ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/283053532
Non-Intrusive Repair of Safety and Liveness Violations in Reactive Programs

Article - January 2014

DOI: 10.1007/978-3-662-44871-7_1

CITATIONS READS
6 14
4 authors:
David Harel - Guy Katz
Weizmann Institute of Science Hebrew University of Jerusalem
408 PUBLICATIONS 20,419 CITATIONS 30 PUBLICATIONS 343 CITATIONS
SEE PROFILE SEE PROFILE
Assaf Marron - Gera Weiss
Weizmann Institute of Science ! 7 Ben-Gurion University of the Negev
44 PUBLICATIONS 361 CITATIONS 60 PUBLICATIONS 656 CITATIONS
SEE PROFILE SEE PROFILE

Some of the authors of this publication are also working on these related projects:

roject D€ bruijn sequences View project

Project Non-determinism in CS View project

All content following this page was uploaded by Guy Katz on 21 October 2015.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/283053532_Non-Intrusive_Repair_of_Safety_and_Liveness_Violations_in_Reactive_Programs?enrichId=rgreq-520725e51ff1dd4a5159648b5427af12-XXX&enrichSource=Y292ZXJQYWdlOzI4MzA1MzUzMjtBUzoyODcwMjQ1OTE0NTgzMDhAMTQ0NTQ0MzQwMzc5MQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/283053532_Non-Intrusive_Repair_of_Safety_and_Liveness_Violations_in_Reactive_Programs?enrichId=rgreq-520725e51ff1dd4a5159648b5427af12-XXX&enrichSource=Y292ZXJQYWdlOzI4MzA1MzUzMjtBUzoyODcwMjQ1OTE0NTgzMDhAMTQ0NTQ0MzQwMzc5MQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/De-bruijn-sequences?enrichId=rgreq-520725e51ff1dd4a5159648b5427af12-XXX&enrichSource=Y292ZXJQYWdlOzI4MzA1MzUzMjtBUzoyODcwMjQ1OTE0NTgzMDhAMTQ0NTQ0MzQwMzc5MQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Non-determinism-in-CS?enrichId=rgreq-520725e51ff1dd4a5159648b5427af12-XXX&enrichSource=Y292ZXJQYWdlOzI4MzA1MzUzMjtBUzoyODcwMjQ1OTE0NTgzMDhAMTQ0NTQ0MzQwMzc5MQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-520725e51ff1dd4a5159648b5427af12-XXX&enrichSource=Y292ZXJQYWdlOzI4MzA1MzUzMjtBUzoyODcwMjQ1OTE0NTgzMDhAMTQ0NTQ0MzQwMzc5MQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/David_Harel?enrichId=rgreq-520725e51ff1dd4a5159648b5427af12-XXX&enrichSource=Y292ZXJQYWdlOzI4MzA1MzUzMjtBUzoyODcwMjQ1OTE0NTgzMDhAMTQ0NTQ0MzQwMzc5MQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/David_Harel?enrichId=rgreq-520725e51ff1dd4a5159648b5427af12-XXX&enrichSource=Y292ZXJQYWdlOzI4MzA1MzUzMjtBUzoyODcwMjQ1OTE0NTgzMDhAMTQ0NTQ0MzQwMzc5MQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Weizmann_Institute_of_Science?enrichId=rgreq-520725e51ff1dd4a5159648b5427af12-XXX&enrichSource=Y292ZXJQYWdlOzI4MzA1MzUzMjtBUzoyODcwMjQ1OTE0NTgzMDhAMTQ0NTQ0MzQwMzc5MQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/David_Harel?enrichId=rgreq-520725e51ff1dd4a5159648b5427af12-XXX&enrichSource=Y292ZXJQYWdlOzI4MzA1MzUzMjtBUzoyODcwMjQ1OTE0NTgzMDhAMTQ0NTQ0MzQwMzc5MQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Guy_Katz?enrichId=rgreq-520725e51ff1dd4a5159648b5427af12-XXX&enrichSource=Y292ZXJQYWdlOzI4MzA1MzUzMjtBUzoyODcwMjQ1OTE0NTgzMDhAMTQ0NTQ0MzQwMzc5MQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Guy_Katz?enrichId=rgreq-520725e51ff1dd4a5159648b5427af12-XXX&enrichSource=Y292ZXJQYWdlOzI4MzA1MzUzMjtBUzoyODcwMjQ1OTE0NTgzMDhAMTQ0NTQ0MzQwMzc5MQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Hebrew_University_of_Jerusalem?enrichId=rgreq-520725e51ff1dd4a5159648b5427af12-XXX&enrichSource=Y292ZXJQYWdlOzI4MzA1MzUzMjtBUzoyODcwMjQ1OTE0NTgzMDhAMTQ0NTQ0MzQwMzc5MQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Guy_Katz?enrichId=rgreq-520725e51ff1dd4a5159648b5427af12-XXX&enrichSource=Y292ZXJQYWdlOzI4MzA1MzUzMjtBUzoyODcwMjQ1OTE0NTgzMDhAMTQ0NTQ0MzQwMzc5MQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Assaf_Marron?enrichId=rgreq-520725e51ff1dd4a5159648b5427af12-XXX&enrichSource=Y292ZXJQYWdlOzI4MzA1MzUzMjtBUzoyODcwMjQ1OTE0NTgzMDhAMTQ0NTQ0MzQwMzc5MQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Assaf_Marron?enrichId=rgreq-520725e51ff1dd4a5159648b5427af12-XXX&enrichSource=Y292ZXJQYWdlOzI4MzA1MzUzMjtBUzoyODcwMjQ1OTE0NTgzMDhAMTQ0NTQ0MzQwMzc5MQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Weizmann_Institute_of_Science?enrichId=rgreq-520725e51ff1dd4a5159648b5427af12-XXX&enrichSource=Y292ZXJQYWdlOzI4MzA1MzUzMjtBUzoyODcwMjQ1OTE0NTgzMDhAMTQ0NTQ0MzQwMzc5MQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Assaf_Marron?enrichId=rgreq-520725e51ff1dd4a5159648b5427af12-XXX&enrichSource=Y292ZXJQYWdlOzI4MzA1MzUzMjtBUzoyODcwMjQ1OTE0NTgzMDhAMTQ0NTQ0MzQwMzc5MQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gera_Weiss?enrichId=rgreq-520725e51ff1dd4a5159648b5427af12-XXX&enrichSource=Y292ZXJQYWdlOzI4MzA1MzUzMjtBUzoyODcwMjQ1OTE0NTgzMDhAMTQ0NTQ0MzQwMzc5MQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gera_Weiss?enrichId=rgreq-520725e51ff1dd4a5159648b5427af12-XXX&enrichSource=Y292ZXJQYWdlOzI4MzA1MzUzMjtBUzoyODcwMjQ1OTE0NTgzMDhAMTQ0NTQ0MzQwMzc5MQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Ben-Gurion_University_of_the_Negev?enrichId=rgreq-520725e51ff1dd4a5159648b5427af12-XXX&enrichSource=Y292ZXJQYWdlOzI4MzA1MzUzMjtBUzoyODcwMjQ1OTE0NTgzMDhAMTQ0NTQ0MzQwMzc5MQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gera_Weiss?enrichId=rgreq-520725e51ff1dd4a5159648b5427af12-XXX&enrichSource=Y292ZXJQYWdlOzI4MzA1MzUzMjtBUzoyODcwMjQ1OTE0NTgzMDhAMTQ0NTQ0MzQwMzc5MQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Guy_Katz?enrichId=rgreq-520725e51ff1dd4a5159648b5427af12-XXX&enrichSource=Y292ZXJQYWdlOzI4MzA1MzUzMjtBUzoyODcwMjQ1OTE0NTgzMDhAMTQ0NTQ0MzQwMzc5MQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Non-Intrusive Repair of Safety and Liveness
Violations in Reactive Programs

David Harel', Guy Katz', Assaf Marron', and Gera Weiss?

L Dept. of Computer Science and Applied Mathematics
Weizmann Institute of Science
Rehovot, Israel
firstname.lastname@weizmann.ac.il
2 Dept. of Computer Science
Ben-Gurion University of the Negev
Beer-Sheva, Israel
geraw@cs.bgu.ac.il

Abstract. We show how, under certain conditions, programs written in
the behavioral programming approach can be modified (e.g., as a result
of new requirements or discovered bugs) using automatically-generated
code modules. Given a trace of undesired behavior, one can generate a
relatively small piece of code, whose execution is interwoven at run time
with the rest of the system, and which brings about the desired changes
without modifying existing code and without introducing new bugs. At
the core of our approach is the ability of a thread of behavior to prevent
the triggering of events from other threads. Our repair algorithms ap-
ply model checking of safety and liveness properties to the program and
transform the counterexamples produced by the model-checker into cor-
rective modules. The work is supported by a proof-of-concept tool, which
creates understandable modules that can be further manually managed
as part of a process of ongoing incremental system development.

Keywords: Program repair; verification; behavioral programming; model check-
ing; patching.

1 Introduction

Software maintenance is a difficult and error prone task. As errors (bugs) are dis-
covered and requirements are added or changed, developers work hard to mod-
ify existing code without introducing new errors. They are often constrained
by limited knowledge of possible side-effects, since undocumented interdepen-
dencies might have been forgotten or might be known only to different people
(usually, the original developers) who are unavailable. Research on automated
program repair and, more generally, program synthesis from specifications, aims
to address these and related challenges. Such automation may prove particularly
valuable for handling failure/bug reports from users who simply press the “Send

to Software Vendor” button. In such cases, the software engineer cannot discuss
with the user the context of the problem, or possible generalizations thereof.

In this paper we focus on programs written in the behavioral programming
approach, and our work is centered on the idea of repairing by carefully for-
bidding existing faulty execution paths. This technique is highly suitable for (a)
non-intrusive incremental repair; i.e., large parts of the system are already devel-
oped and are not modified by the repair process; (b) methodological integration
of the repair process with standard, ongoing development during and after the
repair activity; and (c) practical techniques for dealing with the complexity of
the use of model-checking when creating local patches in the repair process.

2 Background

Our work is carried out within the behavioral programming approach [11,12]
— an extension and generalization of scenario-based programming, which was
introduced with the language of live sequence charts (LSCS) [6,10], and is now
implemented also in Java [11] and Erlang [13,25].

A behavioral program consists of independent threads of behavior that are
interwoven at run time. Each behavior thread (abbr. b-thread) specifies events
and event sequences which, from its own point of view must, may, or must not
occur. As shown in Fig. 1, the infrastructure synchronizes and interweaves all
behaviors, selecting events that constitute integrated system behavior without
requiring direct communication between b-threads. Specifically, all b-threads
declare events that should be considered for triggering (called requested events)
and events whose triggering they forbid (block), and then synchronize. An event
selection mechanism then triggers one event that is requested and not blocked,
and resumes all b-threads that requested the event. B-threads can also declare
events that they simply “listen-out for”, and they too are resumed when these
waited-for events occur.

b-thread ‘ Requested Events
-threa

Blocking

Selected Event ‘

Fig. 1. Behavioral programming execution cycle: all b-threads synchronize, declaring
requested and blocked events; a requested event that is not blocked is selected and
b-threads waiting for it are resumed.

This facilitates incremental non-intrusive development as outlined in the ex-
ample of Fig. 2.

WhenLowAddHot WhenLowAddCold Stability Event Log

wait for wait for wait for AddHot
WaterLevellow WaterLevelLow while blocking WaterLevellow
¥ AddHot
AddCold
| request AddHot | | request AddCold | AddCold
¥ AddHot
| request AddHot | | request AddCold | wait for AddCold
¥] Addcold while AddHot
| request AddHot | request AddCold blocking AddHot AddCold

Fig. 2. Incremental development of a system for controlling water level in a tank with hot and cold
water sources. The b-thread WhenLowAddHot repeatedly waits for WaterLevelLow events and requests
three times the event AddHot. WhenLowAddCold performs a similar action with the event AddCold,
reflecting a separate requirement, which was introduced when adding three water quantities for every
sensor reading proved to be insufficient. When WhenLowAddHot and WhenLowAddCold run simultaneously,
with the first at a higher priority, the runs will include three consecutive AddHot events followed by
three AddCold events. A new requirement is then introduced, to the effect that water temperature
should be kept stable. We add the b-thread Stability, to interleave AddHot and AddCold events. For
details about how sensor and actuator b-threads interact with the physical environment (sensors,
valves) without suspending the entire system see [13].

More detailed examples showing the power of incremental modularity in be-
havioral programming appear in [11, 13]. Briefly, in a program we wrote for
playing Tic-Tac-Toe [11], each game-rule is implemented in a dedicated b-thread;
e.g. “block X mowves when it is O’s turn” or “block marking of already-marked
squares”. Similarly, player-strategy modules are oblivious of other strategies;
e.g., “wait for two X marks in the same line, and then request marking O in
that line”. A similar technique can be used to control a robot performing simulta-
neous missions, such as vehicle operation and route management. In stabilizing
a quadrotor — an unmanned flying vehicle with four rotors — each of four
b-threads in our program controls a particular orientation angle, or the quadro-
tor’s altitude, solely by changing rotor speeds; see [13].

Each b-thread repeatedly requests and blocks events representing possible
increases or decreases of rotor RPM, which could contribute to its own goal. The
triggering of an event that is requested by one or more b-threads and blocked
by none allows at least one b-thread to progress. Affected b-threads can then
recalculate their declarations of requested and blocked events, and the process
repeats.

In [8] and [15], model-checking and planning algorithms (respectively) are
applied to play-out, the method for executing LSCs. These smart play-out tech-
niques control the choice of the event to be triggered, such that, within the
next superstep (i.e., prior to the next event driven by the environment), the
specification is not violated by the program (if this is possible). In [9], a proof-
of-concept model checker verifies behavioral Java programs “in vivo” - without
first translating them into a model-checker-specific language. It is further shown
in [9] how, when a problem is detected, the programmer can develop and add a
b-thread that repairs the program by refining the behavior without modifying
existing code.

3 Outline of the Repair Approach

In the present paper we utilize the model checker of [9] to automate elements of
manual program-repair processes, using a principle that can be summarized as
“taking the road not taken”. For illustration, assume that a system was tested, or
even model-checked, to satisfy its specification, and a new requirement was then
introduced, or a bug reported, highlighting a required property not previously
articulated, and thus neither tested nor model-checked. Our method calls for first
adding the new property to the specification. We then model-check the program
to find distinct violating runs. In the case of violated safety properties (“bad
things never happen”), for each such run we add a special b-thread that waits
for the sequence of all events in the run, up to the last one requested by the
program (rather than by the environment). The repair b-thread then blocks this
event. Some other pending requests might then be triggered. Violated liveness
properties (“good things eventually happen”) are handled similarly: when the
system is traversing a loop in which “good things do not happen”, the repair
b-thread applies blocking to steer the run in another direction. In the liveness
case blocking is only performed with some small probability, thus injecting bias
towards certain desirable execution paths without forbidding other paths which
are also permitted.

For example, consider a faulty game-strategy b-thread, whose event request
leads to a loss. When this event is blocked, another b-thread, perhaps one that
requests a set of default moves, comes into play (so to speak), offering an alter-
native. The elimination process continues until “the right” default move is the
choice at that state. The new corrective wait-and-block behavior is non-intrusive,
in that its implementation does not require changing the existing program code.

We refer to such a repair b-thread as a patch, and to the process as patching,
or simply, repairing. We hope that combined with the behavioral-programming
principles, our approach will help make the concept of patching seem less a
“necessary evil” and more a useful, mainstream software maintenance practice.

As the full repair algorithm may not scale up to large programs due to the
state explosion problem, we also discuss the case where patching can be limited
to a bounded “neighborhood” of a specific operation scenario; for example, when
we are provided with a bug report sent from a user.

We formally prove correctness and analyze the method, characterize the pro-
grams on which it can be used, and exemplify its usage with our proof-of-concept
tool.

The rest of this paper is organized as follows. Basic definitions of behavioral
programs and their model-checking are given in Sections 4 and 5, respectively.
The repair of safety violations of loopless programs is discussed in Section 6, fol-
lowed by a repair algorithm for safety violations in general programs in Section 7.
Next, in Section 8 we extend the algorithm to also handle liveness violations. A
method for handling large programs, called limited-depth patching, is described
in Section 9. Related work is discussed in Section 10, and we conclude with
Section 11.

4 Definitions

While behavioral programming is geared towards natural and intuitive develop-
ment using almost any programming language, its underlying infrastructure can
be conveniently described and analyzed in terms of transition systems.

4.1 The Behavioral Programming Computational Model

The definitions below follow [9,13] and were modified to include the notion of
a b-thread tagging states of the system as having certain properties, commonly
termed atomic propositions (AP) [3]. Recall that a deterministic labeled transi-
tion system is a 6-tuple (S, E, —, init, AP, L), where S is a set of states, F is
a set of events, — is a (possibly partial) function from S x E to S, init € S
is the initial state, AP is a set of atomic propositions, and L : S — 247 is a
labeling function. The runs of a transition system are sequences of the form
so 2 51 2 ..o & 5., where sg = init, and for all i = 1,2,---, s5; € S,
e; € E, and the function — maps the pair (s;_1,€;) to s;, written s;_; Lo,
We say that (S, F, —, init) is total if the function — is total.

Behavior threads are modeled as transition systems, with S, FE, and AP
finite, and the states being associated with event sets:

Definition 1. A behavior thread (abbr. b-thread) is a tuple (S,E,—
,init, AP, L, R, B), where (S, E,— init, AP,L) forms a deterministic total la-
beled transition system, R: S — 2F associates a state with the set of events
requested by the b-thread when in it, and B: S — 2F associates a state with the
set of events blocked by the b-thread when in it.

Definition 2. The runs of a set of b-threads {(S;, E;,—
yinity, AP;, Li, R;, B;)}" 1 are the runs of the labeled transition sys-
tem (S, E,—,init, AP,L), where S = S x -+ x S,, E = U, E;,
init = (inity, ..., init,), and — includes a transition (s1,...,8,) = (s},...,s")
if and only if

e c U Ri(Si) /\ € ¢ U Bz(sz)

— —

e is requested e is not blocked

and

/\((eEEi = 5 i SYN(e¢ By = s;=35])).
i=1

affected b-threads unaffected b-threads
move don’t mowve

We set AP =J;_, AP; and, for (s1,...,8,) € S1 X ... X S, we define:

L(s1,...,8,) =Li(s1)U...ULy,(sp).

Note that when implemented in a standard programming language, we as-
sume that b-threads do not share data, and rely solely on events for input and
output. This results in the abstraction that a behavior thread is “in a state”
only when synchronized with others, and that the state transition caused by
executing program instructions between synchronization points is atomic.

Observe that while each b-thread is deterministic in its reaction to events,
Definition 2 does not specify how events are selected, and thus there may be
more than one run for a given set of b-threads. There could be multiple ways
to select events and runs, including ones that are random, planned, or priority-
based. The default behavioral execution infrastructure of LSC (in the Play-
Engine and PlayGo tools), the Java package (BPJ) and the Erlang module (bp)
executes a set of b-threads based on priorities. That is, in each state of the
composite system, the first event that is requested and is not blocked is selected
for triggering.

Definition 3. For the transition system T, defined in Definition 2, a (deter-
ministic) event selection mechanism is a function f: S — E, such that for each

s € S there exists a transition s & s of T.

Behavioral programming is designed particularly for the development of re-
active systems [14], and in this context it is critical to distinguish between envi-
ronment behavior and program behavior.

Definition 4. A reactive behavioral program is a set of b-threads, an event
selection mechanism, and a partition of the events of the b-threads into external
events representing uncontrollable occurrences coming from the environment, and
internal events completely controlled by the program.

We denote the set of external events by E.,,, and the set of internal events
by Eprog. By convention, the patches we present in this work may block only
the triggering of events in Ej,.,, and may not block events in Egp,.

4.2 Specifications

We now introduce definitions that assist in the discussion of desired and unde-
sired runs of behavioral programs.

Definition 5. For a set of b-threads P and a run p = (e, ea, ...,), such that the
execution corresponding to p 1S Sinit Slyog B sy ., we define APtrace(p) =
L(8init)L(s1)L(s2) ... and define the set of all traces of P to be APtraces(P) =
{APtrace(p) | p € runs(P)}.

Definition 6. A specification for a behavioral program P is a linear time (LT)
property @ (i.e. a subset of (2AP)W). We say that P satisfies @, denoted P F @,
iff APtraces(P) C @.

Since this definition assumes infinite runs, when dealing with systems of finite
runs we pad any finite run with the trace (“.

It is important to note, that the same set of b-threads can satisfy @ with one
event selection mechanism, and not with another. We adopt a wider perspective
here, and ensure that the patched set of b-threads satisfies @ with all event
selection mechanisms. Such patching immediately detects and fixes any bugs
that could have remained hidden with a certain mechanism, but which may
emerge later. An approach that takes a specific event selection mechanism into
account may also be useful for some applications.

In this work we focus on two major types of LT properties: safety properties
and liveness properties. We define safety properties first, and give also the related
definitions of invariants and deadlocks.

Definition 7. An LT property ® over AP is called a safety property if for all
o € (247)% — @ there exists a finite prefit & of o such that

DN {O'/ € (247)° | & is a finite prefiz of a’} = ¢.

Intuitively, a safety property states that no “bad” sequences of events may
happen. Any run that causes such a sequence has a bad prefiz; after it the run
does not satisfy the property no matter how it continues.

The notion of invariants plays a key role in the model-checking of safety
properties:

Definition 8. An LT & property over AP is an invariant if
there is a propositional logic formula ¢ over AP such that ® =

{AoA1As ... € (24P)* | Vi > 0,4, F o).

Intuitively, invariants are properties of the current state of the system, and
do not reflect the history of events leading to it.

Through invariant checking one can handle reqular safety properties: those
safety properties for which the associated bad prefixes are recognizable by some
finite automaton [3], or, in our case, there is a b-thread that marks its state as
bad when the bad prefix is recognized. By applying the invariant model-checker
to a program with these threads added, we can effectively handle general regular
safety properties.

Definition 9. We say that a (finite) run p = (e, ea,...,e,) causes a deadlock
if it leads to a state s that has no enabled events (all requested events are also
blocked).

Much like invariants, deadlocks too are properties of states in the system,
and not of runs.

When patching against safety violations, we will receive as input a program
P and an invariant @. We will implicitly check that the system has no deadlocks;
if it does, the patching algorithm will try to remove them. In particular, we will
make sure that no new deadlocks are created while patching; otherwise we could
“patch” a system by simply blocking all enabled events at its initial state.

The other type of properties we consider is liveness properties. The following
is adopted from [3]:

Definition 10. An LT property & over AP is called a liveness property if any
finite word can be extended such that the resulting infinite trace satisfies ®.
Formally, let pref(c) = {& € (247)* | & is a finite prefiz of o} and pref(®) =
U,ca preflo). Then @ is a liveness property if and only if pref(®) = (247",

In the case of regular safety properties, invariant checking plays a key role.
When it comes to liveness properties, a similar role is played by persistence
checking:

Definition 11. An LT property @ over AP is called a persistence property if it
states that a certain condition holds forever, from some point in ®@. Formally, ®
1s a persistence property if there exists a propositional logic formula ¢ such that
& = {AgA1Ay... € (247)% | 3; such that Vj>;, A; F }. Formula ¢ is called
the persistence (or state) condition of P.

As discussed in, e.g., [3], the model-checking of regular liveness properties
is reducible to persistence checking. The latter is performed by portioning the
states of the system into two sets: states in which ¢ holds, termed “cold” states,
and states in which it does not hold, termed “hot” states. Then, the property
holds if and only if there are no reachable cycles consisting strictly of hot states
(which we refer to as reachable “hot cycles”). This can be checked, for instance,
using a nested DFS algorithm.

When patching against liveness violations, we will receive as input a program
P and a persistence property @. In practice, this property is given by an indicator
thread that marks the system’s states as either hot or cold.

5 Extending the Model-Checking of Invariants and
Deadlocks

In order to prepare the ground for the correction of various safety and liveness
violations, we begin by describing how to check that a behavioral program sat-
isfies an invariant and is deadlock-free. We follow the algorithm in [3], section
3.3.1, and the implementation in [9].

Any state that violates the invariant or is deadlocked is marked as “bad”.
We construct the state graph of the program, traverse it using DFS (trimming
when arriving at a previously visited state), and check that all states reachable
from the initial state are not bad. From each state we explore all enabled events
(which reflects our decision to cater for all possible event selection mechanisms).

The runtime complexity of this algorithm, implemented as in [9], is as follows.
Let G = (Vg, Eg) denote the state graph constructed, and let n be the number
of threads and e = | F| the number of events in the original program. |Vg |+ |Eg|
operations have to be performed to traverse the graph. Further, for each state €

Vi we have to perform n - e operations in order to find all its enabled events.
This yields:
Time = O (|Ec|+ Vel - (n-e)).

This complexity is the minimum price one has to pay for running a model-
checker on a behavioral program. Since our technique is based on model-checking,
it will necessarily be forever linked in complexity to that of model checking [3,22],
and the progress made there, for better or for worse. T}, thus serves a base point
with which to compare the complexity of our patching algorithms, and we are
interested in how much additional overhead they incur above it.

We actually use a slightly different algorithm. For our purposes, the usual
model-checking that returns a single violating run does not suffice: we want to
explore all runs that violate the invariant or cause a deadlock.

This is achieved as follows: we traverse the state graph using the same DF'S,
but whenever we reach a bad state we store that information in its predecessor
states. Each state already visited in the graph will thus contain information on
all its bad successors. If the state is reached again, through another route from
the root, we need not traverse its subtree again: we simply update the relevant
states using the data already stored (see Fig. 3).

b, a b,

b

Fig. 3. When a “bad” state is reached, all its predecessors store the relative path from that point to
the violation. When a node in this path is reached through a different path, the data is propagated.
The DFS continues until the root stores all violating paths.

The added complexity of this algorithm is measured using the number of
violating runs, 7 (OOPSilon: pun intended), and the depth of the state graph
D. For each violating run we propagate at most D events to the predecessors,
causing an overhead of 1 4+ 2 + ... + D per violating run. The total runtime
complexity is thus:

T=Tnet+? - (14+2+...4 D) =T+ O(T-D?).

Finally, if all direct successors of a state are bad, then the state itself can
be considered bad; this is because the patching technique we discuss will cut off
the violating children, rendering the state a deadlock. We thus add the following

modification: if, during the DFS, all of a state’s successors are violating or dead-
locked, the state itself is marked as violating; thus its successors can be ignored.
The runtime worst-case complexity remains unchanged.

6 Safety Patches for Loopless Programs

6.1 Generating Linear Safety Patches

Before discussing the safety violation patching of general programs, we begin
with the simpler case of finite programs that are loopless: their state graph
contains no cycles. In a loopless program, every run is finite.

Definition 12. A linear safety wait-block patch for event sequence
(e1,€2,...,€n,€last), Such that ejast € Eprog, is a b-thread with the following
properties:

— The patch waits for events eq, ..., ey, blocks ejqs¢ once and then terminates.

— If the run deviates from the sequence ey, ..., ey, the patch terminates.

— The patch never requests events and does not label states (R(s) = L(s) =0
for all s).

Intuitively, the patch is designed to prevent one bad run from occurring.
Events ey, ..., e, will be chosen according to violating runs found by the model-
checker. The patch will intervene before the last event, causing another event to
be triggered, thus preventing the violation.

The patch only interferes with runs starting with events eq,...,e,; other
runs remain unchanged. Formally:

Lemma 1 (The Locality Lemma). Let P be a collection of b-threads, let p
be a linear safety wait-block patch for event sequence (e, ..., ey), and let P =
P U {p} denote the patched program. Then for any run p of P that does not
start with events eq, ..., e,, the events of p constitute a valid run p' of P’, and
APtrace(p) = APtrace(p’).

Proof. To prove that p’ is a valid run of P’, we need to show that at each
synchronization point during p’, the triggered event is also enabled; namely, it
is requested and not blocked. By definition, if a run does not start with events
(e1,...,en), then the patch never requests or blocks events. Further, the original
b-threads will reach the same states during p’ as they did during p, consequently
requesting and blocking the same events. It follows that the program P’ has the
same requested and blocked events as P in each state during the run. Thus, the
events triggered by p’ are enabled, and the run is indeed valid.

Finally, since the original b-threads reach the same states during p’ as during
p, they will have the same atomic propositions associated with them. Since
the patch has no atomic propositions associated with its states, we get that
APtrace(p) = APtrace(p'). O

The Locality Lemma is our motivation for patching: it states (in this case,
for linear patches) that when we add a patch to negate a single bad run, other
runs remain unharmed, meaning that the patch is local. This is an advantage of
our method as compared to traditional, manual, patching: our patches do not
create new errors in unexpected parts of the code.

The distinct bad runs representing the bug or emanating from the new safety
requirement are found by model-checking;:

Linear Safety Patching(P,®):

1: Run the model checker on (P, ®)

2: if PE @ then

3: return P

4: PP« P

5: for each violating run (ei,...,e,) do
6: if Vi, e; € Feny then

7 return Failure
8

: else
9: Find the largest k such that ey € Eprog
10: Create a linear safety wait-block patch p for (eq,...,ex)
11: P+ P U{p}

12: return P’

The idea is straightforward: the model-checker finds all runs violating ¢ and
we add a patch per run to prevent them. Because @ is a safety property and P is
loopless, there are only finitely many violating runs. The algorithm guarantees
that the blocking performed by the patches creates no deadlocks, by first recur-
sively marking as “bad” any state that has only “bad” children. Furthermore,
because the model-checker works with respect to all possible event selection
mechanisms, any bugs that emerged after the patching are fixed. The Locality
Lemma guarantees that no good runs “far away” from the patch are harmed.
If the algorithm returns a patched program, we thus know that it satisfies the
specification @ and causes no deadlocks.

There is also the case where the algorithm returns a failure notice, as a result
of the model checker returning a violating run in which there were no program-
requested events. This, of course, means that the program cannot be repaired
through wait-block patching. Formally:

Lemma 2 (The Patchability Lemma). Let P be a loopless program with
state graph G = (Vg,Eg) and let @ be a safety property. Then the following
three statements are equivalent:

1. The algorithm succeeds in returning a patched program P’.

2. There exist linear safety wait-block patches p1, ..., pk, such that PU{p;} E ®.

3. There exists a graph G' = (Vi Eqr) with Eq: C Eg and Eq — Ecr € Eprog,
such that no states violating @ or causing deadlocks are reachable from the
initial state in G'.

Proof. (1) = (2) is trivial.

For (2) = (3): Take the original state graph G, and for each p; remove the
edge corresponding to the event it blocks. Since the patched program satisfies
@ and does not deadlock, all reachable states in the graph obtained in this way
satisfy @ and do not cause deadlocks. Furthermore, by the definition of a wait-
block patch, all edges removed are in E,,..4, as needed.

For (3) = (1): Without loss of generality, assume that P starts with an
initialization event e;nit € Eprog. If this does not hold we can change to a new
initial state s;,,, and add a thread that forces event e;n;: to be chosen before
proceeding to the original program.

Suppose that G’ exists but that the algorithm returned a failure notice. We
conclude that it deadlocked on the very first state, s,;,. This, in turn, means
that state s;;+ was marked as bad, so that all paths starting in s;,;+ lead to bad
states. This contradicts the existence of G’, thus proving the claim. O

Condition (3) means that the original program was “not too far” from sat-
isfying @: it contained some good runs and some bad runs, and through some
blocking the bad runs could be averted. Observe that the equivalence of (1) and
(2) is really the validity of the algorithm.

The worst case runtime complexity of the algorithm is just that of the modi-
fied model-checker, namely T = T, + O(Y - D?). This shows the dependence of
our algorithm on the number of violating runs in the original program. If their
number and lengths are small enough our automatic patching is not much worse
than regular model-checking. This also demonstrates why using this algorithm
for synthesis could be costly. If the program is “far away” from satisfying @, as
could be the case when trying to synthesize a program from scratch (say, from
a general program that constantly requests all possible events), then 7" could be
polynomial in the size of the state graph, greatly slowing the process.

6.2 Patching for a Specific Event Selection Mechanism

The above algorithm patches the program so that it satisfies @, regardless of
the event selection mechanism used. However, it may be useful to patch the
program for the specific mechanism M to be used, as it could speed up the
patching process, reduce the number of generated patches, and most importantly,
block less events, leaving open more options for further behavior refinements and
repair, as explained in Fig. 4.

In this case, the model-checking algorithm is modified to return as output all
violating runs of the original program, as well as all (and only) violating runs
that would be created by blocking previously discovered bad transitions. Bad
runs that will not be possible in the patched program, under the specific ESM,
are ignored. This technique is readily applicable also to patches for programs
with cycles and for liveness patches, discussed in the sequel.

".

Fig. 4. In state s, a patch that considers all event selection mechanisms will block b,c, and e. A
patch that considers only, say, an ESM that chooses events alphabetically, needs to block b and ¢,
but can leave e unblocked, relying on the selection of d.

6.3 Example: Patching Tic-Tac-Toe

We demonstrate the use of the linear safety patching algorithm on the loopless
Tic-Tac-Toe behavioral program from [9]. It is loopless since the fact that each
step adds a new move to the board means that its state graph has no cycles.

Suppose that the original program is developed without a model-checker. At
the time of development, the programmer is convinced that the program always
achieves its goal, i.e., never loses (observe that this is a safety property — bad
things do not happen). Various testers support this statement. The program is
then deployed. Some months later, a customer defeats it and sends in the game’s
trace. However, the original software engineer has long quit the firm, and it would
take a long time for a new engineer to repair the code. A suitable solution would
be to apply an automatic patching algorithm to the malfunctioning software.

To simulate this, we took the complete program from [9], and omitted the
more complex threads — those that handle situations where our opponent cre-
ates, simultaneously, two ways to win. If the human player does not try the com-
plex strategy that create such double attacks, the program does indeed seem to
work, but a skilled player can defeat it.

The automatic proof-of-concept tool is easy to use, requiring little modifi-
cations to the original program. The input is the behavioral program and the
safety property @, given as b-threads marking bad states (e.g., victory of the
opponent). The output is code files for new thread instances which are easy to
read and to integrate into the original program (see Fig. 5).

Each such patch inherits from a parent class which implements its “main”
function; see Fig. 6.

In our example, the patched Tic-Tac-Toe program contains 26 different
patches, one of which is demonstrated in the figure. Subsequent verification by
the model checker confirms that now the specification is indeed satisfied.

public patch1 () {
events.add (new X(2,2));
events.add(new 0(1,1));
events.add(new X(0,0));
events.add(new 0(2,0));

Fig. 5. Example of a wait-block patch generated by the proof-of-concept tool. The patch’s code
contains a sequence of events that should be waited-for — events X(2,2), O(1,1) and X(0,0). The
last event in the list, O(2,0), is the one that should be blocked by the patch. The automatically
generated code is legible and comprehensible, as the more complicated details are hidden away in a
parent class.

public void runBThread () {

for (int i=0; i<events.size()-1; i++) {
bp.bSync (none, all, none);
if (!lastEventWas (events.get(i)))

disablePatch ();

}

bSync (none, all, events.getLast());

disablePatch();

Fig. 6. The patch thread’s main function, runBThread() is part of the patching library, and is not
added to the actual patched program. It waits for events defined by a particular patch instance (as
in Fig. 5), blocking the last event and then terminating. If the events chosen deviate from those
defined in the patch instance, it terminates.

7 Safety Patches for Programs with Cycles

7.1 Generating Safety Patches for Cycles

The correctness of the algorithms for linear safety patching relies on the pro-
gram’s state graph’s having no cycles. As most reactive systems run indefinitely,
periodically returning to some “idle” state, such systems cannot be patched by
linear wait-block patches. For example, fixing a behavioral program that enters
a bad state after a sequence of events of the form (a)*b, will call for infinitely
many linear patches.

Our solution is to extend the linear safety patch associated with a single
sequence of events, into one that can keep track of an entire hierarchy of paths
and cycles in the graph, blocking the violating event as needed.

Definition 13. Given a state graph G' = (Vgr, Egr), two special vertices marked
Vinit and Venq and an event e € Ep,oq, a cyclic safety wait-block patch for G is
a b-thread with the following properties:

It waits for all events chosen by the event selection mechanism and traverses

the graph G' according to those events.

Whenever state venq is reached, it blocks event e once.

— If an event occurs such that there is no edge marked with that event, it
terminates.

— It never requests events and does not label states.

Intuitively, the patch is designed to prevent a family of bad runs that are
similar to one another, in that they reach their bad state by transitioning from
Veng via the event e. The graph G’ will be chosen such that it contains all paths
from v;nit tO Veng, thus rendering a single patch able to block that entire family
of bad runs.

The Locality Lemma holds for the cyclic case as well: all runs of the original
system, apart from those starting in v;,; and ending in reaching the violating
state through v.,q and e, are valid runs of the patched system. The proof is
based on the fact that in any such run, the generated patch does not request or
block any events, and thus does not affect the events requested by the program.

Linear safety patches are a particular case of the cyclic ones, in which the
graph G’ is a path, meaning there is precisely one way to reach the violating
state.

The cyclic safety patching algorithm is as follows (G denotes the full state
graph traversed by the model-checker):

Cyclic Safety Patching(P, ?):

1: Run the model checker on (P, ®)
2: if P E & then

3: return P
4: for each violating run (e1,...,e,) do

5 if Vi, e; € FEeny then
6 return Failure
7 else
8: Find the largest k such that ey € Eprog
9
0

: Let sena denote the state reached after events e, ..., ex_1
10: Construct the minimal subgraph G containing all paths in G from s;n:t to
Send
11: Create a cyclic wait-block patch p for G’ with states Vinit = Sinit, Vend = Send,
and event ey.
12: P« P 'U{p}

13: return P’

Constructing the minimal subgraph G’ is done using a modified BFS algo-
rithm, in the following manner. Given the full graph and the two vertices S;n
and Senq, we run a modified BFS search from s;,,;;. Unlike a regular BF'S search,
where each vertex stores a single predecessor (the first vertex from which it is
found), here each vertex stores all the vertices from which it is found. When the
search is over, we begin in s.,q and backtrack through all possible predecessors
of each vertex, until reaching s;,;:. The set of edges and vertices traversed this
way forms the subgraph G’ that we need.

To show that every path from siu¢ t0 Seng is in G, let p =
(Sinity S1s -« -5 Sn, Send) be a path. If p is simple, i.e., no state repeats itself, then
clearly after n + 1 iterations of the BFS search each vertex in p has its preceed-
ing state marked as a predecessor. Therefore, the entire path will be traversed
during the backtrack phase, meaning that p is in G'.

Now, suppose that p is a complex path with one cycle (the proof for the
general case is an easy extension). Then p can be expressed as follows:

! / !
p= (Sinitvsla ceeySky 81,89, '7Sjvsk7sk+17' . '7Snvsend)
—_——
the cycle

The states before and after the cycle are found as before. The cycle’s states,
Shyens s;-, are found at the latest during the j’th iteration after the first arrival
at sx. When the cycle ends, s; is marked as a predecessor of si. Therefore,
during the backtrack phase that passes through s, the entire cycle will be found.
Consequently, the returned subgraph contains p.

To see why G’ is minimal, observe that if a state is added to the subgraph it
is part of at least one path from $;,;; t0 Seng, and therefore cannot be omitted
from the graph.

Lemma 3. If the algorithm returns a patched program P', then P’ E &.

Proof. Suppose that there exists a run p of P’ violating @. Denote its states
51,...,5p, and extract from them a violating run with no cycles. If s; = s; for
some j > i, delete states s;11,...,s;. Denote the remaining states as sy, , ..., S¢, .
The run corresponding to this state sequence was found by the model checker,
and a patch for some subgraph G’ which contains this run was created. Since G’
contains all paths from s; to s,, it also contains p. Therefore, the patch would
have blocked the last program-requested event of p, causing a contradiction. O

As with the linear case, it is possible for the algorithm to return a failure
notice. The Patchability Lemma, which characterized programs that could be
fixed in the linear case, holds for the cyclic case as well; its proof is analogous.

The complexity of the algorithm is as follows: The exploration of violating
runs costs, as before, O(T},. + T - D?). Constructing the relevant subgraph for
each violating run costs another |Vg| 4 |E¢| times 7" runs, yielding:

T=0(Tone+7-D>+7T(|Va| +|Eql)) -

Again, this shows our dependence on the number of violating runs, 7. The
smaller that number, the closer our complexity is to that of the model-checker;
the higher it is, the closer we are to the notorious, worst-case complexity of the
synthesis problem.

7.2 Subgraph Representation

The generated code for a linear safety patch contains only the list of events
to be waited for, followed by the event to be blocked. This list can be readily
understood and possibly manipulated by a human, say, for documentation or
analysis. Further, the developer may simplify or generalize the patch; e.g., skip

waiting for certain guaranteed events or consolidate patches into fewer “sym-
bolic” one, using BPJ’s event filters. However, when a patch traverses a complex

subgraph, gaining such insights is harder. Thus, we propose to represent the
subgraph as a collection of easily readable linear event scenarios, amenable to
human manipulation. The operation of the cyclic safety patch will be as before.

Specifically, We use the term line for a finite sequence of events that occur
along some contiguous path in the state graph, and along which no state is
visited twice. We use the term tail for a line whose last event would lead to a
bad state in the state graph. The program’s state graph, or parts thereof, are
stored as a collection of lines, each containing its sequence of events, and links
to other lines that are reachable by a single event from the last event in the line.

See Fig. 7.
el /64\@:) €6
e €5 €3 es
H €1 |—| €2 ey '—| es '_._| e9
(5] (‘] (7] [¢] x]

Fig. 7. A state graph of a buggy program. The model-checker returns the violating run with events
e1, ez, er,es, eg. The subgraph of all paths from state A to state G (see solid states and edges) is
decomposed into: line; = e, ex (successors tail,lines); lines = ez (successors lines , lines); The
self-loop lines = eg (successors line3,liney); lines = e4, e5 (successors lines ,tail) ; tail = e7,es
(with event to be blocked, eg). In addition to the run found by the model checker, the patch prevents
other runs, e.g., e1, e2, e3, e¢, €6, €4, €5, €3, €4, €5, €7, €8, €9, where the underlined events correspond
to cycles.

Thus, each patch,

— begins by activating lines containing the initial state;

— waits for all events and traverses active lines;

— deactivates active lines when they are deviated from;

— deactivates a line and activates its successors when the line’s last event oc-
curs;

— in a tail, prior to the event leading to the bad state, blocks that event, waits
for one more event, and deactivates the tail.

The line representation can be implemented in a data structure or in sepa-
rate patch b-threads, each beginning with waiting for a unique activation event.
This results in a number of small patches and is readily implementable in all
implementations of behavioral programming.

7.3 Example: Patching a Coffee Machine

We demonstrate cyclic safety patching with a simple coffee vending machine ex-
ample, which is expected to repeatedly wait for a coin, wait for a coffee request,
and prepare the coffee. The main requirement is that coffee is never prepared
unless a coin is first inserted. However, if immediately after power-up the user re-
quests coffee, the machine incorrectly allows coffee to be requested and prepared

coin coffee
coffee req. POWer ingserted, ready

inserted coin coffee
accepte req.
inserted

Fig. 8. The buggy coffee machine’s state graph. After the PowerUp event, if a CoffeeRequested event
occurs (before a coin is inserted), free coffee can be obtained infinitely many times, until a coin is
inserted. The loop on the right-hand side of the graph represents the desired operation. The prob-
lematic state (marked s;1) has two enabled events: CoffeeReady, which is immediately requested (and
selected), and the environment event CoffeeRequested. We expect the patch to block the CoffeeReady
event.

infinitely many times without a coin. When the first coin is inserted, the machine
enters normal operation. The machine’s state graph is depicted in Fig. 8.
Observe that the bug is a safety bug — coffee is served without first inserting
a coin. When it is discovered and automatic patching is attempted, the first step
is to have a new b-thread identify and mark bad states (namely, s2).
The automatic patching algorithm generates a single patch, corresponding
to the subgraph depicted in Fig. 9.

coffee
requested

coffee power -
s
! requested up [nit

Fig. 9. The subgraph of the program’s state graph for which a patch is created. It shows all paths
from the graph’s initial state to state si, in which event CoffeeReady must be blocked to prevent
violations.

Finally, the graph of the patched program is depicted in Fig. 10, and the
code generated by the proof-of-concept tool is shown in Fig. 11.

8 Dealing with Liveness

Up to this point, we dealt with safety properties — those that assert that “noth-
ing bad happens”. Another important class of properties is those involving live-
ness, asserting that “good things eventually happen”. In this section we show
how wait-block patches can be applied in order to fix liveness violations too.

In the case of safety properties, ensuring that a property holds is reducible
to rendering all “bad” states unreachable, and so it was straightforward to use
blocking in order to correct malfunctioning programs. Recall that in Section 4

coffee

requested power
up

coffee coin

coin
inserted,

requested inserted

coin
inserted

Fig. 10. The patched program’s state graph (states of the patches themselves are omitted for
clarity). The violating CoffeeReady event has been blocked, and the bad state no longer exists in the

state graph.

coin
accepted

public cyclicPatchl () {
linelEvents.add(new PowerUp());
linelEvents.add(new CoffeeRequested()
linel = new LineComponent(linelEvents

line2Events.add(new CoffeeRequested()
line2 = new LineComponent(line2Events

tailEvents.add(new CoffeeReady ());
tail = new TailComponent(tailEvents);

linel.addSuccessor(tail);
linel.addSuccessor (line2);
line2.addSuccessor(line2);
line2.addSuccessor (tail);

this.addActiveComponent (linel);

Fig. 11. The automatically-generated Java code for representation of the subgraph in Fig. 9. The
first line contains events PowerUp and CoffeeRequested, and the second line contains CoffeeRequested.
The tail contains only the event to be blocked, CoffeeReady. The code is readily understandable.

we mentioned that liveness violations correspond to reachable cycles of “hot”
states (i.e., “hot cycles”) in the program’s state graph, and so it is less clear how
to apply blocking. One natural approach might be to identify when the system
is traversing a hot cycle, and then block one of the cycle’s transitions (when an
alternative exists), forcing the run to leave the cycle. This has several drawbacks:

1. Unlike in the safety case, where a bad state was never to be visited, in the
liveness case it is legal to traverse the hot cycle any finite number of times.
Consequently, safety-like patching would destroy good runs, which is highly
undesirable.

2. Naively forcing the run to leave a hot cycle does not guarantee that it reaches
a cold state; it could enter another hot cycle.

3. We would need to keep track of the hot cycles in the graph — the number
of which could be very large.

To overcome these difficulties, we adopt a different perspective. Instead of
considering runs and the hot cycles they traverse, we consider the hot states
themselves. We show how, using wait-block patches, one can enforce a state-
based policy that forces every run to visit cold states infinitely often, thus en-
suring that the liveness property in question holds.

Our technique works by distinguishing between two types of hot states: hot-
trap states and hot-escapable ones. Hot-trap states have the property that once
they are visited, a liveness violation cannot be prevented; i.e., the system can
never force the run into a cold state again. Consequently, hot-trap states are
considered as “bad” states, and we use safety wait-block patches to render them
unreachable. The hot-escapable states are those from which the system could
force the run to visit a cold state, via some transitions; however, we cannot
assume that these transitions may ever be traversed. In particular, it is possi-
ble for the system to continuously choose transitions that keep the run in hot
states, although transitions to cold states are always enabled. We handle the
hot-escapable states by enforcing fairness: we make sure that if a transition is
enabled infinitely often, it will eventually be traversed. This type of fairness
can be enforced using probabilistic wait-block patches, which we also call live-
ness patches. Through their use we can ensure that any liveness violations are
effectively eliminated.

In the remainder of the section we discuss the liveness patching process more
thoroughly.

8.1 Classifying Hot States

The first step in our repair algorithm is partitioning the hot states in the state
graph into the two types mentioned. These two sets are formally defined by
the algorithm below, which takes as an input the state graph of the program
G = (Vg, Eg), and returns the sets of hot-escapable and hot-trap states. For
each hot-escapable state the algorithm also outputs its escape-distance, denoted
§: this is the length of a path from the hot-escapable state that reaches a cold

state, and which the system can enforce regardless of the environment’s behavior.
See Fig. 12 for an illustration.

Classify Hot States(Vg, Eq):
1: A« ColdStates(Vg), B < HotStates(Va), iteration < 1
2: continue < true
3: while continue do
4: continue < false, New + ¢
5 for each state s € B do
6: if at least one outgoing edge (internal or external) from s leads to a state in
A, and no outgoing external edge from s leads to a state in B then
7 continue < true

8: New < New U {s}
9: 0(s) « iteration
10: iteration + +

11: B+ B— New, A+ AUNew
12: HotEscapable < AN HotStates(Va)
13: HotTrap + B

14: return (HotEscapable, HotTrap)

The algorithm performs a fixpoint computation of the set A of states that
are either cold or from which the system can force the execution to reach a cold
state. When the algorithm terminates, this set contains the hot-escapable states.

The key point in the algorithm is line 6, which contains the condition based
on which a new hot state enters A. For a state to become hot-escapable, all
its external edges must lead into A, which expresses the fact that these events
are beyond our control, and are controlled by the environment. Since we cannot
prevent (block) them, we require that they cause no problem in the first place
— namely, that they lead to states that have already been classified as hot-
escapable by their being in the set A. Another condition, which handles the case
where a state only has internal events enabled, is that there be at least one edge
going into a state of A. The key fact is that if either condition holds, the blocking
idiom can be applied to block all edges that do not lead to A.

The escape-distance value, §, of a hot-escapable state indicates the number
of the iteration in which it joined A. It measures the shortest guaranteeable
distance to a cold state — that is, the length of the shortest such path that can
be enforced by blocking.

Observe that while this algorithm serves to define hot-escapable and hot-trap
states, it is not efficient — primarily because of the loop in line 5. By considering,
at every iteration, only nodes that have successors that were determined hot-
escapable in the previous iteration, the run time complexity can be reduced to
O(|Vel + |Ecl).

8.2 Handling Hot-Trap States

As discussed previously, once the run enters a hot-trap state the system can-
not guarantee that it ever reaches a cold state. Consequently, we are forced to

Fig. 12. Hot-trap and hot-escapable states. Hot states are marked red and contain either a number
or the letter T; cold states are marked blue and are empty. Solid edges correspond to internal events,
and dotted edges correspond to external events. A number inside a hot state designates the state as
hot-escapable and indicates the escape-distance. The letter T designates the state as hot-trap.

block that entrance in the first place. This is done by applying safety wait-block
patches, using the technique discussed in Section 7, which renders all hot-trap
states unreachable.

Observe that this may remove potentially good runs too — namely, runs
that go through a hot trap state yet still visit a cold state eventually. This can
happen, for example, when an external event leading to another hot trap state
is not triggered and, instead, an internal event that leads to a cold state is
triggered. However, since we cannot depend on external events being triggered
or not, our only way to ensure that no violations occur is to make hot-trap states
unreachable.

8.3 Hot-Escapable States and Transition Fairness

The criterion used in determining the set of hot-escapable states ensures that
careful use of the blocking idiom can force the run from a hot-escapable state
into a cold state. The actual technique we propose is aimed at harming as few
good runs as possible, and is based on fairness.

The notion of fairness assumptions [18] is used widely in formal verification,
typically in order to rule out violating runs of the system because they are not
realistic. Here, we discuss a special kind of fairness, called transition fairness [1]:
if a transition is enabled infinitely often (i.e., its state of origin is visited infinitely
often), then it is traversed infinitely often. We also allow a set of transitions
originating from the same state to form a single constraint: if the state is visited
infinitely often, then at least one of the transitions in the set is traversed infinitely
often. Note that, unlike in the traditional setting where fairness is assumed for
verification purposes, here we aim to enforce it within a malfunctioning system.

Intuitively, hot-escapable states have the property that if the event selection
mechanism were to choose the triggered events uniformly at random, a run that

visits them would eventually lead to cold states. It turns out that one can also
settle for assumptions that are weaker than truly random event selection. We
express these required assumptions as transition fairness constraints, and then
discuss how to enforce them. Formally:

Definition 14. Let P be a behavioral program with state graph G. A transition
fairness constraint ¢ on G is a set of one or more transitions (edges) in the graph,
{e1,...,en}, all originating from the same node v. We say that P satisfies ¢,
denoted P F c, if it has the following property: if a run p of P wvisits v infinitely
often, transitions from c are traversed infinitely often.

Let C = {c1,ca,...,c1} be a set of transition fairness constraints. We say
that P satisfies C, denoted P = C, if Vi<,<i P F ¢;.

We now define a set of specific transition constraints for each of the hot-
escapable states in the graph, and then show that they suffice for guaranteeing
the liveness property in question.

Definition 15. Let P be a behavioral program with state graph G = (Vg, Eg),
and let Viot—escapavie © Va be its set of hot-escapable states with respect to some

liveness property ®. For each v € Viot—escapable; the transition fairness constraint
of v, 7(v), is defined as follows:

— if v has transitions corresponding to external events, T(v) is the set of these
transitions.

— otherwise, v has a neighbor, u, such that u is a cold state or §(u) < §(v). In
this case, we define T(v) to be the edge leading from v to u.

Observe that for every hot-escapable state v, 7(v) can be found during the hot
state classification algorithm at no additional cost. We define the set of transition
fairness constraints of the entire program to be the set of transitions fairness
constraints on all its hot-escapable states, namely 7(P) = UveV;wtfeswpabze 7(v).
The following proposition justifies our choice of constraints:

Lemma 4. Let P be a behavioral program and let @ be a liveness property. If P
has no hot-trap states with respect to ® and P E 7(P), then P E .

Proof. Suppose, towards contradiction, that P # &. Then there exists a run p of
P and a hot state vg € Vo, such that vy appears infinitely often in p. Since P
has no hot-trap states, vg is hot-escapable.

By our assumption that the constraints of 7(P) hold, there exists a neighbor
of vy, denoted v1, that also appears infinitely often in p, and this v; is either a
cold state or a hot-escapable state with d(v1) < d(vg). If the former holds, then
p E @ and we are done. If the latter holds, we reapply the same logic iteratively.
Clearly, this produces a chain of hot-escapable states vg, vy, ..., vy, all appearing
infinitely often in p, with 6(vg) > d(vy) > ... > (vy,). Since §(vp) is finite, this
process ends in visiting a cold state infinitely often, again implying that p E .

Note that the lemma assumes that P has no hot-trap states. However, this

is not a real limitation, since, as previously explained, we can first apply safety
patching to make such states unreachable.

8.4 Liveness Patches

We have characterized fairness constraints that are sufficient for correcting the
liveness violation. Unfortunately, behavioral programs are not guaranteed to be
fair. This is an intrinsic property of the event selection mechanisms commonly
used in behavioral prgramming. For example, in arbitrary or priority-based se-
lection certain transitions might be enabled infinitely often but never triggered.
Consequently, we introduce a new type of patch, termed a liveness wait-block
patch, aimed at enforcing a transition fairness constraint on the program.

Definition 16. Given a state graph G = (Vg, Eg), a probability n, a hot-
escapable state v € V and its transition fairness constraint 7(v), a liveness
wait-block patch for v is a b-thread with the following properties:

— It waits for all events chosen by the event selection mechanism and traverses
the graph G according to them.

— It keeps track of the present state and notes when the execution reaches v.

— Whenever in v, with probability 1 —n the patch does nothing. With probability

n, it blocks all transitions except those in 7(v).

It does not request events and does not label states.

Intuitively, liveness wait-block patches are a way of incrementally injecting
fairness into specific states of an already existing program, without modifying
existing code. When the patch is applied to a hot-escapable state, it enforces the
fairness constraint of that state; in runs in which the state is visited infinitely
often, at least one of the transitions specified by the constraint will be triggered
infinitely often. Indeed, the probability that edges in 7(v) are not traversed after
after m visits to v approaches 0 as m tends to infinity, and this is true even for
very small values of 7. Note that, despite their probabilistic nature, these are
essentially wait-block patches: they wait for a sequence of events, and then apply
blocking to steer the run in the right direction.

Observe that it is indeed always possible to block all the transitions except
those in 7(v). The only events that cannot be blocked are the external ones;
and if there are external transitions in v, they are all in 7(v) by definition.
Further, observe that by their definition liveness patches cannot cause deadlocks
in states that were deadlock-free before the patching — as the patch always
leaves unblocked at least one event that was already enabled.

Our motivation for using probability-based blocking is the desire to leave
good runs unaffected. Choosing 7 to be small still guarantees that the fairness
constraint holds, but makes it likely that runs that scarcely visit the state remain
unaffected.

As in the case of cyclic safety patches (Section 7.2), liveness patches can be
represented as a collection of lines and tails to make them more comprehensible.

We point out that so far we have dealt strictly with deterministic behavioral
programs. Our probabilistic liveness patches, however, introduce nondetermin-
ism into the system. This nondeterminism is not “against the grain” of behav-
ioral programming, and indeed, extending behavioral programming definitions
to support nondeterminism is straightforward, and is omitted.

8.5 The Liveness Patching Algorithm

Based on the discussion in the previous sections, we now present the patching
algorithm itself:

Liveness Patching(P, ?):

1: PP« P

2: Run the model checker on (P, ®)

3: if P E @ then

4: return P

5: Run algorithm Classify Hot States on the state graph

6: for each hot state v, € V do

7: if vy, is a hot-trap then

8: if creating a safety patch to prevent runs from reaching vy, is impossible then
9: return Failure
10: Create a safety patch p;, that prevents runs from reaching vy
11: P« P U{p;,}
12: else
13: Create a liveness patch pf,h for vy,
14: P« P u{p.,}

15: return P’

Observe that, as in the safety patching algorithm of Section 7, it may be
impossible to create safety patches for hot-trap states in certain cases. One
extreme example is when the entire state graph consists of hot-trap states only,
so that attempting to render these states unreachable produces a trivial program
that deadlocks in its initial state. In such cases, the algorithm returns a failure
notice.

The correctness of the algorithm is established by the following lemma:

Lemma 5. Let P’ be a patched program returned by the algorithm, and let p be
a run of P'. Then with probability 1, p E &.

Proof. By the previously proved correctness of safety patching (Lemma 3), the
algorithm ensures that there are no reachable hot-trap states in P’. By Lemma 4,
it suffices to show that P’ satisfies the constraints in 7(P) with probability 1.
This claim is immediately derived from the definition of a liveness wait-block
patch (Definition 16) and the discussion following it.

Part of our motivation for using wait-block patches in repairing violated
safety properties was the Locality Lemma, which stated that any good runs
remain unchanged. Unfortunately, that lemma cannot be proved for the liveness
case; in fact, any liveness wait-block patch, by definition, might affect good runs
as well as bad ones. We settle for the following:

Lemma 6 (The Weak Locality Lemma (Liveness)). Let P be a collection
of b-threads, let p be a liveness wait-block patch for hot-escapable state sy, and
let P’ denote the patched program P U {p}. Any run p of P that does not reach
sp constitutes a valid run p' of P, and APtrace(p) = APtrace(p’).

The proof is similar to that of the safety case and is omitted. The result is
weaker, in the sense that if s;, is hot-escapable then good runs that pass through
it might, with some probability, become invalid in the patched program. That
probability increases the more times they pass through s;. However, the effect
on good runs can be reduced by decreasing the patches’ blocking probability 7.

The complexity of the liveness patching algorithm is as follows. The model
checking phase costs O(T;,.). Classifying the hot states is linear in the size
of the state graph. Each hot-trap state is then handled as a safety violation,
adding O(|Vhot—trap| - (D* 4 |VG| +|Eg)). Finally, for every hot-escapable state,
we must construct the sub-graph needed to check when it is visited, yielding
another O(|Viot—escapable| - (|[Va| + |Eg)). Combining these, the total worst-case
complexity becomes:

T = O (Tmc + (|Vhot| +]-) N (‘VG| + ‘EGD + |Vhot—trap| : D2) .

The runtime complexity shows the algorithm’s dependence on the number of hot
states: the smaller it is, the closer our complexity is to that of regular model-
checking. In the next section we discuss a heuristic-based approach for reducing
this in practice.

8.6 Minimal Fairness Enforcement

In the algorithm just discussed, we first rendered all the hot-trap states in the
state graph unreachable and then enforced a set of transition fairness constraints
in the hot-escapable states. By Lemma 5, we are guaranteed that this repairs
any liveness violations in the program. However, the number of enforced fairness
constraints is rather large — it is approximately the number of hot-escapable
states in the program. Despite this, in some cases one can settle for fairness
constraints that are far less extensive. For instance, consider the graph in Fig. 13.

f

Fig. 13. An instance where the liveness repair algorithm would enforce more fairness than is re-
quired. The graph above has three hot-escapable states, and the algorithm would enforce transition
fairness on the three edges leading from them into the cold state. Clearly, it suffices to settle for just
one of these three constraints in order to guarantee that the cold state is eventually reached. Similar,
larger constructions show that our algorithm might enforce any number of fairness constraints where
just one would suffice.

Decreasing the number of fairness constraints being enforced is highly de-
sirable, for two reasons. First, as we mentioned earlier, we wish to perform as

few modifications to the original program as possible, and enforcing fewer con-
straints clearly serves this goal. Second, the size of the automatically generated
code module is in correlation with the number of constraints that it enforces.
Hence, fewer constraints means shorter modules, which are easier to maintain.

A natural question thus arises: can one identify a minimal-size set of fairness
constraints that need be enforced on a given behavioral program in order to
ensure that a given liveness property holds? Formally, we define the minimal
fairness problem M F,,, as follows: Given a behavioral program P with state
graph G = (V, E¢) and a liveness property @, such that G has no hot-trap states
with respect to @, find a minimal-size set C of transition fairness constraints such
that PEC = PE ®.

Unfortunately, it turns out that this problem is NP-complete. In [5], the
authors study the problem of synthesis in the face of incomplete knowledge
about the system’s environment. In particular, they show that the problem of
finding a minimal fairness assumption on the environment in order to make a
given specification realizable is NP-complete. It is straightforward to show that
this problem is reducible to M F,,; and that MF,, is in NP, rendering it NP-
complete.

Given this fact, we propose a greedy algorithm for approximating M F,,;
in practice. The algorithm starts with an empty constraint set, and adds new
constraints iteratively, in a manner similar to the way algorithm Classify Hot
States finds the set of hot-escapable states.

Throughout its iterations, the algorithm maintains a growing set of already
“handled” hot-escapable states. This is the set of states for which enforcing the
current set of fairness constraints guarantees that they partake in no liveness
violations. In other words, a run that visits any of these states infinitely often
will reach a cold state infinitely often too.

The set of handled states is increased in each iteration. There are two ways
for a state v to become handled:

1. By direct fairness enforcement: this happens when the algorithm chooses to
enforce a fairness constraint leading from v into the set of already handled
states.

2. By indirect domination: if, due to previous fairness constraints, all of v’s
successors are already handled, then v itself can be immediately marked as
handled.

At each iteration, the algorithm imposes one fairness constraint, meaning that
precisely one vertex becomes handled through method 1. Our criteria in choosing
this particular vertex is trying to maximize the number of states that will become
handled through method 2. The actual choice is performed by looking at all the
candidates, namely nodes that can become handled through the enforcement
of a single constraint. Each candidate is then assigned a value, which is its
number of hot-escapable predecessors that are not yet handled (observe that
these predecessors are precisely the vertices with potential to become dominated
by choosing this vertex). Finally, the highest valued candidate is selected, and

the corresponding fairness constraint is enforced. Here is pseudo-code outline of
the algorithm:

Approximate M F,,:(V, E):

1: A < HotStates(V'), handled < ¢, constraints < ¢

2: while A# ¢ do

3: candidates <+ FindAllCandidates()

4: mazx < MaxValuedCandidate()

5 Add a constraint that handles max to constraints

6: Move max to from A to handled

7: while there are nodes in A dominated by handled do
8 Move dominated nodes from A to handled

9: return constraints

The two subroutines, FindAllCandidates and MaxV aluedCandidate, are
omitted. As with algorithm Classify Hot States, an efficient implementation of
the algorithm and its subroutines runs in time that is linear in the size of the
program’s state graph.

8.7 Example: Liveness Patching for the Dining Philosophers

We implemented our liveness patching algorithm (including the greedy approxi-
mation algorithm) within our proof-of-concept tool. For evaluation, we used the
dining philosophers problem [7]. A behavioral implementation thereof includes
the events of a philosopher picking up and putting down a given fork, a b-thread
for the behavior of each philosopher and a b-thread for each fork. Each philoso-
pher’s b-thread is subject to a strict event sequence: pick up one fork, pick up
the other, put down one fork, put down the other. Each fork’s b-thread waits for
events that change its state, and blocks illegal events (e.g., a second picking up,
or, a putting down by the “wrong” philosopher). In [9] we model-checked this
problem and variations thereof for safety and liveness properties.

For our experiment, we used a variant where the first n — 1 philosophers are
left-handed and the last one is right handed, which prevents deadlocks. All events
in the program are internal, and so no hot-trap states exist. Finally, the liveness
property used was this: “Philosopher #1 eats infinitely often”. The results are
shown in Table 1.

Each fairness constraint is translated into the actual code that enforces it,
using the same mechanism as for safety patches. Although there may be many
patches (as the example demonstrates), each of them is fairly comprehensible.
The possibly high number of patches was part of our motivation for using the
greedy algorithm; coming up with better algorithms to further reduce this num-
ber remains a topic for future work.

Table 1. Comparing the results of the naive repair algorithm and the greedy approximation repair
algorithm for the dining philosophers problem, with 9 - 12 philosophers. The States column shows
the total number of states in the program. The Patches (Naive) and Patches (Greedy) columns
show the number of patches generated by the naive and greedy algorithms, respectively. Observe
that since the nalve algorithm generates one fairness constraint per hot-escapable state, the Patches
(Naive) column reflects the number of hot-escapable states as well. Finally, the Reduction column
shows the percentage of patches saved by using the greedy version.

#Philosophers|#States|#Patches (Naive)|#Patches (Greedy) Reduction
9 Philosophers | 19682 17495 9913 43%

10 Philosophers | 59048 52487 30760 41%

11 Philosophers | 177146 157463 93989 40%

12 Philosophers | 531440 472391 287283 39%

9 Limited-Depth Repair

9.1 Automatic Repair from Field Error Reports

Many facilities exist for end-users to send reports of software failures to the soft-
ware vendor (see, e.g., Fig. 14). Typically, these reports correspond to violated
safety properties (e.g., “the system never crashes”).

Please tell Microzoft about this problem.
“We have created an eror report that you can send ta help us improve Miciosoft [R) Visual
Basic Compiler. “we will reat this report as confidential and anonymaus.

Wéhat dats does this enor report contain?

Debug Send Error Report | Don't Send I

Fig. 14. Event logs from bug reports are used in patch construction.

For behavioral programs, we propose a methodology for using such failure
reports in order to cope with the state-explosion problem inherent to model-
checking, and to patch programs with many violating runs:

— The failure report contains an event log.

— Using the fact that the effect of a patch is local, we constrain the model
checking depth to a neighborhood of the path of the failure (the bad run),
followed by a limited fan-out of possible continuations, past the blocked
transition.

— This is enforced by a dedicated b-thread, which monitors all events, and when
an event occurs that is not along the reported bad path, it starts counting
the distance from the bug report. When the distance is greater than a given
parameter, the b-thread calls a model-checker API to prune the search.

— Finally, the safety patch is generated as above.

Such patching prevents the failure reported by the end-user, along with any
other failures “not far” from it, and can help when full model-checking and

patching consumes too much resources. The search-depth parameter is key, and
needs to be adjusted per repaired program; higher depth means repairing more
violations, but poorer performances. It is up to the user to use knowledge of the
program’s state graph, or run tests, in order to come up with the best choice.

9.2 Example: Limited-Depth repair of the Dining Philosophers

Again consider the dining philosophers problem [7], this time where all philoso-
phers are left handed. The reported bug fixed is the classical deadlock where all
philosophers pick up the fork on their left. Table 2 shows the results of patching
for the single bad run that we gave the patcher.

Table 2. Patching the dining philosophers problem using bounded depth patching. Receiving a
bug report (e.g., each philosopher picked up a single fork), the algorithm searches for event sequences
that deviate from, or continue, the event trace in the bug report by no more events than the search
depth parameter. The patches handle cycles discovered within the search depth (e.g., one of the
philosophers completing a full cycle of picking up and putting down her two forks, while the others
do not proceed). The tests were carried out on a PC with a Intel Quad Core Q6600 CPU @ 2.40GHz.

Search Depth|3 Philosophers|6 Philosophers|9 Philosophers

3 patches 1 patch 1 patch

3 3 loops 2 loops 2 loops
0.5 seconds 4.2 seconds 30 seconds
15 patches 2 patches 3 patches

4 30 loops 4 loops 6 loops
1.2 seconds 22 seconds 4.5 minutes
20 patches 12 patches 12 patches

5 380 loops 1200 loops 2580 loops
3.2 seconds 2 minutes 45 minutes

10 Related Work

The research in [17,20,21] presents fault localization and automatic repair of pro-
grams, where a set of software components that are suspected to cause a fault is
replaced by a set of synthesized components, such that the resulting system is
guaranteed to meet the full specification. Automatic repair of concurrency bugs
(e.g., accessed to shared memory), is presented in [16]. The detection mecha-
nism uses bad runs associated with bug reports, and the analysis involves actual
execution. The repair is manifested in modification to existing code. Genetic-
programming-based repair of legacy C programs is demonstrated in [24]. The
repair relies on changes to existing code in order to correct problems that were
assumed to be local in nature. In [2], genetic-programming is combined with
co-evolution of the test cases against which the program is evaluated. Naturally,
any work on automatic-repair would be considered a particular case of program
synthesis [4,19].

As mentioned in Section 8.6, our work on repairing liveness violations relates
to that of [5], where the authors show how to synthesize fairness assumptions the
environment must uphold in order for a specification to be realizable. Our work
tackles similar difficulties, but in a different setting: the environment is fixed,
and fairness constraints on the system are synthesized. Our repair algorithm
then imposes those constraints on the previously designed system.

As for other approaches for coordinating simultaneous behaviors, such as
Esterel, BIP or Linda (see related work in [11,12] for a comparison of behav-
ioral programming with these approaches), we believe that comparable local-
ized repair mechanisms would be possible. The key would be implementing the
equivalent of blocking which, combined with ability to subscribe to all events,
is central to our solution. This, of course, is possible, as it was in Java and Er-
lang, and could also benefit other aspects of incremental development in these
environments.

11 Conclusion and Next Steps

The contribution of the present paper is in the proposed automated approach,
in which faulty components are neither identified nor modified. Instead, the sys-
tem is non-intrusively augmented with additional components, to yield desired
overall system behaviors. The entire approach is made possible by the incremen-
tality and modularity of behavioral programs. The new components are readily
understandable by humans, and can be documented, enhanced, or generalized
as part of standard development. The generated patches can then be distributed
to users without re-distributing the original software. Finally, contributing to
the on-going and up-hill battle with state explosion, we propose a methodol-
ogy and a practical technique for constructing local patches using limited-depth
model-checking.

This research is a step in the direction of developing methodologies and tools
for the repair of behavioral programs. An important next step is to enrich the tool
with interactive capabilities, allowing the developer to examine the state graph
and enhance the proposed repairs: consolidating similar patches, generalizing or
constraining patch functionality, or perhaps changing existing code after all.

Future research problems include repairing the program with regard to time-
related properties, as well as integration with other formal methods tools and
techniques, including other synthesis algorithms, symbolic model-checking, and
compositional verification. Our tool could be combined with Java Pathfinder [23]
or other tools to explore support of richer inter-process communication be-
yond solely behavioral events, and possibly solving concurrency problems among
b-threads, as in [16].

We hope that with further developments in incremental, non-intrusive devel-
opment, supported by powerful repair automation, the task of software main-
tenance may eventually shed its present (often lackluster) image, becoming a
rewarding undertaking, allowing software engineers to quickly address customer
needs in a productive, satisfying manner.

Acknowledgments

We thank A. Kantor, S. Maoz, Y. Sa’ar, S. Szekely and G. Wiener for their
valuable suggestions on the manuscript. The research of D. Harel, G. Katz and
A. Marron was supported by The John von Neumann Minerva Center for the
Development of Reactive Systems at the Weizmann Institute of Science, by an
Advanced Research Grant from the European Research Council (ERC) under
the European Community’s 7th Framework Programme (FP7/2007-2013), and
by the Israel Science Foundation. The research of G. Weiss was supported by
the Lynn and William Frankel Center for CS at Ben-Gurion University, by a
reintegration (IRG) grant under the European Community’s FP7 Programme,
and by the Israel Science Foundation.

References

1. B. Aminof, T. Ball, and O. Kupferman. Reasoning about Systems with Transition
Fairness. In Proc. 11th Int. Conf. on Logic for Programming Artificial Intelligence
and Reasoning (LPAR), pages 194-208, 2004.

2. A. Arcuri and X. Yao. A Novel Co-evolutionary Approach to Automatic Software
Bug Fixing. In Proc. 10th IEEE Congress on Evolutionary Computation (CEC),
pages 162-168, 2008.

3. C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press, 2008.

4. R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and Y. Saar. Synthesis of
Reactive(1) Designs. Journal of Computer and System Sciences. In press.

5. K. Chatterjee, T. A. Henzinger, and B. Jobstmann. Environment Assumptions for
Synthesis. In 19th Int. Conf. on Concurrency Theory (CONCUR), pages 147-161,
2008.

6. W. Damm and D. Harel. LSCs: Breathing Life into Message Sequence Charts. J.
on Formal Methods in System Design, 19(1):45-80, 2001.

7. E. W. Dijkstra. Hierarchical Ordering of Sequential Processes. Acta Inf., 1:115-
138, 1971.

8. D. Harel, H. Kugler, R. Marelly, and A. Pnueli. Smart Play-Out of Behavioral
Requirements. In Proc. 4th Int. Conf. on Formal Methods in Computer-Aided
Design (FMCAD), pages 378-398, 2002.

9. D. Harel, R. Lampert, A. Marron, and G. Weiss. Model-Checking Behavioral
Programs. In Proc. 11th Int. Conf. on Embedded Software (EMSOFT), pages 279—
288, 2011.

10. D. Harel and R. Marelly. Come, Let’s Play: Scenario-Based Programming Using
LSCs and the Play-Engine. Springer, 2003.

11. D. Harel, A. Marron, and G. Weiss. Programming Coordinated Scenarios in Java.
In Proc. 24th European Conf. on Object-Oriented Programming (ECOOP), pages
250-274, 2010.

12. D. Harel, A. Marron, and G. Weiss. Behavioral Programming. Communications
of the ACM, 55(7):90-100, 2012.

13. D. Harel, A. Marron, G. Weiss, and G. Wiener. Behavioral Programming, Decen-
tralized Control, and Multiple Time Scales. In Proc. of the SPLASH Workshop on
Programming Systems, Languages, and Applications based on Agents, Actors, and
Decentralized Control (AGERE!), pages 171-182, 2011.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

D. Harel and A. Pnueli. On the Development of Reactive Systems, volume F-13 of
NATO ASI Series. Springer-Verlag, New York, 1985.

D. Harel and I. Segall. Planned and Traversable Play-Out: A Flexible Method
for Executing Scenario-Based Programs. In Proc. 13th Int. Conf. on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS), pages 485—
499, 2007.

G. Jin, L. Song, W. Zhang, S. Lu, and B. Liblit. Automated Atomicity-Violation
Fixing. In Proc. ACM SIGPLAN Conf. on Programming Language Design and
Implementation (PLDI), 2011.

B. Jobstmann, A. Griesmayer, and R. Bloem. Program Repair as a Game. In Proc.
17th Int. Conf. on Computer Aided Verification (CAV), pages 226-238, 2005.

Z. Manna and A. Pnueli. The Temporal Logic of Reactive Systems: Specification.
Springer-Verlag, 1992.

A. Pnueli and R. Rosner. On the Synthesis of a Reactive Module. In Proc. 16th
ACM Symposium Principles of Programming Languages (POPL), pages 179190,
1989.

S. Staber, B. Jobstmann, and R. Bloem. Diagnosis is Repair. In Proc. 16th Int.
Workshop on Principles of Diagnosis, pages 169-174, 2005.

S. Staber, B. Jobstmann, and R. Bloem. Finding and Fixing Faults. Correct
Hardware Design and Verification Methods, 3275:35-49, 2005.

A. Valmari. The State Explosion Problem. Lectures on Petri Nets I: Basic Models,
Reisig, W. & Rozenberg, G. (eds.), Lecture Notes in Computer Science, 1491:429—
528, Springer-Verlag, 1998.

W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda. Model Checking Programs.
Automated Software Engineering, 10:203-232, 2003.

W. Weimer, S. Forrest, C. Le Goues, and T. Nguyen. Automatic Program Repair
with Evolutionary Computation. Communications of the ACM, 53:109-116, 2010.
G. Wiener, G. Weiss, and A. Marron. Coordinating and Visualizing Independent
Behaviors in Erlang. In Proc. 9th ACM SIGPLAN Erlang Workshop, 2010.

https://www.researchgate.net/publication/283053532

