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A metric for odorant comparison

Rafi Haddad!2, Rehan Khan!, Yuji K Takahashi?, Kensaku Mori?, David Harel? & Noam Sobell

In studies of vision and audition, stimuli can be systematically
varied by wavelength and frequency, respectively, but there is

no equivalent metric for olfaction. Restricted odorant-feature
metrics such as number of carbons and functional group do not
account for response patterns to odorants varying along other
structural dimensions. We generated a multidimensional odor
metric, in which each odorant molecule was represented as a
vector of 1,664 molecular descriptor values. Revisiting many
studies, we found that this metric and a second optimized metric
were always better at accounting for neural responses than the
specific metric used in each study. These metrics were applicable
across studies that differed in the animals studied, the type of
olfactory neurons tested, the odorants applied and the recording
methods used. We use this new metric to recommend sets of
odorants that span the physicochemical space for use in
olfaction experiments.

Animals can perceive many structurally diverse odorous mole-
cules!. Chemical properties of odorants are represented in spatio-
temporal patterns of activity across olfactory sensory neurons in
the olfactory epithelium?, and across glomeruli in the olfactory
bulb®. Understanding the code of olfaction starts with an under-
standing of the receptive range of particular olfactory sensory
neurons and the response patterns of a set of glomeruli. To this
end, one must probe this processing with stimuli that vary along
defined axes. But what axes should one use? Molecules can vary
along thousands of axes, and no one of these is arguably more
privileged than others. Nevertheless, olfaction research has gravi-
tated toward probing a limited set of axes, primarily carbon atom
number (CAN) and functional group type and position*™13, For
example, a given olfactory sensory neuron will generally respond to
molecules with a sequential CAN as long as these molecules share
the same functional group>®14-18, Olfactory receptors that respond
to odorants with 5 carbons are likely to respond to odorants with 4
or 6 carbons but are less likely to respond to odorants with 7
or more carbons. Similar tuning specificities have been observed
in glomeruli®”»!%1°23, In other words, odorants that have
similar CAN and functional groups elicit similar glomerular
response patterns.

Similarity between response patterns is usually quantified as the
Pearson correlation between the two patterns. This quantification

of neural response pattern suggested that similarity in CAN is
correlated to the similarity in neural response patterns. This
suggested correlation applies to neural responses across different
species (vertebrates and invertebrates), different measurement
methods (Ca?* imaging, intrinsic optical imaging, ['*C]2-deoxy-
glucose, voltage-sensitive dye imaging), different olfactory neurons
as well as to perceptual estimates in rodents** and humans?>.

Most of the studies linking odorant structure to neural response
have been systematic in their choice of odorants, typically selecting
saturated straight-chained aldehydes, alkanes, acids and alcohols
that differed by only one or two features. When restricted to these
molecules, the distance between odorants can be defined as the
difference in CAN. But when using more diverse types of odorants
with various molecular features, CAN is no longer an informative
metric. For example, testing one rat olfactory receptor (the I7
receptor) with 90 odorants of different chemical structures sug-
gested complicated rules linking odorant structure to olfactory
sensory neuron response'?, and testing 24 Drosophila melanogaster
olfactory sensory neurons with 110 odorants of diverse functional
groups suggested that CAN alone was a poor predictor of olfactory
sensory neuron response'®. In the rat olfactory bulb, [4C]2-deoxy-
glucose measurements after exposure to 54 odorants suggested
some pattern similarity in response to odorants that share the
same CAN but also yielded some unexpected results, implying addi-
tional and/or other unresolved factors governing response profiles?!.
In vivo extracellular recording of mice olfactory bulb mitral-tufted
cells with a large panel of odorants revealed that tuning frequently
extended beyond obviously defined chemical categories?®. Thus,
despite some initial efforts made in this respect®®, there remains no
simple way to measure the distance between two odorants or to
predict whether they will elicit a similar neural response.

To address this, we devised a multidimensional physicochemical
metric that took into account not only CAN and functional group
but also many other aspects of molecules. We first obtained 1,664
molecular descriptors for each molecule. Molecular descriptors are
mathematical values that describe the structure or shape of mole-
cules and can serve to predict the activity and properties thereof.
Representing each odorant molecule as a vector of 1,664 descriptor
values allowed us to calculate the Euclidean distance between any
two odorants, defined as the square root of the sum of squares of
the differences between descriptors.
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Figure 1 | Evaluating the multidimensional metric. (a) Correlation
between CAN and the multidimensional metric based on odorants in four
commonly used functional groups (see Supplementary Table 1 for a list
of odorants). The Pearson correlation was calculated between the
distances of all possible pairs in each metric. Error bars reflect correlation
confidence interval at 0.05. (b) Demonstrating the strength of the
multidimensional metric. The percent of discriminating neurons as
reported in ref. 27 (red) for odorants that were one or two carbon atoms
apart. The distance according to CAN (numbers and double arrowheads
below the abscissa) and according to the multidimensional metric (black
line) is shown. (c) Principal component analysis of the C2-C11 odorants
from the four functional groups used in reference 11. The number of
carbon atoms is indicated beside each point. The first principle
component covers 59% of the variance and the two principle components
cover 75% of the variance and thus the plot is a close approximation of
the distances between the odorants.

(2]

Principal component 2: 75%

Using this metric, as well as a second optimized metric, we
revisited 9 previously published datasets and analyzed a new
dataset, for which we knew the odorants used but did not know
the neural response. We found that the new metric was always
better at accounting for neural responses than the specific metric
used in each study. Moreover, this single metric was applicable
across studies that used different olfactory neurons, different model
systems, different neuronal response measurement techniques and
odorants varying along different feature types.

RESULTS

Comparing the multidimensional metric to the CAN metric

To assess the relationship between the CAN and the proposed
metric, we first restricted the odorants to vary only in CAN and
fixed all other features such as functional group (by considering
only straight-chained aliphatic compounds from a specific chemi-
cal family; Supplementary Table 1 online). We calculated the
distances between all odorant pairs in each group according to
the two metrics and computed the correlation (Fig. la). The
multidimensional metric strongly correlated to the CAN metric
as long as we restricted the calculation to straight-chained mole-
cules from the same functional group (r > 0.83, P < 107, all
groups). However, when we added to each group odorants that
have the same functional group but differ in other features, such as
number of double bonds or methyl groups (Supplementary
Table 1), the correlation diminished, and it diminished even
further when we compared molecules from all four functional
groups (r = 0.69, P < 10718). When we examined the relation
between the two metrics on a large set of odorant molecules with
diverse structures (Fig. 1a), the correlation diminished to 0.105
(P < 107%7). In other words, the multidimensional metric and the
CAN metric were very similar when restricted to odorants that
differed only in the CAN dimension but differed profoundly when
the set of odorants was taken from diverse molecular structures.
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Principal component 1: 59%

Advantages of the multidimensional metric over the CAN metric
The multidimensional metric provides valuable information even
when restricted to odorants that differ only in the CAN. This can be
illustrated in an analysis of data presented in reference 27. This study
reported the response of rat olfactory sensory neurons, as measured
using Ca?* imaging, in response to a set of aliphatic aldheydes with
5-10 carbons (C5—-C10)%’. We compared the percentage of neurons
that discriminate between pairs of odorants that are either one or
two carbon atoms apart (as reported in ref. 27) to the distance
between the odorants calculated using CAN or the multidimen-
sional metric (Fig. 1b). Whereas the CAN metric reports that all
odorants were one or two units apart, the multidimensional metric
reports different distances. For example, whereas the CAN reports
equidistance between C7-C8 and C8-C9, according to the multi-
dimensional metric C8 was closer to C9 than to C7 (~17.7 distance
units for C7 to C8, and ~ 14.5 distance units for C8 to C9). Notably,
this better predicted the measured fraction of discriminating neu-
rons between C7—C8 and between C8—C9 (~27% and ~ 15%,
respectively, as reported in ref. 27). Examining the relationship
between the multidimensional metric and the percentage of dis-
criminating neurons, we found a very high correlation (r = 0.94,
P = 0.01 for the group with one carbon atom difference; r = 0.92,
P = 0.07 for the group with two carbon atoms difference; and
r = 0.84, P = 0.004 for all differences). In contrast to the above
obtained correlation value of 0.84, running the same analysis using
the CAN metric we obtained a correlation value of 0.63 (P = 0.066),
a result significantly poorer than that obtained with the multi-
dimensional metric (#-test for correlated samples, t = 4.9, d.f. = 6,
P = 0.002). In other words, the suggested multidimensional metric
had wider applicability and was more accurate than the CAN
metric, as defined by predicting the measured neural response,
even in the case of odorants from a single chemical family.

In a study measuring the response of rabbit mitral-tufted cells
using 32 odorants from four different functional groups, the
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Figure 2 | Correlation between neuronal response pattern similarity and odorant distances calculated
using three different metrics across 7 datasets. The average r value of the metric using the optimized
metric was 0.69 (P < 107° for all groups). Error bars reflect correlation confidence interval at 0.05.

20 neurons to at least 10 odorants). We
analyzed 7 studies®>!®1620-2% (summarized
in Table 1). In all cases except for dataset 3
(ref. 5), the multidimensional metric was a
significantly better predictor of neural
activity than CAN (r > 2.8, d.f. > 88,
P < 0.01 for the 6 datasets). This improve-
ment was evident across datasets that dif-
fered in the animal used, the method of
neural activity measurement and the type of
neurons measured. In dataset 3, there was
no substantial improvement in the correla-

7 Average
(ref. 23)

authors pointed out the importance of both CAN and functional
group!!. After obtaining multidimensional metric values for these
32 odorants, we used principal component analysis to depict the
odorants in two dimensions. Odorants that have the same func-
tional group aligned in an almost horizontal line, but odorants that
have the same CAN were roughly on the same slightly skewed
vertical line (Fig. 1c). Thus, the major axes for these 32 odorants
(the first two principal components) were CAN and functional
group type. This is unsurprising, because the 32 odorants that had
been selected in reference 11 varied on these two axes. However, the
multidimensional metric ordered acids as closer to aldehydes than
to alcohols and as farthest from alkanes. These ratios were in
accordance with the experimental finding in reference 11, namely
that acids and aldehydes had in common 32 responding neurons,
whereas acids and alcohols had only 2 responding neurons
in common, and acids and alkanes had no responding neurons
in common!!,

Another example of the power of the multidimensional metric is
that according to the multidimensional metric, differences in CAN
have higher impact on odorant distances at low CAN values
(Fig. 1a,b). Consistent with this, honeybees better generalized
between pairs of long aliphatic chain odorants than between
pairs of short aliphatic chained odorants'2. We demonstrated the
strength of the multidimensional metric on two additional datasets
(Supplementary Fig. 1 online).

Predicting neural response similarity

We determined whether the predictions made by our metric
correlate with odorant-induced responses in datasets obtained
under different experimental conditions (Fig. 2). Because the
distance between odorants in the neuronal space is estimated
using the Pearson correlation, we restricted our analysis to datasets
that reported the response of large sets of neurons (that is, at least

tion when using the multidimensional
metric (r = 0.67 for the multidimensional metric and r = 0.64
for the CAN metric; P < 10~ for both). This is because the
odorants used in this experiment were all straight-chained and
from only two functional groups, conditions under which the two
metrics were almost identical (Fig. 1a).

Optimizing the multidimensional metric
Many of the 1,664 physicochemical descriptors were inter-
correlated and were thus redundant. Assuming that a better metric
should be able to explain more of the variance, we optimized our
metric by searching for the best descriptor subset that improved
our total correlation values across the 7 datasets. We obtained
32 descriptors (Supplementary Table 2 online). We calculated
correlation values between the distances predicted by the optimized
metric and odorant-induced responses in the 7 studied datasets
(Fig. 2 and Supplementary Fig. 2 online). The r values obtained
using this optimized set (average r = 0.69) were substantially higher
than those obtained using the full 1,664 set.

Because we obtained the optimized descriptor subset using all
7 datasets, it may be over-fitted to these datasets. To test this, we
conducted a leave-one-out learning scheme, whereby we calculated
the correlation values for one dataset while using the other six to
obtain the optimized descriptor set (Supplementary Fig. 3 online).
The total correlation value when using the optimized descriptor set
was higher than the correlation value when using all descriptors,
and the improvement in the correlation values was significant in
four of the datasets (¢-test for correlated samples, P < 0.01 for all
4 datasets). Dataset 2 (ref. 14) was different from the others in that
here the optimized metric best predicted only the absolute value of
the correlation. In other words, odorants deemed close according
to the multidimensional metric elicited either very similar
responses (strong positive correlation) or very different responses
(strong negative correlation; Supplementary Fig. 3b). Although we

Table 1 | Experimental conditions and methods in the 7 studies analyzed

Dataset Reference Animal Neurons Measurement Number of Number of Number of
number number used measured method odorants odorants removed neurons
1 16 Fruit fly Olfactory sensory neurons Extracellular single unit 110 63 24

2 14 Rat Glomeruli Intrinsic signal 36 7 30

3 5 Mouse Olfactory sensory neurons Ca* imaging 14 1 30

4 20 Honeybee Glomeruli Ca?* imaging 36 0 37

5 22 Rat Glomeruli Intrinsic signal 72 9 115

6 21 Rat Glomeruli [*C]2-deoxyglucose 44 0 Entire bulb
7 23 Tadpole Glomeruli Ca?* imaging 15 amino acids 0 67
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Figure 3 | Testing the predictive power of the multidimensional metric using
new data. The datasets represent data collected from 4 individual rats (marked
as rats number 2-5). Error bars reflect correlation confidence interval at 0.05.

do not know what underlies this unique response pattern, it may be
related to the selection criteria applied by the authors, who reported
data for 30 olfactory neurons out of 90 measured.

Optimizing using only datasets that share a particular attribute,
such as all datasets that report glomerulus data or datasets that use
similar neural response measurement methods (for example,
Ca** imaging versus intrinsic optical imaging), did not substan-
tially change the results. For example, when optimizing using the
5 datasets reporting glomerulus responses, the average correlation
value for the datasets reporting olfactory receptor neuron response
was 0.61, which was the same as when using the all-descriptors
metric. We obtained similar values when we optimized the metric
using datasets reporting only olfactory receptor neuron responses
and tested the prediction on the datasets reporting glomerulus
responses. Other parameters had similar results (taking into
account the number of datasets used for the learning process;
Supplementary Fig. 4 online).

Blind test of the multidimensional metric

We tested the multidimensional metrics against data that were
unavailable when we were developing the computational rule. We
obtained a list of odorants (Supplementary Table 3 online) for
which glomerulus responses have been measured with optical
imaging in rats (K.M.; unpublished data). We then calculated the
distances between all pairs of odorants using the suggested multi-
dimensional metric and the optimized metric, based on which we
could predict differences in response (see Supplementary Data 1
online for the predicted values using the optimized metric). Then
we tested the correlation between the metric-predicted distances
and the measured response pattern in 4 rats (Fig. 3 and Supple-
mentary Table 3). Whereas the CAN metric did not predict
response (average r = 0.12), the optimized multidimensional
metric average correlation value was 0.5 (P < 107 for all four
experiments). Furthermore, the optimized metric was significantly
better than the non optimized metric (df. > 987,
t > 5.4, P < 0.0001; for all 4 experiments), thus validating that
the optimization was universal and not restricted to the data from
which it was developed. In sum, our metric served to predict
differences in neuronal responses that were unknown to us at the
time of prediction.

DISCUSSION

Using the multidimensional physicochemical metric that we devel-
oped, we found that when working with straight-chain odorants
from a few functional groups, the first axis of the resultant olfactory
space correlated to the number of carbon atoms and the second axis

428 | VOL.5 NO.5 | MAY 2008 | NATURE METHODS

correlated to the functional group. Thus, previously suggested axes
are special cases of our multidimensional metric, yet unlike these
axes the proposed metric imposed distances between odorants
across different functional groups, and these distances accurately
predicted neural response. Furthermore, aliphatic odorants with
similar high CAN values were closer to each other, according to the
multidimensional metric, than aliphatic odorants with similar low
CAN values. This is consistent with previous results!"?’ and
supports observations made by others!>!4,

Although our metric was applicable across methods of recording,
across species, and across levels within the olfactory system (olfac-
tory sensory neurons and glomeruli), this nevertheless does not
imply that olfactory coding is identical across these domains, or
that different methods record the same underlying mechanisms.
For example, different animals are probably better tuned to
different portions of olfactory space. This will modify their acuity
within portions of this space, but will not reorder the space. The
same is true across levels of processing and methods of recording.
Thus, given three odorants using our metric, two that are very close
to each other (a and b) and one that is distant (c), our metric
cannot predict whether a given animal or detection method will
respond to any of these odorants, or whether a given odorant will
be more or less salient (odor a may be overwhelming for one animal
and barely detectable for another). What our method can predict,
however, is that if a response of a particular pattern was elicited
by odorant a, then there is a higher chance for odorant b to elicit
a similar response than there is for odorant ¢ to elicit a
similar response.

The proposed metric has a few notable weaknesses. For one, it
explains only about 50% of the variance, and a considerable portion
of the variance in response remains unexplained. A consequence of
this is that our metric is ill-suited to dealing with sparse data, that is,
cases with only few olfactory sensory neurons or glomeruli. For
example, in datasets reporting response patterns of 14 neurons or
less, the correlation between odorant distance and pattern similarity
in odorant-induced olfactory sensory neuron and glomerulus
activity was not significant®!%? (r < 0.3, P > 0.05 for all datasets).
This is probably because the power of the metric is not sufficient to
overcome the inherently poor power of comparing to only a small
number of response patterns. In the 7 published datasets we
analyzed, the number of neurons ranged from 24 to 115.

Finally, the suggested metric provides a practical solution to
odorant selection, a critical component in olfaction experiments.
To select odorants, one needs to decide what part of the olfactory
space one wishes to cover and what the covering resolution is. Once
these parameters have been decided upon, one can use the multi-
dimensional metric to decide which odorants are appropriate.
Although the calculations we have used and described can be
implemented with ease, to increase the practical contribution of
this manuscript we provide an interactive tool (Supplementary
Data 2 online) and also suggest several possible odorant selection
groups (Supplementary Data 3 online).

METHODS

Data sets. We mined data from published papers
In almost all cases, the response values had been reported as the
response strength category of each olfactory sensory neuron or
glomerulus. In dataset 6 (ref. 21), the raw data had not been
reported; instead, the correlation values between response activity

5,11,14,16,20-23,27
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maps had been reported in a grayscale image. To extract these
correlation values, we analyzed this image and extracted the gray
values and then estimated the r values from it. This is a noisy
process and might explain why this dataset received the lowest
correlation values.

Odorants. Some odorants did not elicit any response, or elicited a
very weak one. Calculating correlations required that each variable
have a nonzero (or close to zero) variance. We therefore removed
from each dataset all the odorants that had less than 4 responding
neurons. This amounted to removal of odorants from the datasets
we analyzed (Table 1). The large number of non-responding
odorants in dataset 1 is probably due to the relatively low number
of neurons measured.

Descriptors. We generated physicochemical descriptors by obtain-
ing the molecular structure for each odorant from PubChem
(http://pubchem.ncbi.nlm.nih.gov/search/) and inputting this
into Dragon (http://www.talete.mi.it/download.htm), a commonly
used and well-described?® software that provides more than 1,600
molecular descriptors. We normalized the descriptors.

Calculating correlations. For each 2 odorants out of the n(n—1)/2
possible pairs, we calculated the Pearson correlation between their
response pattern and the physicochemical distance using the
Euclidean distance. We then calculated the correlation between
the above 2 sets of n(n — 1)/2 numbers.

Searching for the best descriptors subset. Searching for the
smallest subset of descriptors that maximize the total correlation
value was an intractable task. Thus, we used approximation greedy
algorithms (Supplementary Methods).

Additional methods. Details of the search algorithm, additional
examples of the strength of the metric and further analysis, with
tools for calculating distances between odorants and recommenda-
tions on sets of odorants that are best in terms of spanning the phy-
sicochemical space, are available in the Supplementary Methods.

Note: Supplementary information is available on the Nature Methods website.
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