar and also integrate some form of
reference resolution.

5 Related Work

NLP has been used to aid software engineering in many ways. In [17] controlled
natural language use case templates are translated into specifications in CSP
process algebra that may be used for validating the specified use cases. Use cases
are specified in a table containing different steps of user action, system state and
system response. Our approach allows inputting information of multiple steps
in a single sentence more naturally and integrating different requirements. Our
LSCs can also be validated or run (see smart play-out [5]) using model checkers.

There are approaches that generate executable object oriented code from
natural language. The approach in [8] uses two-level-grammar (TLG) to first
extract the objects and methods (a scheme that may be used for our initial phase
as well) and it then extracts classes, hierarchies and methods. In [11], TLG is
used to output UML class diagrams and Java code. The methods are described
in natural language as a sequence of intra-object behaviors. (In contrast, our
approach connects inter-object requirements and appears to be more fitting for
reactive systems.)

Attempto Controlled English (ACE) [18, 19] is a user-friendly language, based
on first-order logic with rich English syntax, for translating NL into Prolog. It
can by used for basic reasoning and queries but not for reactive systems.

Other works assist UML modeling and the design procedures with support
tools that help extract the main objects and message sequences from natural
language [20, 21], thus making the transition from a NL specification to design
less prone to errors. In [21] the scenarios in use cases are parsed to extract a
tight representation of the classes and objects for the class diagram.

By and large, we have not encountered a translation that can create a reactive
system from fragmented requirements.

6 Conclusions and Future Work

Creating complex reactive systems is not a simple task and neither is understand-
ing natural language requirements. We have presented a method that allows one
to translate controlled NL requirements into LSCs, with which a reactive system
can be specified. The implementation of the system is thus a set of fragmented
yet structured requirements — namely the LSCs, which are both natural and
fully executable.

The current situation regarding the execution of LSCs is not without its
limitations. For example, LSCs do not always result in a deterministic execution
and the execution is also not always optimal. However, there is progress in many
directions regarding the execution of LSCs; e.g., using an AI planning algorithm
[6] can help the user choose one deterministic and complete path for system
execution.



The ability to translate a controlled language into LSCs is a step in the right
direction. The translation we suggest is tailored for the LSC language. However,
it needs to be extended in order to support more of the rich language that
humans normally use.

We would like to extend our scheme so that it becomes reasonably robust to
errors, more user-friendly and so that it includes also dialogues that will help
users understand how to write controlled requirements. We have yet to test the
system on naive subjects.

We would like to add more abilities that will improve the natural language
interface with the user. For example allowing specification using language “short-
cuts”, e.g. using the word toggles for changing between a few properties. We
would like to add reference resolution, allowing the user to refer to objects pre-
viously mentioned as it. We would like to integrate NLP tools that resolve aliases
for methods and properties, using dictionaries and common sense systems, this
would allow the system to understand that different words refer to the same
method or property, for example that click and press are the same method.

Another direction we would like to pursue is to include tools for transforming
NL requirements to LSCs and back in a round-trip fashion, to enable easy project
modification.

We believe the LSCs and the inter-object approach are naturally close to NL
requirements. We hope the work presented here constitutes a small step towards
improving the process of engineering reactive systems using natural language
tools.
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