
Multiple Instances and Symbolic Variables in Executable
Sequence Charts∗

Rami Marelly David Harel Hillel Kugler

{rami,harel,kugler}@wisdom.weizmann.ac.il

Department of Computer Science and Applied Mathematics
The Weizmann Institute of Science

Rehovot, Israel

ABSTRACT
We extend live sequence charts (LSCs), a highly expres-
sive variant of sequence diagrams, and provide the exten-
sion with an executable semantics. The extension involves
support for instances that can bind to multiple objects and
symbolic variables that can bind to arbitrary values. The
result is a powerful executable language for expressing be-
havioral requirements on the level of inter-object interaction.
The extension is implemented in full in our play-engine tool,
with which one can execute the requirements directly with-
out the need to build or synthesize an intra-object system
model. It seems that in addition to many advantages in test-
ing and requirements engineering, for some kinds of systems
this could lead to the requirements actually serving as the
final implementation.

1. INTRODUCTION
Sequence charts (whether MSCs [27] or their UML vari-

ant, sequence diagrams [25]) possess a rather weak partial-
order semantics that does not make it possible to capture
many kinds of behavioral requirements of a system. This
is mostly due to the fact that they do not distinguish be-
tween possible and mandatory behavior, and are thus far
weaker than, e.g., temporal logic or other formal languages
for requirements and constraints.

To address this, while remaining within the general spirit
of scenario-based visual formalisms, a broad extension was
proposed in 1999, called live sequence charts (LSCs) [7].
LSCs distinguish between scenarios that may happen in the
system (existential) from those that must happen (univer-
sal). They can also specify messages that may be received

∗This research was supported in part by the John von Neu-
mann Minerva Center for the Verification of Reactive Sys-
tems.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
OOPSLA’02, November 4-8, 2002, Seattle, Washington, USA.
Copyright 2002 ACM 1-58113-417-1/02/0011 ...$5.00.

(cold) and ones that must (hot). A condition too can be
cold, meaning that it may be true (otherwise control moves
out of the current block or chart), or hot, meaning that it
must be true (otherwise the system aborts). Moreover, the
progress of instances may be defined to be hot thus enforcing
the instance to progress, or cold thus enabling the instance
to remain in its location. Among many other things, LSCs
can express forbidden behavior (‘anti-scenarios’).

The expressiveness of the language makes it possible to
view LSCs as an executable model, and not only as a tran-
sient development product used for verification and docu-
mentation. Indeed, in [14] a play-out execution mechanism
is described. Using play-out, the user can execute require-
ment specifications given in LSCs directly, without the need
to build or synthesize a system model consisting of state-
charts or code. The play-out mechanism is one part of a
wider methodology, called play-in/out; the other part en-
ables scenarios to be ‘played-in’ directly from a GUI or
an object model diagram, using user-friendly and intuitive
means. Both the play-in and play-out parts of the method-
ology are implemented in a tool called the play-engine1[14].
We should emphasize that the behavior played out need not
be the behavior that was played in. The user is not merely
tracing scenarios, but is executing the requirements freely,
as he/she sees fit.

This makes it possible to utilize LSCs throughout the de-
velopment cycle. As in many object oriented methodologies,
the user first specifies the system’s use cases [18], and then
instantiates these use cases using sequence charts. Since
use cases are intended to describe the observable reactions
of the system to actions coming from the user or the ex-
ternal environment, universal charts are perfect for the job.
Thus, while requirements would be described as universal
charts, system tests that are intended to demonstrate provi-
sional behavior under specified conditions can be captured
by existential charts. When moving to the design phase,
the universal charts can be refined, and be used to model
how the objects that constitute the system design interact
in order to satisfy the original requirements.

Since the play-engine renders LSC specifications executable
at every point along the way, these (refined) universal charts
can be executed, and the existential charts can be moni-

1Short animations demonstrating some capabilities
of the play-engine tool are available on the web:
http://www.wisdom.weizmann.ac.il/∼rami/PlayEngine

tored to check that system tests hold continuously. In a
later phase, the behavior of each class can be described as a
statechart, or be ultimately implemented as code in a spe-
cific programming language. Now, since the LSC specifi-
cation is executable, it is possible that for some kinds of
systems the last phase may be omitted: the LSCs, together
with the play-engine acting as a universal requirements ex-
ecution machine, may serve as the final implementation.

All this might sound very nice, but it is of limited value
if the LSC requirements themselves can refer only to spe-
cific objects and to constant and limited information being
passed between them. In such a case, and in order for the
specification to be executable as expected, the user would
have to specify an unacceptably large number of scenarios.

In this paper, we address this problem and extend the
LSCs of [7] with symbolic instances. A symbolic instance,
associated with a class rather than with an object, and pa-
rameterized by a variable or other expression, may stand for
any object that is an instance of the class. We also allow
the information passed between the instances to be param-
eterized, using symbolic variables. A symbolic message may
stand for any message of the same kind, with actual val-
ues bound to its parameterized variables. In the case where
objects can be created and destroyed dynamically and the
number of objects is a priori unknown, using classes allows
specifying requirements that could not have been expressed
using concrete objects only. The extension is also useful for
specifying parameterized systems, where an actual instanti-
ation of the system has a bounded number of objects, but
this number is given as a parameter.

In our setting, the binding of classes to concrete objects
may be restricted by conditions that are dynamically eval-
uated. This allows for one generic scenario to describe the
interaction of objects that are associated by dynamically
changing relations and are not restricted to a static ob-
ject model. An LSC specification utilizing both symbolic
instances and messages is compact, yet represents a large
number of specific scenario realizations.

We provide an operational semantics for the extended lan-
guage and describe how it is implemented and incorporated
into the play-engine’s execution mechanism.

We note that even though the extensions and semantics
are given for LSCs, they apply in a straightforward man-
ner to weaker scenario languages, such as MSCs and UML
sequence diagrams.

2. EXECUTING BEHAVIORAL SYSTEM RE-
QUIREMENTS

In this section we define our system model and explain
what we mean by executing requirements and what is ex-
pected from a tool that executes them.

A system includes a set of objects and a set of messages
that can be sent and received by them. Some of the messages
can be sent by the system’s external environment and some
may be received by it. We denote by M the alphabet of
messages and by E the alphabet of system events consisting
of sending and receiving these messages.

Sys = 〈O,M〉
O = {O1, O2, . . . , On}
M = {M1, M2, . . . , Mk}
E = {e1, e2, . . . , e2k} = M×{Send, Recv}

Behavioral requirements for a reactive system specify con-
straints on how the system should react with respect to ex-
ternal stimuli such as user actions, events coming from ex-
ternal environment, timing events, etc. In way of executing
requirements, we would like to enable the user to specify
end-user or environment actions and for him/her to then be
able to observe the system responses to these stimuli. The
play-out methodology described in [14] adopts the kind of in-
teraction framework present in model execution tools such as
Statemate and Rhapsody [17]: the user demonstrates end-
user and environment actions by operating the objects in
a GUI application and the system responses are reflected
in the GUI objects. The external GUI can be replaced or
augmented with an object model diagram to show internal
object behavior. This mode of action is very intuitive and
gives the effect of working with a fully operational system.

One must realize, however, that it is much harder to exe-
cute requirements given in an inter-object language, such as
sequence diagrams or LSCs, than it is for statecharts or code.
The latter are intra-object in nature, providing clear infor-
mation on each object’s reactions to every possible event.
In contrast, sequence diagrams or LSCs are scenario-based
and do not contain explicit instructions for each object un-
der any set of circumstances. This is the central issue that
our play-out mechanism had to address.

Our approach in building the play-engine can be described
as the following general set of capabilities that an execution
mechanism for requirements should supply:

1. Identify an external stimulus and find all the require-
ments that should be considered when resolving the
system’s response to it (e.g., identify the event of flip-
ping a switch and find all the requirements that specify
the system’s responses to the switch being flipped).

2. Apply the relevant requirements to create the sequence
of system reactions. This includes identifying addi-
tional requirements that become relevant as the sys-
tem is responding and applying them too (e.g., after
the switch is flipped, send a signal to the controller,
which, in turn, may result in sending a signal to the
light and turning it on).

3. Identify scenarios that are forbidden according to the
requirements, and avoid generating them (e.g., make
sure that if the requirements say that a certain signal
cannot be sent to the light while it is on, the signal
will indeed not be sent when the light is on).

4. In case a forbidden scenario does occur, indicate a vi-
olation.

5. Indicate when an existential (provisional) scenario com-
pletes successfully.

A requirements execution mechanism can thus be likened
to an over-obedient citizen who walks around with the ‘Grand
Book of Rules’ on him at all times. He doesn’t lift a finger
unless some rule in the book says he has to, and never does
anything that violates some other rule. He constantly scans
and monitors all rules at all times. Thus, the engine does
only those things it is required to do, while avoiding those
it is forbidden to do. This is a minimalistic, but completely
safe way for a system to behave exactly according to the re-
quirements. To make sure the system doesn’t just sit around

doing nothing, it is up to the requirement engineers to make
sure that liveness properties they want the system to sat-
isfy should be incorporated into the requirements. Clearly,
in so acting, nondeterministic choices could arise, and in-
consistencies in the requirements could be discovered. More
about this later.

3. THE LSC LANGUAGE
Like other scenario-based languages (e.g., MSCs [27] and

UML sequence diagrams [25]), LSCs are visual, which ap-
peals to engineers, but they are far more expressive and are
thus suitable for specifying the actual behavioral properties
of reactive systems [7]. For example, conventional sequence
languages mostly specify scenarios that may happen during
a system run, whereas LSCs can also specify what must hap-
pen. Precharts in universal charts can specify that whenever
some behavior occurs, the system is obligated to respond in
a specific way. Events and conditions can themselves be hot
(mandatory) or cold (provisional), which provides consider-
able additional power. A cold condition at the beginning of
a chart, for example, is equivalent to specifying a precondi-
tion. A while loop can be obtained by placing a cold condi-
tion at the beginning of an unbounded loop, while placing
it at the end of the loop results in a repeat-until. A hot con-
stant false condition standing alone in a chart means that
the scenarios specified in the prechart are forbidden, thus
enabling the user to specify anti-scenarios (forbidden ones)
as an integral part of the language.

The expressive power of the LSCs language caused us to
choose it over far weaker variants of sequence charts. How-
ever, the extensions described in this paper are valid for most
variants of sequence charts, including, of course, UML’s se-
quence diagrams. There is also an effort underway, inspired
by the work on LSCs, to extend UML sequence diagrams for
UML 2.0 by universal and hot elements. The ideas in the
current paper can be easily applied to that language too.

An LSC specification is defined as:

S = SU ∪ SE

where SU is a set of universal charts and SE is a set of
existential charts. Universal charts are used to specify re-
strictions over all possible system runs. A universal chart
is associated with a prechart that specifies the scenario(s)
which, if successfully executed, forces the system to satisfy
the scenario(s) given in the actual chart body. In contrast,
an existential chart is required to be satisfied by at least one
system run. Existential charts thus do not force the appli-
cation to behave in a certain way in all cases, but rather
state that there is at least one set of circumstances under
which a certain behavior occurs. Existential charts can be
used to specify system tests, or simply to illustrate longer
(non-restricting) scenarios that provide a broader picture of
the behavioral possibilities to which the system gives rise.

An LSC L is defined to be:

L = 〈IL, ML, CondL, SubL〉
where IL is a set of instances, ML is a set of messages over
the alphabet M, CondL is a set of conditions (stand-alone
guards) and SubL is a set of subcharts. Each instance repre-
sents an object and each message represents some informa-
tion sent from one object to another (or to itself). Instances
are drawn as vertical lines and messages are drawn as hori-
zontal lines. Time is assumed to go from top to bottom. We

define the set of events in L as:

EL = ML × {Send, Recv} ∪ CondL ∪ SubL × {Start, End}
That is, an LSC event can be either an actual system event
of sending or receiving a message, or it could be one of the
acts of evaluating a condition, entering a subchart or exiting
it. Every instance line contains locations. Each location
is an intersection of the instance line with an event from
EL. We denote by lix the xth location of instance Ii, and
by �(I) the set of locations of instance I. Each location
may be hot (which the semantics will take to mean that
eventual progress of the instance beyond that location is
forced), or cold (the instance can remain in that location
without violating the chart).

We define the function evnt :
⋃

I∈L �(I) → EL, mapping
a location to the event it is associated with, and its inverse
loc : EL → 2

⋃
I∈L �(I) = evnt−1, mapping an event to the set

of locations associated with it. Note, that when restricting
the domain of loc to ML×{Send, Recv}, loc becomes single-
valued.

In the present paper, we focus mainly on instances and
messages. For details about conditions, if-then-else con-
structs, various kinds of loops, and the way these constructs
are utilized in our setting, see [14]. For the original definition
of LSCs see [7].

Fig. 1 shows an example of a universal LSC, which de-
scribes the following requirement:

Whenever the user dials ‘2’ and then clicks the ‘Call’ but-
ton on Phone1, the phone sends the message ‘Call(2)’ to
its channel. If the channel is out of order, the scenario
ends. If it is in order, the channel forwards the message
to the switch. The switch then sends a message ‘Call(1)’
to Chan2. If Chan2 is in order it forwards the message to
Phone2. Otherwise, it sends a message ‘DenyCaller(1)’ to
the switch, which in turn sends an error message to Phone1.

Note how the triggering scenario is placed in the prechart
(top dashed hexagon), while the chart body contains the
consequential part of the requirement. Cold elements are
denoted by dashed lines and hot elements by solid ones.

3.1 The semantics of LSCs
In this section we overview the semantics of non-symbolic

LSCs and the main principles of our LSC execution mecha-
nism.

Definition 3.1 (LSC cut). An LSC cut is a mapping
of every instance to one of its possible locations in the LSC.
Cuts are used to indicate the progress line of each chart dur-
ing the execution. The temperature of a cut is hot if at least
one of the instances is in a hot location and cold if all the
instances are in cold locations.

Cuts are drawn in the diagrams as thick comb-like broken
lines.

Every LSC (the same goes for other variants of sequence
diagrams) induces a partial order between locations, which
is the central aspect in determining the order of execution.
In the following, we shall be using terms related to partial
orders and to execution and synchronization to explain the
concepts. The LSC partial order <L induced by a chart L
is obtained by the following relations:

Instance line - The locations along a single instance line
are ordered top-down, beginning with the prechart

Figure 1: Example of an LSC

start and ending with the chart end. Time is assumed
to propagate from top to bottom so that things higher
up are carried out earlier:

x < y ⇒ lix <L liy

Send-Receive - For an asynchronous message m ∈ ML,
the location of the 〈m, Send〉 event precedes the loca-
tion of the 〈m, Recv〉 event. Thus, an asynchronous
message is sent before it is received. For synchronous
messages, the two events take place simultaneously:

∀m ∈ ML :

(async(m) ⇒ loc(〈m, Send〉) <L loc(〈m, Recv〉)) ∧
(sync(m) ⇒ loc(〈m, Send〉) =L loc(〈m, Recv〉))

Conditions - All the locations of instances participating
in a condition are at the same place in the partial or-
der. Thus, the condition is processed at a single time
for all its relevant instances, and they are all synchro-
nized to that event:

∀C ∈ CondL∀lix, ljy ∈ loc(C) : lix =L ljy

Subcharts - All the instances participating in a subchart
(e.g., prechart, if-then-else, loop) are synchronized at
the beginning of the subchart and at its end. That is,
no instance is allowed to move into the subchart before
all other instances have arrived at their entry points.
And the same applies to ending the subchart; partic-
ipating instances wait for all others before proceeding
to whatever comes after the subchart .

∀Sub ∈ SubL ∀lix, ljy ∈ loc((Sub, Start)) : lix =L ljy

∀lix, ljy ∈ loc((Sub, End)) : lix =L ljy

We extend the partial order <L to events in the following
way: e′ <L e if ∃l ∈ loc(e), ∃l′ ∈ loc(e′) s.t. l′ <L l.

Definition 3.2 (minimal event in a chart). An event
e is minimal in a chart L if there is no event e′ in L such
that e′ <L e.

Minimal events are important in our executability ap-
proach: whenever an event e occurs, all charts that feature e
as a minimal event in their prechart are activated and start
being monitored to see if their prechart completes success-
fully.

Definition 3.3 (enabled event). An event e is en-
abled with respect to a cut C if the location in C of every
instance participating in the event e is the one exactly prior
to e.2

At each step of executing the specification the engine chooses
from among the enabled events the one it will execute next.

Definition 3.4 (violating event). A system event e
violates a chart L in a cut C if e ∈ ML × {Send, Recv} but
e is not enabled with respect to C.

Before an event e that is enabled in chart L is chosen to
be executed, the execution engine verifies that it does not
violate any other chart. Note that an event that does not
appear in chart L can occur during the execution of that
chart without causing any violation.

A single universal chart may become activated (i.e., its
prechart is successfully completed) several times during a
system run. Some of these activations might overlap, re-
sulting in a situation where there are several copies of the
same chart active simultaneously. In order to correctly iden-
tify the activation of universal charts, there is also a need
to have several copies of the prechart (each representing a
different tracking status) monitored at the same time. The
following notion will be instrumental for this:

2Usually, there will be only one such instance, but conditions
and subcharts may have several participating instances.

Figure 2: The life cycle of an LSC live copy

Definition 3.5 (LSC live copy). Given an LSC L,
a live copy of L, denoted by CL, is defined as:

CL = 〈L, M, Cut〉,
where L is a copy of the original chart, M ∈ {PreActive,
Active, Monitored} is the execution mode of this copy, and
Cut is some legal cut of L representing the current location
of the instances of L in this particular copy.

The general life cycle of an LSC live copy is illustrated in
Fig. 2.

Having all these definitions in mind, our execution mech-
anism works in iterations, each of which consists of a step,
which is an event initiated by the user, followed by a super-
step, which is a sequence of events that are selected from
the set of enabled events that are not violating. As this is
going on, minimal events are identified and new LSC copies
are created. The super-step ends when there are no more
enabled events that can be carried out. For a more detailed
description of our play-out execution mechanism, see [14].

It is now clear that executing requirements given as LSCs
has a lot to do with event matching and unifying. For exam-
ple, when an event e occurs we have to find all the match-
ing events in the set of LSCs in order to create new copies
of them and monitor their execution too. Matching events
must also be found in copies that are already active, both to
detect violations and in order for enabled matching events
to be propagated simultaneously in their respective charts.
From now on, we shall use the term unifiable events instead
of matching events, since as we will show, the algorithms
for matching events are based mainly on classical unifica-
tion [23], similar to the way clauses are unified in the Prolog
programming language.

Definition 3.6 (level0-unifiable events). Two events
e = 〈m, t〉 and e′ = 〈m′, t′〉, with t, t′ ∈ {Send, Recv} are
level0-unifiable if t = t′, m = m′, sender(m) = sender(m′)
and receiver(m) = receiver(m′).

4. SYMBOLIC MESSAGES AND ASSIGN-
MENTS

4.1 Symbolic messages
Often it is natural to specify a small number of sample

cases that represent more general scenarios. For example,
we might describe a scenario in a calculator where pressing
9, + and 7 in that order (prechart) causes 16 to be displayed
as a result (chart body). We would then like to generalize
this scenario and show it in the chart as a sequence in which
“X1”, “+” and “X2” are pressed in order, and the result is
shown to be “X1 + X2”.

To enable such generic scenarios we extend the definition
of a message to contain formal parameters. Now, instead of
a set of constant messages:

M = {m1, . . . , mk}
we have a set of symbolic messages, each with (zero or more)
parameter variables, where each variable xi is defined over
a type Di from the application domain:

M = {m1(x1, . . . , xn1), . . . , mk(x1, . . . , xnk)}
An occurrence of a variable in an LSC, means that it

may take on any value from the variable’s type. Using the
same variable in different places in a chart allows the user
to specify that the same value will occur in these places in
a specific run (not necessarily the same value in all runs).

Fig. 3(a) shows a simple example of using variables to
denote the link between the state of a switch, which may
be changed by the user, and the state of a light which is
required to be the same as the state of the switch; when
one is On the other is too, and the same for Off. In this
particular case, the variable Xpower is of type Power which
is an enumeration containing the values On and Off.

A careful look at Fig. 3(a) reveals an interesting issue
concerning the partial order defined by the chart. The chart
seems to say that “the user changes the state of the switch
to On or Off, and the light then changes its state to be the
same as that of the switch”. However, the partial order of
LSCs does not restrict the clicking of the switch to come
before the light changing its state. This is a problem, since
we really want the first to happen before the second. This
problem is often solved by introducing a control object that
receives the state from the switch and sends it to the light

Figure 3: The effects of variables on LSCs partial order

(Fig. 3(b)), thus restricting the partial order, as required.
However, we most often wish to remain in a higher, more

abstract, level of the specification and do not want to get
into the details of how information about the value of the
variable is transferred. Yet, on the other hand we do want
some initial event to determine the value of the variable,
so that subsequent usages of the same variable in different
places will have the same value. We make this possible by a
slight extension of the partial order <L induced by an LSC
L.

4.2 Enriching the partial order
We make use of the vertical placing of locations that are

not on the same instance line. Imagine a vertical line T
aligned with an LSC L. Consider the ordering of locations
from top to bottom, as projected on T . See Fig. 4, in which
locations L1 and L2 are not ordered by <L but are vertically
ordered; we might write L1 <V L2.

Figure 4: Vertical order: L1 <V L2

The partial order <L is now extended to handle the order
induced by variables. We say that lix is the first location in
L to use variable V , if evnt(lix) = 〈m, Send〉, and with m
having V as one of its parameters, and such that for any
other location ljy of an event e′ that uses V , either lix <L ljy
or lix <V ljy. Now, for every location lix which is the first

in L to use the variable V , and every other location ljy in L

that uses the same variable, we add the relation lix <L ljy to
the partial order <L.

Thus, the extension causes the first occurrence of a vari-
able to come before all the others, but no new order is im-
posed on the subsequent occurrences. It is very natural for
users building LSCs to specify dependent events in the order

they occur, and to cause this order to be reflected in the ge-
ometry of their LSCs (even though the official partial order
is not necessarily affected by this order). While we do not
go as far as to attach significance to all vertical ordering,
we do think that the first occurrence of each variable is a
significant part of the way the user chose to enter the infor-
mation, taken to mean “this is the first occurrence of this
symbolic value, and the value given here will impact later
occurrences”. By the way, if the requirements are played in
[14], events that are played in first will appear higher up
in the generated LSC anyway, which is consistent with this
philosophy.

Having said all this, we should note that this decision is
not sacred, and was made for convenience. We could have
required the user to specify separately which of the minimal
occurrences of each variable is the dominating one for the
purpose of receiving and spreading around a value.

4.3 Assignments
Most sequence diagram languages, including the original

definition of LSCs, seem to lack the capability of referring
to values of system properties after they are set. In [14] a
new assignment construct was proposed as an extension to
pure LSCs.

Assignments are local to a chart, and can be used by
the user to save values of the properties of objects, or of
functions applied to variables that hold such values. The
assigned-to variable stores the value for later use in the
LSC. The expression on the right hand side may be a con-
stant value, a reference to a property of some object (this is
the typical usage), or a function applied to some predefined
variables. Each assignment may have several participating
objects, which, as in conditions, synchronize at the location
of the assignment. In contrast to the system’s state vari-
ables, which may be used in several charts, the locality of
an assignment variable means that it can be used in the
containing chart only.

An assignment is also considered an event for the purpose
of finding the first event that uses a variable. Hence, the
user may specify that a variable V is assigned some value,
and from then on V can be used by other objects as a pa-
rameter in messages being sent and received. Assignments,
although a simple construct, are very useful when dealing
with symbolic charts, as we will show later on.

4.4 Message unification

Now that messages can be symbolic, we can redefine event
unification.

Definition 4.1 (bound and free variable). A vari-
able at a particular location in an LSC is said to be bound
if it has been assigned a value. It is free if it is not bound.
The ‘value’ of a free variable is denoted ⊥.

Definition 4.2 (bound and free messages). A mes-
sage is said to be bound if all its variables are bound. It is
free if it is not bound.

We shall use simple predicate notation for notions like free
and bound, as in free(x).

Definition 4.3 (level1-unifiable events). Two events,
e = 〈m(x1, . . . , xn), t〉 and e′ = 〈m′(y1, . . . , yn), t′〉, are level1-
unifiable if 〈m, t〉 and 〈m′, t′〉 are level0-Unifiable and:

∀i ∈ {1..n} : (value(xi) = value(yi)) ∨ free(xi) ∨ free(yi)

Here is how the unification of two level1-unifiable events
works: If xi is bound and yi is free, then after the events
are unified yi will be bound to the value of xi. The same
for the case where yi is bound and xi is free. If both xi and
yi are free, they are connected in a connection list. Later,
when one of the variables in the connection list is bound to
some value, all other variables in the connection list will be
bound to the same value.

As a simple example, suppose one chart contains an event
e = 〈m(x), Send〉, and the sending is from O1 to O2, a
second chart contains e′ = 〈m(y), Send〉, also from O1 to
O2. Now, suppose that the event of O1 sending m(3) to O2

has occurred. There are a number of cases to consider:

• If both e and e′ are enabled in their charts, and x and
y are free, we would like to bind x and y to 3 and
advance both charts.

• Suppose y is already bound to the value 4. Clearly,
after binding x to 3, the messages are not the same
and therefore cannot be unified. In this case, e will
be advanced and e′ will neither be advanced nor be
considered violating.

• The last and most interesting case is when y is free and
e′ is currently not enabled. There are really two pos-
sibilities we could adopt here. The first is to succeed
in unifying e and e′, thus advancing the first chart
and causing violation of the second, and the second
is to fail in the unification, thus advancing the first
chart and leaving the second as is. The first approach
maintains that if it is possible for an event to cause
a violation it should be handled as if it indeed will,
and the second says that if it is possible that an event
will not cause a violation, it should be handled as if
it won’t. Our experience with several examples shows
that the second approach is significantly more prac-
tical. For example, suppose there is a system with a
display that shows several warnings while running, us-
ing messages of the form “show(xi)” where the xi’s
are assigned values during the execution. These mes-
sages are spread throughout several charts and should
not necessarily be synchronized with each other. If the
first approach is taken, whenever the display tries to
show something as dictated by one chart, it will cause
a violation of other charts. This limits the specification
in a way that is very difficult to overcome.

We adopt the second approach, and thus distinguish be-
tween positive unification, in which we allow variables to
be bound, and negative unification, in which variable bind-
ing is forbidden. Positive unification is used to find minimal
events in precharts that will cause the activation of new LSC
copies and also to find events in different active charts that
should be propagated simultaneously. Negative unification
is used to find violating events in active LSCs, so that only
if a violating event is already bound to a violating value will
it cause a violation. If the event is not yet bound, it means
that we currently do not know that it will cause a viola-
tion, and we therefore leave it as is. Hence, for negative
unification, Def. 4.3 is modified to require that:

∀i ∈ {1..n} : (value(xi) = value(yi)
= ⊥)

In the presence of symbolic messages, our execution al-
gorithm now operates as follows. When a user initiates an
event e, this event is by its very nature bound (e.g., the
user has clicked the digit 7, turned the switch on etc.). The
universal charts are scanned for minimal events that are
level1-unifiable with e and are then unified with it, thus
(possibly) causing their variables to be bound. Once these
variables are bound, new events that depending on these
now definitely-valued variables may become enabled (e.g.,
displaying the digit 7, turning a light on etc.). A super-step
is then performed, where enabled events that are positively
level1-unifiable are carried out simultaneously. Before trig-
gering any event, however, the active LSC copies are scanned
for events that are negatively level1-unifiable with this event.
If such a violating event is found, the original event is not
taken.

5. SYMBOLIC INSTANCES
Symbolic messages are but one aspect of the task of defin-

ing generic scenarios. There is another major issue to ad-
dress. Many systems feature multiple objects that are in-
stances of the same class. This is one of the central maxims
of the object-oriented paradigm. For example, a commu-
nication system contains many phones, a railroad control
system may have not only many trains and terminals but
also many distributed controllers, etc. We would like to be
able to specify behavioral requirements in a general way, on
the level of classes and their parameterized instances, not
necessarily restricting them to concrete objects. In this sec-
tion we extend the LSC language with symbolic instances
and present the semantics of executing charts with symbolic
instances.

First, we extend the system model to contain not only
specific objects but also abstract classes:

Sys = 〈C,O,M〉
C = {C1, C2, . . . , Cn}

where C is the set of classes and the sets of objects and mes-
sages remain the same. Next, we define the class function
that maps each object to the class it is an instance of:

class : O → C
5.1 Symbolic instances in precharts

Consider the prechart of Fig. 5(a). The instance name
Phone:: actually denotes a symbolic instance, representing
the class Phone that contains all actual phones in the sys-
tem. As discussed before, events in precharts are monitored,

Figure 5: A symbolic instance in a prechart

and are propagated as a result of the user initiating an event
or of an event occurring in some universal chart body as part
of a super-step. In this example, when the user clicks a digit
on one of the phones, say Phone1, the event can be iden-
tified and the prechart can be activated, with the instance
Phone:: being bound to Phone1.

The extended unification principle we will be using can be
derived from this example quite naturally: level2-unifiable
events are defined by relaxing the requirement for identical
senders and receivers:

Definition 5.1 (level2-unifiable events). Two events
e = 〈m(x1, . . . , xn), t〉 and e′ = 〈m′(y1, . . . , yn), t′〉 are level2-
unifiable if they are level1-unifiable but instead of requiring
that sender(m) = sender(m′) and receiver(m) = receiver(m′)
(see Def. 3.6), we require that:

sender(m) = sender(m′) ∨
sender(m) is symbolic and class(sender(m′)) = sender(m) ∨
sender(m′) is symbolic and class(sender(m)) = sender(m′)

and the analogous clause for receiver(m) and receiver(m′).

This definition could be easily extended to support class in-
heritance by defining a class hierarchy and associating each
object with the class from which it is derived. A symbolic
instance representing a class C can then bind to a concrete
object O if O is either an instance of C or is an instance of
class C′ which (indirectly) inherits from C.

The execution mechanism is now modified as follows. When
an event e occurs, the precharts of universal charts are scanned
for minimal level2-unifiable events. Note that if e occurred,
its sender and receiver are already bound. If such a unifi-
able event is found, a copy of the relevant universal chart
is created and the symbolic sender and receiver instances
(if they exist) are bound to the actual sender and receiver,
respectively. The same holds for events located in precharts
of already created copies.

5.2 Symbolic instances in the main chart
Suppose that we would like our phone to have the prop-

erty that any digit the user clicks will be transmitted over

a channel appropriately associated with the phone. Simply
adding a symbolic instance representing a Channel:: is not
enough, since there is a major difference between the phone
and channel symbolic instances, in the way they can be iden-
tified. The Phone:: instance is bound to an actual phone
as the result of a user action. The channel however, should
be bound by the execution mechanism (not by the user),
in order for the message from the actual phone to be sent
via an actual channel without the need for a user-triggered
action during execution. The information on which channel
should bind to the Channel:: symbolic instance is missing.

One option for obtaining this information is to follow the
approach suggested in [11], where the static object model
can have each phone associated with a channel by a special
relationship denoted by itsChannel. This information can
then be used in the LSC. We suggest a somewhat more gen-
eral approach, using binding expressions, which can involve
any properties of the instance. If the first event involving
a symbolic instance is in the prechart, the instance will be
bound to an actual object as the result of a level2-unification
with some other event, but if it is in the chart body it should
be possible for the execution mechanism to trigger it, and it
should be identified using a binding expression, as follows.

Fig.5(b) shows how the Channel:: instance is specified as
binding with the actual channel associated with the phone
(the example assumes that this association was done by the
use of a common ID). After the Phone:: instance is bound,
the assignment can be performed and the value of ID is
determined, following which the binding expression of the
Channel:: instance (shown in the small oval above the in-
stance name3) can be evaluated and the appropriate channel
can be bound. A binding expression can be evaluated (and
actually is evaluated) as soon as all the variables it uses are
bound.

The binding-expression approach can be used to associate
objects using any navigation expressions derivable from the
object model diagram. For each such navigation association,
a property can automatically be extracted (e.g., itsChannel
could be derived in the case of a one-to-one association be-

3The ‘.’ preceding the ID property indicates a self reference.

tween a phone and its channel, itsCahnneli for the ith chan-
nel in the case of a one-to-many association, etc.). We have
not implemented this feature yet, since our play-engine has
not yet been set up to support object associations.

Now, a binding expression can be satisfied by more than
one object. This raises the options of the engine choosing
one at random at runtime, or making such cases an error,
or somehow binding to all satisfying objects. Since there
are cases where we would like only one instance to bind and
others for which we would like them all, we have decided
to allow both,in the hot/cold spirit of the original definition
of LSCs [7]: the association of a symbolic instance with a
binding expression is quantified existentially or universally.
In the existential case (denoted by a dashed instance header
and expression oval), one of the satisfying objects is chosen
at random and the instance is bound to it, and in the uni-
versal case (denoted by solid lines), a new copy is created
for each object satisfying the binding expression.

The LSC in Fig. 6 shows the power of this approach.

Figure 6: Using universally quantified symbolic in-
stances

Whenever the central switch becomes out of order (as a
result of some external environment stimulus), we want it
to send a CancelCall message to all the channels that are
currently allocated to a conversation. This is done using a
universally quantified Channel:: instance associated with a
binding expression that is true for all allocated channels (no
matter how many channels the system has).

5.3 Reusing a scenario prefix
Fig. 7(a) raises an interesting issue concerning multiple

bindings of a symbolic instance. The LSC in the figure states
that if some phone sends the message Call(1) to the switch
and then some other phone sends the same message to the
switch, the switch sends an error message to the second
phone. In way of illustration, suppose Phone1 is the first
to send the message to the switch. As a consequence, the
left-hand instance in the chart is bound to Phone1. Now,
Phone2 sends the message to the switch, the right-hand in-
stance is now bound to Phone2, and the chart completes its
execution by sending the error message from the switch to
Phone2; see Fig. 7(b).4 This is fine.

Now suppose that a third phone, Phone3, sends the same
message to the switch. The pair of events of Phone1 and
then Phone3 sending the same message satisfies the prechart
of the LSC in Fig. 7(a), and the chart body should there-
fore be executed. But this is a problem since after binding

4The solid frame surrounding the LSC in this figure denotes
its completion. Notice also that the cut is located at the end
of the chart.

the right-hand instance to Phone2, the LSC copy completes
execution and stops existing, and the first event of Phone1
sending the message is ‘lost’, making it impossible for a sec-
ond event to cause another satisfaction of the chart. We
solve this problem as follows. When an instance in an al-
ready activated LSC copy is bound to an object as the result
of an event, the binding and consequent propagation of the
execution are carried out in a new separate copy (in this
case Fig. 7(b)). In addition, the original copy is left open,
with the cut left as it was in the first active copy before
the binding, but the symbolic instance in this remaining
copy is restricted in a binding expression to not bind to the
same object again. This original copy with the new bind-
ing expression is shown in Fig. 7(c). In this way, prefixes
of scenarios are kept open for reuse. Proceeding with our
example, when Phone3 sends the message to the switch, a
new copy is created, based on the original copy of Fig. 7(c),
in which Phone3 is bound to the right-hand instance. Then,
in the original copy of Fig. 7(c), Phone3 is added to the set
of objects that the right-hand instance cannot bind to.

If the set of forbidden objects of a symbolic instance (to-
gether with the objects of the same class that are already
present in the chart) becomes equal to the set of all objects
in the system that are instances of the same class, the LSC
copy is closed, since it has a symbolic instance that cannot
bind to any more objects.

The same ideas apply also to events that cause violation
of a prechart. If an event e associated with object O occurs,
and is level2-unifiable with an event e′ associated with a
symbolic instance I, and e′ is not enabled, this should be a
violation. However, for the same reasons discussed earlier,
we want the scenario prefix to be kept open for other objects
to bind to later. Therefore, a new copy is created, in which
I is bound to O, and this copy is violated and closed.5 The
original copy adds O to the set of restricted objects of I,
thus forbidding O to bind to I later on in the execution.

5.4 Redundant activation of symmetric
precharts

Consider now Fig.8(a). The scenario in this LSC states
that if one phone calls a second one (marked as event e1),
and a third phone calls a fourth one (marked e2), then the
fourth calls the second and the second calls the fourth. Sup-
pose that the following two events occurred in that order:
Phone1 calls Phone2, and Phone3 calls Phone4. Since there
is no restriction on the order of e1 and e2 in the chart, and
all instances are symbolic, Phone1 and Phone2 can bind to
either the left pair of instances or to the right pair. Follow-
ing this, Phone3 and Phone4 should bind to the remaining
pair. Fig. 8(b) and (c) show these two possibilities in the
form of the two generated copies.6

Now, after binding all instances, neither of the charts can
proceed with its body, since the order of messages is con-
flicting in the two copies. In the top copy, it is Phone4

5Creating a copy, violating and closing it, is done so the user
can be visually notified of the effects of the last event.
6Actually, there are many other copies involved. Recall-
ing the discussion of reusing scenario prefixes, one can see
that Phone3 and Phone4 are created in new copies, leav-
ing the original one with a restriction over the remaining
two symbolic instances. Also, since Phone3 calling Phone4
is a minimal event, it also causes the creation of new copies
where only these phones are bound. However, for the clarity
of the discussion we focus on the two copies shown.

Figure 7: Keeping scenario prefixes for reuse

who should be sending the next message, while in the bot-
tom copy it is Phone2. Although, this conflict is ‘correct’,
and is formally compliant with the LSC semantics, it seems
counter to what a designer would expect when specifying
such a chart. We think that a more intuitive and practical
approach would say that, since the designer left such a de-
gree of freedom, he/she meant that it shouldn’t really matter
who sends the message first. Since, we prefer our execution
mechanism not to initiate violating events, the correct way
to solve this problem is to avoid getting into it in the first
place, by identifying the symmetry such a chart embodies,
and modifying the execution mechanism to avoid creating
multiple copies with symmetric precharts in response to a
single event.

The details of this problem and the algorithm to solve it
are given in appendix A.

6. THE CASE OF EXISTENTIAL CHARTS
Existential charts do not participate in the core of require-

ment execution. They are however, very useful for testing
whether a behavior presented by some system implementa-
tion or some intra-object design model conforms with a set
of expected test scenarios. In principle, the testing is done
by monitoring the specified existential LSCs as events are
generated by the tested implementation/model. A detailed
discussion of this, and the way it is implemented in the play-
engine can be found in [14]. In fact, monitoring existential
LSCs is based on essentially the same ideas that are used to
monitor the precharts of universal LSCs.

When it comes to monitoring scenarios, the specification
language need not be as powerful as the language used for ex-
ecution. For that matter, any variant of sequence diagrams
can be checked against given event traces. Our extensions of
symbolic messages and symbolic instances may be applied
directly to any such scenario languages, thus making them
more expressive and better suited to the testing of real-world

applications.

7. IMPLEMENTATION
In this section we overview the tool we have developed, the

play-engine, and its play-out execution mechanism. More
details can be found in [14].

7.1 The system model
The play-engine is a framework for specifying and execut-

ing requirements in a user-friendly and intuitive way. Be-
havioral requirements are played in using a GUI of the ap-
plication or an object model diagram, and the play-engine
generates, on the fly, a formal version of the requirements in
the language of LSCs. The objects in the system may be ei-
ther a priori given as part of the GUI application or may be
added during the work to the object model diagram. Classes
may also be added in this way, and objects can be defined
to be an instance of some class.

Each class and object have a set of properties and meth-
ods. Properties are used to reflect the state (or state vari-
ables) of objects. When using a GUI application these prop-
erties are actually shown in the GUI (e.g., the background
color of a display, the external position of an antenna, a vi-
sual indication as to whether a light is on or off, etc.). When
using an object model diagram, the values of properties are
simply shown next to the property name in the diagram.

Methods are used to indicate sending and receiving of con-
trol information and data between objects in the system.

Thus, the messages that are generated in the LSCs as
play-in is taking place represent either changes in the values
of properties (caused by the user, the environment or the
object itself), or flow of control and data between objects.
Each message may be defined to be symbolic, in which case it
involves variables rather than fixed values. The play-engine
also enables importing functions to aid in domain-specific
calculations. These functions can be used within messages,

Figure 8: A symmetric prechart

and their parameters can also be symbolic.
When playing in the requirements, the user operates spe-

cific objects (e.g., clicks a particular switch, or dials a num-
ber on some actual phone), and therefore the generated in-
stances are not symbolic. To turn an instance into a sym-
bolic one, the user right-clicks it and selects the ‘symbolic’
option from a pop-up menu. The play-engine then checks
whether the first event of this instance is located in the
prechart or in the chart body. If the event is in the chart
body, a wizard is opened, with which the user may specify
the binding expression for the symbolic instance.

Turning to the play-out mechanism, it works in iterations
of steps and super-steps, as discussed earlier. The first step
of each iteration is performed by the user operating the
GUI application as if it were an operational system. Such
steps are transformed into events that are bound to the ob-
jects and values demonstrated by the user (e.g., dial ‘7’ on
Phone1). Events in the universal LSCs are then unified if
they are level2-unifiable, where messages are identified by
the property or method they refer to.

We have not yet implemented the checks for symmetric
precharts, since we feel that such LSCs will occur only very
rarely in real world systems. If such a case does arise, one
could add a condition at the end of the prechart that will
filter all options but one (e.g., require that the instances be
bound to objects only in the option where they are ordered
by their ID).

7.2 Experimental results: The NetPhone ap-
plication

We have used the play-engine to specify and execute be-
havioral requirements of various systems, each emphasizing
a different aspect of reactive systems (e.g., computational
aspects via a pocket calculator, interaction with an external
environment via a cellular phone, etc.), and we are currently
in the process of modeling a nontrivial biological system,
namely the egg-laying mechanism of the C. elegans worm

[10].
In this section, we describe a model of a telephone net-

work system. It was chosen because it emphasizes the strong
need for symbolic instances and messages in specifying com-
plex systems, and the power of an execution mechanism that
supports such features.

Fig. 9 shows the GUI of the NetPhone system, a small
object model diagram and a sample LSC. The GUI consists
of four telephones, four channels and one switch. The tele-
phones are instances of class Phone and the channels are
instances of Channel. The object model diagram, shown
above the GUI, contains one object, PhoneDB, which repre-
sents the database in which the phone numbers are stored.
The LSC on the top-left shows that when a user dials some
digit D, this digit is to be concatenated to the number al-
ready being displayed. Note that both the Phone:: instance
and the first message are symbolic, thus allowing the LSC
to be activated with a different phone and a different digit
each time.

We have played in parts of a possible specification of this
system. It consists of 27 universal LSCs (partitioned into 8
use cases) which comprise the following (informally stated)
behavioral requirements:

1. When a user dials some digit, the digit is concate-
nated7 to what is already shown in the display. The
LSC for this is shown in Fig. 10(a).

2. When the C button is clicked, the display is cleared.
The LSC for this is shown in Fig. 10(b).

3. When the user dials a number and then clicks the Set
button, then:

(a) If the number is already occupied by another phone
an error message is shown.

7The concatenation of strings is done using an implemented
application-domain function. The play-engine allows appli-
cations to import such functions (for details, see [14]).

Figure 9: The NetPhone GUI Application

Figure 10: Simple operations in a single phone

(b) Otherwise, it is associated with the current phone
and is stored in the database as such. The number
is also displayed in the phone’s top-left corner.

Actually, this requirement is given in a very detailed
form in the specification, since it entails a chain of mes-
sages going from the phone to the switch, from there
to the database, and then back with the appropriate
messages. The LSC “Click Set” (Fig. 11(a)) shows
that when the user clicks the ‘Set’ button, the phone
ID is stored in the variable ID and the currently dis-
played number is stored in N. The phone then calls
the switch’s SetNumber method with ID and N. The
LSC “Verify Number” (Fig. 11(b)) shows that when
some phone calls the switch’s SetNumber method with
parameters ID and N, the PhoneDB is searched for
a phone ID associated with the number N (denoted
by the implemented function ‘RetrieveKey’). If the
result returned in the PhoneDB state variable QRe-
sult is the empty string, then no phone is associated
with this number, and therefore the switch asks the
PhoneDB to associate the phone ID ID with the num-
ber N and to store this information in the database.

Otherwise, if the retrieved ID is not the same as the ini-
tiating phone ID, the number N is already associated
with a different phone, and an error message should
be shown on the initiating phone’s display. LSC “Set
in DB” (Fig. 11(c)) shows that when the switch asks
the PhoneDB to set the number of ID to be N, the
PhoneDB actually stores the information in the DB
(using an implemented function). If the operation was
successful, the switch sends AckNumber to the phone
with ID= ID. Otherwise, an error message is sent to
it. The last LSC, “AckNumber” (Fig. 11(d)), simply
states that when a phone receives the AckNumber mes-
sage with the acknowledged number N as a parameter,
this number is shown in a proper place and the phone’s
display is cleared.

4. External events may cause a channel to be out of order
or in order. A channel that is out of order should be
colored red in the GUI. The LSCs for this requirement
and for a later one describing a switch failure are given
in Fig. 12.

5. When a user dials a number and then clicks the Call
button, the following possibilities hold:

Figure 11: Setting the phone’s number

(a) If the channel is out of order, or if the num-
ber dialed is invalid (i.e., it does not exist in the
database), or if the channel of the target phone
is out of order, an appropriate error message is
shown on the phone’s display.

(b) If the channel of the target phone is already allo-
cated to another conversation, a “Partner Busy”
message is shown.

(c) If non of these is the case, a conversation is es-
tablished between the calling and called phones.
The channels participating in the same conversa-
tion are colored with a common color (different
colors for different conversations).

(d) If the calling phone is already in a conversation
session, the called phone is joined to the same ses-
sion (conference call), and its channel is allocated
to the same session (and is colored with the same
color).

(e) When a conversation is established, the receiver
phone displays the calling number on its display.

Some of the LSCs involved in the protocol that estab-
lishes a conversation are given in Fig. 13.

Note that our general approach of binding expressions
enables us to specify symbolic LSCs even in the case
where the numbers of the phones are set dynamically,
during execution. This could not have been done using
a static object model.

6. When the user clicks the Answer button, all the phones
participating in the conversation display a message
showing that this phone has joined.

7. When the user clicks the Hang Up button when the
phone is participating in a conversation, its channel is
deallocated and all other participants in the conversa-
tion show a message indicating that this phone hung
up. If there is only one partner to the conversation,
its channel is also deallocated.

8. External events may cause the switch to be out of or-
der or in order. When an event causes the switch to
be out of order, all channels that are allocated are dis-
connected. Error messages are shown on the displays
of the relevant phones.

9. Speech is simulated by clicking the ‘�’ button. When a
user participating in a conversation clicks the ‘�’ but-
ton, the string composed of ‘�’ and the phone ID (not
its number) is shown on all the phones participating
in the conversation.

This specification can be easily extended to support features
such as leaving messages on answering machines, returning
to the most recent caller, etc.

The central point here is that the specification as given
consists entirely of LSCs that were played in using the en-
gine, and that it is fully executable as is; no code or state-
chart or other intra-object behavioral information was needed.

Figure 12: Failures of channels and switch

Table 1 shows, for each of the requirements, the maximal
number of LSC live copies that were active simultaneously
while executing it and the number of steps executed within
the corresponding super-step.

The execution of requirements using the play-engine is
done in interactive online response time. The bottleneck is
the graphical updating and animation of the active LSCs
as the execution progresses. This feature can be turned off,
shortening the response time radically (e.g., establishing a
call between two partners (req. 5(c)) takes about 1.5 sec-
onds, and a scenario in which the switch fails while three
phones are allocated (req. 8) takes about 3.5 seconds).

In each step taken by the play-engine, two sets of charts
are scanned. The set of active LSCs is scanned for enabled
and violating events, and the set of all universal LSCs is
scanned for minimal events. We believe (and our experience
so far supports this) that behavioral specifications tend to be
modular, being composed of sets of requirements, each deal-
ing with a different aspect of the system behavior. Some
might be complete scenarios, some are scenario fragments
and some are anti-scenarios. We strongly believe that the
set of active LSCs will not be overly large in practice. The
second set, that of all universal LSCs, may be large, yet us-
ing symbolic instances dramatically reduces the number of
LSCs to be scanned (e.g., one chart for establishing a con-
nection between two phones, regardless of the actual number
of phones in the system, as opposed to n2 charts in a sys-
tem with n phones). Note also, that with the computation
power of a standard PC, even in large specifications (con-
taining hundreds of LSCs) the act of searching for an event
in all the precharts can still be done in online response time.

8. RELATED AND FUTURE WORK
A large amount of work has been carried on formal re-

quirements, sequence charts, and model execution and an-
imation. We briefly discuss the ones most relevant to the
work described here.

Diagrams have been used for quite a long time to visualize
dynamic behavior in general, and specifically interactions
and collaboration in object oriented systems(see, e.g., [5]).

Amyot and Eberlein [2] provide an extensive survey of

Requirement� �Copies �Steps

1 1 2
2 1 2
3(a) 2 5
3(b) 2 8
4 1 2
5(a) 2 4
5(b) 4 17
5(c) 4 20
5(d) 4 20
5(e) 4 16
5(f) 4 11
6 (using 3 phones) 2 13
7 4 16
8 (using 3 phones) 5 27
9 (using n phones) n n

Table 1: Experimental Results for the NetPhone
Specification

scenario notations. Their paper also defines several compar-
ison criteria and then uses them to compare the different
notations. The language of LSCs scores high according to
the criteria presented there: it is component centered, it can
encapsulate several runs in a single scenario, it can be ab-
stract, and it can relate to internal objects and not only to
the system as a whole. Moreover, the language is highly vi-
sual, a criterion which is very important when dealing with
complex systems. The survey in [2] does not refer to some
of the additional issues crucial to sequence-based languages,
that were raised in [7], such as the ability to specify anti-
scenarios, and to distinguish between“must” and “may” be-
haviors, etc., for which LSCs were in fact developed. More-
over,there is no explicit discussion of symbolic instances in
[2], yet one of the evaluation criteria is dynamicity, which
is the ability to describe behaviors that can change at run-
time. The presence of symbolic instances and variables as we
have described here allows the specification in a single chart
of unboundedly many behaviors that can vary in run-time.

Figure 13: Part of the conversation establishment protocol

There are a number of commercial tools that successfully
handle the execution of graphical models (e.g., Statemate
[16] and Rhapsody by I-Logix [17], ObjectTime [24], and
Rose-RT by Rational [22]). By and large, these tools can be
connected to a GUI mockup (and in some cases also a real
target system) and they will activate it as the execution pro-
gresses. These tools handle classes, objects and the relations
between them. However, such tools execute an intra-object
design model (statecharts and/or code for objects) rather
than an inter-object requirement model. Rhapsody is also
able to produce sequence charts showing the sequence of
events generated by executing the model and to compare it
with ones prepared separately by the user to help verifying
the model. In general, however, these tools do not execute
requirements given in LSCs or in other variants of sequence
charts directly.

In a recent paper, Lettrai and Klose [21] present a method-
ology supported by a tool called TestConductor, which is
integrated into Rhapsody [17]. The tool is used for moni-
toring and testing a model using a (rather modest) subset of
LSCs. The charts can be monitored in a way that is similar
to the way we trace existential charts. Sequence diagrams,
created using the TestConductor, allow the use of variables.
However, when such a chart is to be used, the user has to
manually bind the variables in the chart with concrete val-

ues. Therefore, no run-time unification is performed, and if
a general scenario needs to be verified for a priori unknown
objects and values, the diagram must be manually instan-
tiated for all possible combinations. Damm and Klose [8]
describe a verification environment in which LSCs are used
to describe requirements that are verified against a Statem-
ate model implementation. The tool is commercially avail-
able with the Statemate tool. The verification is based on
translating an LSC chart into a timed Buchi automaton, as
described in [20], and it also handles timing issues. In this
work as well as in [21], the underlying assumption is that a
system model whose reactive parts are described by state-
charts has already been constructed, and the aim is to test
or verify that model using sequence charts (though there are
plans to extend the TestConductor of [21] to enable the se-
quence charts to drive the behavior of selected objects too).
Preliminary work by Klose and Westphal [19], performed in-
dependently of our work, deals with relating instance lines to
objects and classes as part of an ongoing effort to establish
a verification environment for UML models. Their outcome
is unlike ours, since the goals are quite different; we have
executability as our main goal.

Dromey [9] presents a methodology called genetic software
engineering (GSE), in which a requirement written in nat-
ural language is formalized by a “behavior tree”. All such

trees are then integrated into a single tree. This comprehen-
sive system behavior tree is transformed by a variety of ma-
nipulations and projections into a components architecture
diagram, and then into many component trees, each describ-
ing the internal behavior of one component. There are two
similarities between GSE and our work on the play-engine:
GSE tries to bridge the gap between the requirements and
the design phases by using a common representation for both
(i.e., behavior trees) and then attempting to move from the
former to the latter by automated transformations (using
domain knowledge when needed). GSE also uses a speci-
fication language that is richer than conventional sequence
charts (e.g., it can specify anti-scenarios). Dromey mentions
the possibility of automatic transformations from trees rep-
resenting single components into their implementation code.
GSE does not include model execution capabilities on the
requirements level, and does not deal at all with the issues
of symbolic entities and their run-time binding.

Boger et. al. [6] present a development methodology,
called extreme modeling (XM), which tries to combine the
advantages of the programming methodology of extreme pro-
gramming [26] with the UML [25]. Since XP relies mainly
on iterative coding and testing, XM must strongly rely on
a modeling environment that enables execution and testing
of models. For this purpose, a tool called the UML Virtual
Machine is introduced, which can execute a sublanguage
of the UML diagrams. The models that drive the execution
are, again, statecharts, and not an inter-object requirements
scenario-based language, yet the effect of the execution can
also be shown on collaboration diagrams. Here also, no GUI
of the application is used in the model execution, and no
symbolic entities are supported.

The idea of using sequence charts to discover design er-
rors at early stages of development, such as race conditions
and time conflicts, has been investigated in [1, 4, 3]. The
language used in these papers is classical MSCs, with the se-
mantics being simply the partial order of events in a chart.
In order to describe system behavior, such MSCs are com-
posed into hierarchical message sequence charts (HMSCs)
which are basically graphs whose nodes are MSCs. The tools
presented in these papers deal with analysis of HMSC spec-
ifications, and not with their execution. All the algorithms
and examples are given using fixed sets of messages and in-
stances, although it would appear that the issue of symbolic
instances and variables should not play an important role in
the algorithms.

In [12] a first-cut algorithm for synthesizing statecharts
from a subset of LSCs is described. In order to check whether
a system model can be synthesized from an LSC specifica-
tion, the notion of specification consistency is defined and an
algorithm for deciding whether a specification is consistent
is given. Similar algorithms can be incorporated into the
play-engine, independent of the synthesis part, thus provid-
ing the users with a powerful analysis of their specification
besides the capability of executing it. We indeed plan to do
so.

In [13], the play-out execution mechanism is enhanced
with a “smart” play-out module, in which verification tech-
niques, mainly model-checking, are used both to drive the
model and to satisfy system tests expressed as existential
LSCs. Using model-checking, it is possible to analytically
find a run in which all the non-deterministic choices are car-
ried out “correctly”, thus bringing a computation to its suc-

cessful ending. In case there is no such sequence of correct
choices, the user is notified.

Many kinds of reactive systems must explicitly refer and
react to time. In [15], the language of LSCs is further ex-
tended with simple but powerful timing constructs that en-
able the specification of expressive timing constraints. The
play-engine is also modified to execute these time-enriched
specifications.

9. REFERENCES
[1] R. Alur, G. Holzmann, and D. Peled. An analyzer for

message sequence charts. Software Concepts and
Tools, 17(2):70–77, 1996.

[2] D. Amyot and A. Eberlein. An Evaluation of Scenario
Notations for Telecommunication Systems
Development. Proc. 9th Int. Conf. on
Telecommunication Systems, 2001.

[3] H. Ben-Abdallah and S. Leue. Mesa: Support for
scenario-based design of concurrent systems. in: B.
Steffen (ed.), Proceedings of the 4th International
Conference on Tools and Algorithms for the
Construction and Analysis of Systems TACAS’98,
Lisbon, Portugal, March/April 1998, Vol. 1384 of
Lecture Notes in Computer Science, p. 118 - 135,
Springer Verlag, 1998.

[4] H. Ben-Abdallah and S. Leue. Timing constraints in
message sequence chart specifications. in: Formal
Description Techniques X, Proceedings of the Tenth
International Conference on Formal Description
Techniques FORTE/PSTV’97, Osaka, Japan,
November 1997, Chapman & Hall, 1997.

[5] W. Cunningham and K. Beck. A Diagram for
Object-Oriented Programs. In Proc. ACM Conf. on
Object-Oriented Programming, Systems, Languages
and Applications (OOPSLA’86), Portland, Oregon,
1986.

[6] M. Boger, T. Baier, F. Wienberg, and W. Lamersdorf.
Extreme Modeling. In Extreme Programming and
Flexible Processes in Software Engineering - XP2000.
Addison Wesley, 6 2000.

[7] W. Damm and D. Harel. LSCs: Breathing Life into
Message Sequence Charts. Formal Methods in System
Design, 19(1), 2001. Preliminary version in Proc. 3rd
IFIP Int. Conf. on Formal Methods for Open
Object-Based Distributed Systems (FMOODS’99), (P.
Ciancarini, A. Fantechi and R. Gorrieri, eds.), Kluwer
Academic Publishers, 1999, pp. 293–312.

[8] W. Damm and J. Klose. Verification of a Radio-based
Signalling System using the STATEMATE
Verification Environment. Formal Methods in System
Design, 19(2):121–141, 2001.

[9] R. Dromey. Genetic Software Engineering.
Manuscript, 2001.

[10] I. Greenwald. Development of the vulva. In: Riddle,
DL., Blumenthal, T., Meyer, BJ., and Priess, JR.
editors. C. elegans II. Cold Spring Harbor, NY: Cold
Spring Harbor Laboratory Press, p 519-541., 1997.

[11] D. Harel and E. Gery. Executable Object Modeling
with Statecharts. IEEE Computer, pages 31–42, 1997.

[12] D. Harel and H. Kugler. Synthesizing State-Based
Object Systems from LSC Specifications. Int. J. of
Foundations of Computer Science (IJFCS), February

2002. (Also,Proc. Fifth Int. Conf. on Implementation
and Application of Automata (CIAA 2000), July 2000,
Lecture Notes in Computer Science, Springer-Verlag,
2000).

[13] D. Harel, H. Kugler, R. Marelly, and A. Pnueli. Smart
Play-Out of Behavioral Requirements. In Proc. 4th
Int. Conf. on Formal Methods in Computer-Aided
Design (FMCAD’02), ,Portland, Oregon, 2002. To
appear. Also available as Tech. Report MCS02-08,
Weizmann Institute of Science, 2002.

[14] D. Harel and R. Marelly. Specifying and Analyzing
Behavioral Requirements: The Play-In/Play-Out
Approach. Tech. Report MCS01-15, The Weizmann
Institute of Science, 2001. Submitted.

[15] D. Harel and R. Marelly. Playing with Time: On the
Specification and Execution of Time-Enriched LSCs.
In Proc. 10th IEEE/ACM International Symposium
on Modeling, Analysis and Simulation of Computer
and Telecommunication Systems (MASCOTS’02),
Fort Worth, Texas, 2002. To appear.

[16] D. Harel and M. Politi. Modeling Reactive Systems
with Statecharts: The STATEMATE Approach.
McGraw-Hill, 1998. Early version titled The
Languages of STATEMATE , Technical Report,
I-Logix, Inc., Andover, MA (250 pp.), 1991.

[17] I-Logix,Inc., products web page.
http://www.ilogix.com/fs prod.htm.

[18] I. Jacobson. Object-Oriented Software Engineering: A
Use Case Driven Approach. Addison-Wesley, Reading,
MA, 1992.

[19] J. Klose and B. Westphal. Relating LSC Specifications
to UML Models. In Proc. of the Second International
Workshop on Integration of Specification Techniques
for Applications in Engineering (INT 2002), Grenoble,
France, 2002.

[20] J. Klose and H. Wittke. An automata based
interpretation of live sequence chart. In Proc. 7th Intl.
Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’01),
2001.

[21] M. Lettrari and J. Klose. Scenario-Based Monitoring
and Testing of Real-Time UML Models. Proc. 4th Int.
Conf. on the Unified Modeling Language, Toronto,
October 2001.

[22] Rational,Inc., web page. http://www.rational.com.

[23] J. Robinson. Logic: Form and Function, chapter 11,
pages 182–198. North-Holland, 1979.

[24] B. Selic, G. Gullekson, and P. Ward. Real-Time
Object-Oriented Modeling. John Wiley & Sons, New
York, 1994.

[25] Documentation of the Unified Modeling Language
(UML), available from the Object Management
Group(OMG). http://www.omg.org.

[26] Web page http://www.extremeprogramming.org.

[27] Z.120 ITU-TS Recommendation Z.120: Message
Sequence Chart (MSC). ITU-TS, Geneva, 1996.

Appendix A: Redundant activation of sym-
metric precharts

Definition 9.1 (symmetric precharts). We say that
two LSC copies CL and C′

L have symmetric precharts if
there is no sequence of events that brings one prechart to
its end and not the other. We denote this situation by
CL ≈P C′

L.

Clearly, ≈P is an equivalence relation. Note that two copies
of a common LSC having no symbolic instances constitute
a special case of symmetric precharts, so that only a single
copy is created when a minimal event occurs in that LSC.

We now modify the execution mechanism as follows. When
an event e occurs, the prechart of each universal LSC is
scanned for unifiable events. If the instances of the sender
or receiver of the event are not symbolic in the LSC, at
most one event can be found, because of the partial order
induced by the non-symbolic instance line. Therefore, if n
events are found in an LSC L, it means that there are n
pairs of symbolic instances in L, (Is

1 , Ir
1), . . . , (Is

n, Ir
n), with

events ei(i = 1..n), respectively, that are unifiable with e
as their first event. Now, before creating a new copy for
each pair of instances (and their corresponding event) we
initialize a set of candidate events to contain all the events
found, and then check for every two copies Ci

L and Cj
L, with

i, j = 1..n, i
= j), obtained by unifying ei and ej with e, re-
spectively, whether Ci

L ≈P Cj
L. If this is the case, we delete

ej from the set of candidate events. The only events we are
left with at the end of this process are ones whose unifi-
cation with e will yield copies that do not have symmetric
precharts.

To show how the ≈P relationship can be tested for, we
need some more definitions:

Definition 9.2 (sequentially unifiable events). Two
events e and e′ associated with instances I and I ′, respec-
tively, are sequentially unifiable if:

1. e is the first event in I, e′ is the first event in I ′, and
e and e′ are level2-unifiable,8 or

2. e and e′ have the same location number in I and I ′, re-

spectively, (say i), the events evnt(lIi−1) and evnt(lI
′

i−1)
are sequentially unifiable, and after unifying all events
preceding e and e′, e and e′ are level2-unifiable.

This is a recursive definition, and it induces an algorithm
for checking whether two instances are matching. We sim-
ply scan the events in the prechart along the lines of the
instances and see whether they are unifiable in pairs. If the
events are unifiable, they are unified, thus binding some of
them to actual values and connecting others in connection
lists. After i − 1 pairs of events are unified, the ith pair is
checked in the context of the already bound variables. The
next definition summarizes this algorithm.

Definition 9.3 (matching instances). Two instances
I and I ′ are matching if they have the same number of loca-
tions in the prechart, and for each i ∈ �P (I), (where �P (I)
is the set of locations of I in the prechart P of L), evnt(lIi)

8Actually, here we use a more strict version of unification.
When checking two variables, we require that they are both
bound to the same value or they are both free. This is to pre-
vent a case in which one instance is allowed to send/receive
only a subset of messages allowed by another.

and evnt(lI
′

i) are sequentially unifiable. We denote match-
ing instances I and I ′ by I ∼ I ′.

Definition 9.4 (automorphic prechart). The prechart
P of LSC L is said to be automorphic with respect to a pair
of events (ei, ej), if the following hold:

1. The set of instances IL can be split into three sets S1, S2

and S3 (with S3 possibly empty) such that no message
is sent between sets.

2. There is an isomorphism h : S1 → S2 such that

∀I ∈ S1, I ∼ h(I)

Intuitively, a prechart is automorphic with respect to events
ei and ej if it can be split into three sets of instances such
that the instances involved with ei, and all other instances
they communicate with, are in one set, and the instances
involved with ej , and all instances they communicate with,
are in a different set, and these sets are equivalent in the
behaviors they allow. The third set may contain irrelevant
instances (i.e., ones that are orthogonal to these two sets
and do not interact with them).

Given an LSC L and an event e = 〈m, Send〉, where m
is a message sent from Ov to Ou, denote by ei and ej two
events that are level2-unifiable with e going from Is

i to Ir
i

and from Is
j to Ir

j respectively. We then have:

Lemma 9.5. If the prechart P of L is automorphic with
respect to (ei, ej), and if Ci

L and Cj
L are the LSC copies

obtained by unifying e with ei and ej, respectively, then
Ci

L ≈P Cj
L

Proof: suppose that P is automorphic with respect to
(ei, ej). Then both Is

i ∼ Is
j and Ir

i ∼ Ir
j . Now, suppose

there is a sequence of events e1, . . . en that w.l.o.g brings
the prechart of Ci

L to its end but not the prechart of Cj
L.

Let ek be the first event that separates these charts; and,
again w.l.o.g, suppose that when ek occurs, some instance
I ∈ S1 moves from location x to x+1 and I ′ = h(I) remains

in location x. Let ex = evnt(lIx) and e′x = evnt(lI
′

x). Since
I ∼ I ′, ex and e′x are sequentially unifiable. But since all the
events up to ek caused simultaneous progress in both copies,
it means that all previous events were bound simultaneously
and to the same values. Therefore, ex and e′x must both be
unifiable with ek. Moreover, if ek is a Send event, then the
receivers of ex and e′x are matching instances. Thus, if ek is
synchronous and the receiver of ex is ready, then the receiver
of e′x is ready too. This is in contradiction with the fact that
I was able to progress in response to ek, and I ′ was not.

