Article

On Folk Theorems

David Harel
IBM Thomas J. Watson Research Center
Yorktown Heights, New York

Criteria are suggested for determining if a
statement is a folk theorem. The ideas are then
illustrated with a detailed example from the theory of
programming.

Key Words and Phrases: flowchart, folk theorem,
structured progamming, while-programs

CR Categories: 2.1, 4.2, 5.24

1. Introduction

Folklore: The traditional beliefs, legends and
customs, current among common people.
—The Oxford English Dictionary

Theorem: A general conclusion which has been proved.
—Mathematics Dictionary, Van Nostrand Reinhold

In view of these quotations one might be tempted to
conclude simply that a folk theorem is a general conclu-
sion which has been proved and which is a traditional
belief, legend, or custom current among common people.
The purpose of this paper is to refine this definition
somewhat, adapting it to the purposes of the research
community in computer science. Accordingly, we shall
attempt to provide a reasonable definition of or, rather,
criteria for folk theorems, followed by a detailed example
illustrating the ideas. The latter endeavor might take one
of two possible forms. We could take a piece of folklore
and show that it is a theorem, or take a theorem and
show that it is folklore. As an example of the first form
we could have shown that the statement P % NP, which
is folklore, is also a theorem. However, since we have
resolved to introduce no new technical material in this
paper, and moreover, since researchers in our community
seem to be less familiar with folklore than with theorems,

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

Author’s address as of August 15: D. Harel, Dept. of Applied
Mathematics, The Weizmann Institute of Science, Rehovot, Israel.
© 1980 ACM 0001-0782/80/0700-0379 $00.75.

3

we prefer and will adopt the second approach. Accord-
ingly, in Section 3 we present strong evidence to the
effect that a particular theorem about flowcharts is a folk
theorem.

2. What is a Folk Theorem?

We would like the reader to try and recall the last
time he received a referee’s report in which the referee
dismissed his latest achievement as being “a piece of
folklore which has been around for ten years,” or, alter-
natively, the last time the reader himself drastically
reduced a student’s overflowing enthusiasm about a
result, labeling it “a good try but unfortunately a folk
theorem.” The high frequency of such rather unhappy
occasions calls for extra investigation. What makes a
statement a folk theorem? What facts prompted the
careful reviewer to make his devastating comment, or by
virtue of what did the reader himself dare turn a self-
confident student or colleague into a temporarily crushed
individual?

Let us quote three more definitions of folk objects:

Folk song: A song made and handed down among the common people;
folk songs are usually of anonymous authorship and often have many
versions.

Folk tale (or folk story): A story usually of anonymous authorship and

legendary or mythical elements, made and handed down orally among
the common people.

— Webster’s New World Dictionary of the American Language

Folk tale: A popular story handed down orally from past generations.

—The Oxford Advanced Learners Dictionary of Current English

We will not try our hand at providing a similar clear-cut
definition of a folk theorem suited for a dictionary,
though it is somewhat amusing to see what happens
when the word “theorem” is substituted for “song” or
“story” in the above. In particular, we are certain that
the (by now annoyed) reader would require an expla-
nation of the phrase “common people” in our context.
On closer inspection, however, it seems that there are
three central properties which we can abstract from these
definitions: popularity, anonymous authorship, and age.
Note that these phenomena are also implicit in the

Communications July 1980
of Volume 23
the ACM Number 7

definition of folklore quoted at the start: “current among
common people” implies popularity, “beliefs, legends
and customs” indicates anonymous authorship, and “tra-
ditional” adds the dimension of time.

When trying to clarify these three aspects and transfer
them from the realms of telling tales and singing songs
to that of proving theorems, it should be noted that
neither one of them is to be taken in its strict literal
sense. The popularity of a theorem need not necessarily
be established by a head count of researchers who have
used or quoted it, though (as illustrated in the next
section) statistics can be helpful. Rather, it usually shows
up when one tries asking a handful of colleagues whether
the statement is true. With the “I’ve heard something
like that before” look on his face, the person questioned
will usually be able to give the correct answer and most
often he will be able to accompany it with a proof too.

Often the theorem is quoted by virtue of it being very
similar to another statement which is being proved. This
brings us to the “often have many versions” phenome-
non, which is closely related to popularity. Surely, with
the size of our research community being what it is, slick,
compact statements of theorems tend to be remembered
even by people not working in the actual area of research
relevant to those theorems. The statement “while-pro-
grams compute everything” is much more catchy and
appealing than its obvious rigorous counterpart. Stating
such a theorem in this form greatly increases its popu-
larity and with it the chances of its becoming a “legend”
or simply a folk theorem. The vagueness in a theorem’s
statement can thus give rise to more than one (legal)
version of it, and again it becomes more fun and more
folkish when each version requires a seemingly different
proof. (The reader is advised not to confuse such folk
theorems with statements which are generic, i.e., state-
ments that are expressed deliberately in a form from
which many real theorems are given as instances, like
“parallel time equals space.” See, e.g., chapter 2 of [36].
This we do not want to regard as being folk.)

Anonymous authorship should also not be taken
completely literally. Indeed, since the periods of time we
are talking about are not so great (see below), it is rarely
the case that no one knows with whom the theorem, or
its rigorously stated various versions, originated. Rather,
what tends to happen is that the effort involved in tracing
back such a theorem is far greater than that involved in
reproving it; proofs (or the ideas behind the proofs) of
folk theorems tend to be “handed down” together with
their statements. (This fact, incidentally, implies that a
deep theorem with a complicated proof will usually not
qualify as a folk theorem). The roots of a folk theorem
might be buried in some obscure lecture notes, in a letter
to an editor, or worse, in a “private communication.” It
is usually possible, if one is willing to put on his Alex
Haley cap, to undig those roots (at least those recorded
in print), though the ideas behind the proof might not
have been completely original with the author of the
earliest such root. Indeed, and here is where the age of

380

the theorem comes in, some of the ideas behind the best
known folk theorems in computer science go back to
Turing, Kleene, or von Neumann. (The usual saying, if
one cannot find an explicit mention in their works, is “It
was known to Turing”") One must remember though
that ten or even five years is an enormous time span in
our field, and that furthermore the dizzying rate of
development within the field, together with frequent
changes in notation and terminology, can render such
root-finding endeavors quite formidable. Sometimes the
theorem is the result of a number of researchers’ succes-
sive observations on previous work and any of these
might be later quoted as the origin of the theorem. A
“real” folk theorem will be reproved over the years again
and again, an activity which in view of these remarks is
completely justified and should be regarded as part of
the culture. Our amateur historian may thus become
easily confused, despair, and switch to a less depressing
hobby such as stamp collecting.

Hence, while the pop-auth-age properties seem to be
necessary and sufficient conditions for a theorem to be
folklore, the ways in which they appear and can be
established are by no means clear-cut. On this note let
us now turn to a specific example of theorem.

3. A Folk Theorem

In the interest of making this section readable for as
large an audience as possible, we have collected its more
technical parts in the Appendix, which the technically
oriented reader is strongly urged to regard as part of the
text itself. However, since the reader would presumably
not be reading this journal otherwise, we can safely
assume that he is familiar with such general terms as
computer, program, and flowchart, and also with more
specialized ones such as variable, program-counter, and
while-do. Without further ado, let us now introduce the
subject of this folk section.

FoLk THEOREM. Every flowchart is equivalent to a
while-program with one occurrence of while-do, provided
additional variables are allowed

Facts pointing to its folkishness are apparent at the
very start of an investigation of this theorem. Specifically,
most people’s first reaction is to attribute the theorem to
the 1966 paper of Bohm and Jacopini [15] which ap-
peared in this journal’ In fact, some of the published
appearances of the theorem, which we mention later, are
attributed by their authors to [15], although, as we shall
see, it is not this theorem which Bohm and Jacopini
proved.

(Let us remark here that this and other phenomena
discussed in the sequel are to be taken as rather amusing
manifestations of the lore and legend of our young field,
and by no means are they criticism of the research

! Actually, it is the first part of [15], due to Jacopini, which is of
interest here.

Communications July 1980
of Volume 23
the ACM Number 7

involved. We will do our best to convey this spirit to the
reader as we go along.)

Returning to our topic, we note that the theorem
proved in the first part of [15] asserts that, with additional
Boolean variables®, every flowchart is equivalent to a
while-program (with, in general, more than one occur-
rence of while-do). Having proved the first “structuring
result” of its kind, Bohm and Jacopini’s work has become
immortalized as containing “the mathematical justifica-
tion for structured programming,” to paraphrase many
authors on the subject. The resulting universal popularity
of [15], the fact that due to its rather technical style it is
apparently more often cited than read in detail, and, of
course, the similarity of the theorem proved in [15] to
the one we are interested in seem to be some of the
reasons for this common reaction.

Bohm and Jacopini prove their result by providing
“local” transformations on the various kinds of flow-
charts possible, leading to the final structured while-form,
which involves only sequencing (;), conditionals (if-then-
else), and iteration (while-do). Put another way, their
proof is by induction on the structure of a flowchart. The
Boolean variables are used to “mark” paths taken by the
computation, in order to remember them later.

We can point to three subsequent papers in which
similar proofs of the Bohm and Jacopini result appear;
namely, Mills [67], and Culik [24, pp. 17-19; 25, pp. 11-
14}]. Indeed, it seems that H.D. Mills who, in his unpub-
lished lecture notes, termed the result of [15] “The Struc-
ture Theorem” was one of the driving forces behind the
glorification of Bohm and Jacopini’s result, which he
reproved and discussed in highly attended lectures and
seminars in the following years.

It is interesting that precisely what is needed in order
to extend this very proof to one proving our Folk Theo-
rem can be found in Mirkowska’s 1972 thesis in Polish
about algorithmic logic [70].> The “normal form theo-
rem” of [70] states that with additional Boolean variables
(of the kind allowed in [15]) every while-program is
equivalent to one in which while-do occurs only once.
The proof, which is also by induction, provides local
transformations which serve to eliminate nested and
neighboring while’s and to distribute while-do over if-
then-else. A sample transformation appears in the Ap-
pendix. To Mirkowska’s proof of what we might call the
second half of our Theorem, a complete paper by Per-
kowska [77, p. 441] was devoted two years later. A third
exposition of this proof appears in a paper by Kreczmar
[55, pp. 23-24] which deals mainly with interesting but
completely different issues.

Thus, we have found that Bohm and Jacopini [15]
are not to be detached from our investigation, since
besides being the first to prove a “structuring result” and
the first, it seems, to illustrate some of the power of

? These can take on one of two distinct values, distinguishable by
a test.

% Not having [70] in front of us, we rely here on personal com-
munication with Mirkowska and on the reference in [55].

381

Boolean variables, their work together with that of Mir-
kowska [70] can be interpreted as a complete proof of
our own Theorem. If one prefers symbols over words
and is willing, for the moment, to overlook priorities in
favor of documenting proofs appearing in print, one
might associate this proof of the Folk Theorem with

151 v [67) v [24] v 25D A (701 v [77] v [55D),

where “\/” and “A” stand, respectively, for “or” and
“and b4

Now, all this sounds like complicated mathematical
research concerning a rather deep result for whose proof
the efforts and partial results of at least two researchers,
working separately and, indeed, in different countries,
were needed. The real fun in investigating this Theorem
starts when one realizes that there is a completely differ-
ent, almost trivial way of proving the Theorem and that,
furthermore, it is with this proof that the names of B6hm
and Jacopini are often erroneously associated. This
“global” proof, given more rigorously in the Appendix,
involves constructing a simple one-loop program which,
starting with the first “box” in the original flowchart,
executes one such box each time around the loop. Upon
completing the execution of a box, a variable is set to the
index of the following box in the original flowchart. (For
a test box, an if-then-else accomplishes this for the two
possible outcomes.) Control then returns to the beginning
of the loop. The body of the loop, which is executed until
the index of the original STOP box is detected, starts
with a nested set of conditionals which test the value of
this one new variable and branch to the appropriate box
accordingly. Since any flowchart contains only a finite
number of boxes, the new (numerical) variable can be
simulated by a finite number of Boolean ones, giving the
Theorem.

It is interesting to note that both the local transfor-
mation of Bohm and Jacopini [15] and Mirkowska [70],
and the aforementioned global one fail, by their very
nature, to preserve the structure of the original flowchart.
Ironically, though, they are proofs of a so-called “struc-
turing result.”

But let us continue our investigation, being curious
as to whether we ourselves, by virtue of having just
presented the global proof, are to play a central role in
this little tale. We shall clearly be deprived of this if the
proof has appeared in print earlier. “Appeared,” did we
say? Yes, it has appeared. But that would seem to be a
rather mild word to associate with the situation we now
set out to describe.

Textbooks are a good place to start. And, indeed, if
one browses through the books published in the general
area of structured programming, one finds two which
contain the above proof: McGowan and Kelly in 1975
[63, pp. 62-64] and more recently, in 1979, Linger, Mills,
and Witt [60, pp. 118-120}. A similar scan of books of a
more theoretical nature reveals two more occurrences of
the proof: Greibach’s 1975 monograph on program
schemes [38, pp. 4.52-4.53] and Clark and Cowell’s 1976

Communications July 1980
of Volume 23
the ACM Number 7

introductory text [20, pp. 61-63]. It is noteworthy that in
all four cases the theorem stated is the Bbhm and Jaco-
pini one (and hence its attribution in [63] and [38] to
[15]), but the global proof makes use of only one while-
do and so proves our stronger Folk Theorem.

Since no pointers to the origin of the proof are given
in these references, our book search has been only partly
successful. The idea of the global proof seems to be
simple and popular enough to have been essentially
reinvented by the authors of these books. Reinvented,
that is, if we can find it occurring in print even earlier.

Leaping from books to newsletters, a reader leafing
through the February 1975 issue of SIGPLAN Notices
notices a two-page paper by Plum [79, pp. 32-33], in
which the author, terming the use of the Bohm and
Jacopini [15] method “mathematical overkill,” presents
a “simple proof of this simple result”—the global proof
above. One finds it hard to believe, though, that it took
almost nine years for this observation to find its way to
the printer.

We must turn, it seems, to one of computer science’s
standard oracles: D. Knuth’s scholarly survey paper
published in 1974 [52], besides containing much stimu-
lating material concerning the (non-) value of results
such as our Theorem, confirms our suspicion by reducing
the nine years to slightly over one; in [52, p. 274] we find
our sixth occurrence of this proof, but here it is attributed
primarily to “the comments made by Cooper in 1967” in
his letter [22] to the editor of this journal. Indeed, D.C.
Cooper [22] (eight years, we might add, before the almost
identical [79]!) notes that “a stronger reduction [than that
of Bohm and Jacopini] is possible,” and proceeds to
prove our Folk Theorem the global way.

And so, we are exposed to what seem to be the first
stages in the evolution of an authentic folk theorem: As
a reaction to the journal publication of a proof of half
the theorem, an almost trivial proof of the whole is
suggested in a letter to the editor, and many subsequent
authors, not having seen the aforementioned letter (in-
deed, one does not expect them to have seen it), then
proceed to reinvent the proof themselves.

This situation is enhanced by the following additional
five papers, all of which present Cooper’s proof: Ashcroft
and Manna’s 1971 IFIPS paper on replacing goto’s by
while-do ([2, p. 148]; see also [3, p. 140]), the similar but
independent 1972 paper of Bruno and Steiglitz [17,
p- 5211, Wulf’s 1972 “case against the goto” [87, pp. 66—
67], Mill’s 1975 journal version of the Structure Theorem
[68, p. 45}, and the appendix to the 1977 paper on reliable
programs of Linger and Mills [59, pp. 136-139]. Of these,
[2, 68, 59] credit Cooper with the proof, [17] gives the
proof without credit but the theorem stated is the weaker
Bohm and Jacopini version with credit to them, and [87]
in a way typical of the folkishness of the situation credits
[15] with the stronger version.

Similarly typical, by the way, is Denning’s September
1975 complaint [27] about Plum’s February 1975 paper
[79]: “Precisely this construction was suggested by Bruno

382

and Stieglitz in 1972.” Denning’s argument can actually
be made five years stronger by referring to Cooper!

It is also worth remarking that in [2, p. 149; 3, pp.
141-142] Ashcroft and Manna, being interested in struc-
turing results which preserve some of the structure of the
original flowchart, provide in addition a slightly more
efficient variant of the global proof, which they attribute
also to Cooper, in which what one might call a “maximal-
loop-free” component of the flowchart (as opposed to a
single box) is executed each time around the loop.

Now, even if we were to end our story here, there is
no doubt that we could quite safely term this result a
folk theorem. As it turns out, though, our little game4 is
far from being over.

At this point we venture our opinion that the global
proof, and hence our Theorem itself, is actually rooted
in the early work of John von Neumann on the structure
of digital computers. In Section 6 of his 1946 (!) joint
paper with Burks and Goldstine [18], the idea of execut-
ing a program on a computer by means of a large loop
which carries out an instruction at a time is described. A
program counter is updated to contain the address of the
next instruction before returning to the start of the loop.
Admittedly, this is not a proof of a theorem, but the idea
is certainly there, prompting one to wonder whether
Cooper’s observation should not be taken simply as
providing an operational semantics for flowcharts, rather
than being the proof of a theorem.

As if all this were not enough, this same proof appears
in a number of additional papers, in which its detection
is considerably harder. In the first, Meyer and Ritchie
[65, Section 6], one can find the idea in a proof of the
fact that primitive recursive functions of certain time
complexity can be written with some fixed depth of
bounded loops. The proof involves one potentially un-
bounded loop (corresponding to our single while-do), the
body of which executes one step of the computation at
a time with the aid of numerical program counters.

Next, the idea can be found in Bjorner [11] as the
“Canonical Program” on page 438, which simulates any
given “flowchart machine” using a next-state function.

A third such occurrence is in Brainerd and Landwe-
ber [16, pp. 122-123] where the idea is incorporated into
the proof that labeled Markov algorithms compute par-
tial recursive functions. There, too, numerical program
counters are used.

Another occurrence can be extracted from the proof
of theorem 16 in Pratt’s 1976 paper on dynamic logic
[81, pp. 119-120] in which a universal counter machine
is simulated by a one-loop regular program which em-
ploys a numerical program counter.

A most interesting and subtle occurrence of this proof
can be found in the fifth paper, Elgot [32], also from
1976, which deals with the language of multientry mul-

*For an enlightening example of a similar but much “larger”
game, in which the period spanned is not measured in years but in
centuries, the reader is referred to Robert K. Merton’s delightful book
on the “Dwarf-Giant” aphorism, [64].

Communications July 1980
of Volume 23
the ACM Number 7

tiexit flowcharts. Theorem 3.1 of [32, p. 44] states that
every such flowchart is equivalent to one in the sublan-
guage analogous to conventional while-programs, but
with no additional variables at all! In view of the negative
results of Knuth and Floyd [53], Ashcroft and Manna
[2, 3], Peterson, Kasami, and Tokura [78], Indermark
[47], Kosaraju [54], and Kasai [49], from which it follows
that for conventional flowcharts this statement is false,
a careful reading of Elgot’s proof becomes necessary.
The evidence of the folkishness of our Theorem is con-
siderably reinforced when one discovers that this proof
is also essentially the global one in disguise! Boolean
variables are cleverly replaced by what are called “trivial
schemes” in [32], which we might call “cables,” in which
only one “wire” of each is connected. Such a cable forces
control to proceed to one designated box for execution
next time around the loop. Some details and an illustra-
tion can be found in the Appendix.

Digging slightly deeper into the earlier papers in
algebraic semantics from which Elgot’s paper [32] on
structured programming grew, one discovers some inter-
esting facts. A normal form result for certain kinds of
operations on certain kinds of uninterpreted algebras
occurs in various papers differing quite drastically from
one another in notation and terminology. Thus, in a
1973 paper of Elgot [31, pp. 213-222] (published in 1975)
we find a theorem about the “normal description of a
morphism over an iterative theory.” In Wand’s 1972
paper [85, p. 335] (published in 1973) we find a normal
form theorem for “u-clones of operations over a lattice
algebra.” In a 1978 paper by Tiuryn [83, pp. 21-22] we
find a normal form theorem for “regular polynomials
over regular algebras.” Finally, it was as early as 1969
when Beki¢ [9, pp. 12-15] proved a normal form theorem
for “definable operations in general algebras.”

All these four results can be shown to give rise to
versions of our theorem for the more general case of
“multiwire” recursive program schemes (as opposed to
flowcharts). Without attempting to describe the technical
details of these papers, which are all far beyond the
scope and intention of this paper, we remark that in our
terminology the proofs in Beki¢ [9] and Elgot [31] are
local and in Tiuryn [83] and Wand [85] global. Further-
more, the proofs in [9, 31] start with schemes which are
analogous to while-programs, and all four proofs use,
essentially, the “trivial scheme” mechanism for mimick-
ing Boolean variables. These observations make the task
of fitting these proofs into our framework somewhat
easier. Accordingly, our decisions on these were to clas-
sify Beki¢ [9] and Elgot [31] as additional proofs of the
Mirkowska part [70] of the local proof, and to add Wand
[85] and Tiuryn [83] to the list of Cooper-like global
proofs. Nevertheless, as the algebraic approach is so
different from that of most of the other proofs we have
mentioned, we choose to assign priority credit for the
second part of the local proof to Beki¢ and Mirkowska
independently, although the former precedes the latter
by three years.

383

Returning to the global proof, the learned reader can
probably see now where these findings are leading us.
The search for occurrences of this proof in the (obviously
relevant) literature on structured programming and flow-
charts led to Cooper’s operational version [22], which, in
turn, served to attract our attention to Burks, Goldstine,
and von Neumann [18]. But now we have gradually been
lured into considering theorems in algebraic semantics
(e.g., [83, 85]) and in recursive function theory (e.g., [16,
65}), which, at first sight, seem quite unrelated to our
naive flowcharts. And so, there seems to be no escape
from considering the grand common ancestor of all such
results—Kleene’s 1936 normal form theorem for partial
recursive functions [51]!

Indeed, Kleene [51, p. 736] (see also Kleene [50, p.
288] and Rogers [82, pp. 29-30]) showed that every
partial recursive function f can be described as the
application of a primitive recursive function g to ph,
where 4 is primitive recursive and g, the “minimization”
operator, acts, in essence, like a while loop. The “body”
of that loop, A, can be loosely described as simulating
one step in the computation of f using coordinates for
the “current value” of the function and the “label” of
the next step. The function g simply isolates the final
value of the computation by projecting on the appropri-
ate coordinate.

Now, Kleene’s theorem appears repeatedly in count-
less papers on recursive function theory. However, since
we did, after all, start out with flowcharts, and since the
line must be drawn somewhere, we have decided to draw
it right here; no attempt shall be made to search for all
occurrences of Kleene’s theorem, and the ones we have
mentioned [50, 82] will not qualify as proofs of our
Theorem.

To summarize this part of our tale, the global proof
has been traced down two orthogonal paths, each of
which has led to a pioneer—J. von Neumann in his 1946
work on designing computers [18] and S.C. Kleene in
his 1936 work in recursive function theory [51]. Although
Cooper [22] provided the first explicit proof of our
Theorem as stated, we feel it is reasonable to make the
modest assumption that he, as well as all subsequent
provers, was either directly or indirectly influenced by
[18] and [51]. Consequently, we assign credits for the
global proof of our Theorem to Kleene [51] and Burks,
Goldstine, and von Neumann [18] independently. So, in
fact, the Theorem was “known” to Kleene and von
Neumann.

Again, blurring credits in the interest of enumeration
and begging the reader’s pardon for inserting an annoy-
ing self-reference to the present paper [40] in which, no
doubt, the proof appears again,” we associate the global
proof of the Theorem with

® This is the “referring to as many of one’s own papers as possible”
syndrome, taken to a new extreme: a reference to the very paper being
read! In the absence of any other notable contributions of the present
paper, and in view of the amount of work that went into writing it, we
cannot resist the temptation to claim priority for this first.

Communications July 1980
of Volume 23
the ACM Number 7

(I513 v [18]) A ([651 v [22] v [11] v 2] v [17] v
[87] v [85] v [52) v [16] v [68] v [79] v
[38] v [63] v [32] v [20] v [81] v [59] v
[83] v [60] \/ [40]).

As mentioned earlier, statistics are perhaps not cru-
cial for the classification of a theorem as folklore, but
they are impressive nevertheless. The version of the
Theorem we have talked about so far® has essentially
two proofs. Of the local proof we have found 4 A 5
occurrences (four of the first part, five of the second,
none of both) and of the global proof 2 A 20. While it is
not clear whether 4 A 5 should evaluate to 4, 5, 9, or 20,
there are certainly many occurrences.

In the process of exposing these facts we have also
found numerous references to the Theorem or its Bohm
and Jacopini part, which do not contain proofs, mainly
in connection with the issue of structured programming.
For a sample of fifty see Arsac [1, p. 3], Baker
[4, p. 99], Baker and Kosaraju [5, p. 555], Banachowski
[6, p. 115], Banachowski et al [7, p. 22], Bates
[8, p. 196], Benson [10, pp. 145-146], Bloom and Tindell
(12, p. 271}, Boehm (13, p. 113], Bohl [14, p. 140],
Chandra {19, p. 1), Cohen and Levi [21, pp. 209, 225],
Culik [26, p. 54], Denning [27, p. 10; 28, p. 216], Dijkstra
[29, p. 148], Donaldson {30, p. 53], Engelfriet 34, p.
204], Fischer and Fischer [35, p. 46], Goodman and
Hedetniemi [37, pp. 19-20], Harel [39, p. 89], Harel,
Norvig, Rood, and To [41, p. 218], Hopkins [44, p. 59],
Hughes [45, p. 59], Hughes and Michtom [46, p. 61],
Jensen and Tonies [48, pp. 228, 236), Kasai [49, p. 177],
Knuth and Floyd [53, p. 31], Kosaraju [54, p. 252],
Leavenworth [56, p. 55], Ledgard and Marcotty [57, p.
632], Lee and Chang [58, p. 65], Martin [61, p. 5],
McGowan [62, p. 25], Miller and Lindamood [66, p.
56], Mills [69, p. 90], Myers [71, p. 110; 72, p. 5], Nassi
and Shneiderman [73, pp. 13-14], Neely [74, p. 120},
Nicholls [75, pp. 409-410], Partch [76, p. 1282], Peterson,
Kasami, and Tokura [78, p. 511], Prather [80, pp. 159,
170), Van Gelder [84, pp. 3, 5], Wise, Friedman, Shapiro,
and Wand [86, p. 441}, Yourdon [88, pp. 146-147; 89, p.
107}, Yourdon and Constantine {90, p. 66], and Zelkow-
itz, Shaw, and Gannon [91, p. 60].

Many of these references contain interesting relevant
material, but in order to keep this investigation from
getting out of hand we will not describe them all. Let us
just remark that Bohl [14] informs us that Bohm and
Jacopini [15] was “initially published in Italian in 1965,”
that Cohen and Levi [21] extend the Theorem to parallel
programs, and that Prather [80] proves a similar result’
for Turing machines.

© Alert reader: yes, there is another version to come!
7 This is a syntactic result for “structured Turing machines,” not
a Kleene-type normal form theorem for functions.

384

Our story is given a final and quite unexpected
folkish twist by the existence of a second version of the
Theorem. In preparation for this, we were careful to
choose the adjective “additional” rather than “Boolean”
in its statement. In this version, auxiliary rather than
Boolean variables are allowed, which are simply new
variables of the types used in the original flowchart.
Although not guaranteed the ability to distinguish at will
between two distinct values as in the Boolean version,
we are able to freeze current values in new variables, and

-by retesting them later are able to “remember” the

outcome. (See the sample transformation in the Appen-
dix.)

The reader is urged to try his hand at proving this
version, which is apparently harder than the first. In fact,
we are not aware of any single global proof of it. Curi-
ously (or should we say, folkishly), a full proof of this
version does not seem to be available in any single paper
and, as we shall see, can be found only by juxtaposing
three papers (published, incidentally, on three different
continents...).

In 1971, Cooper [23, pp. 47-49] and Engeler (33, pp.
93-94] independently pointed out that any flowchart can
be put into a “block form,” which is basically a treelike
flowchart in which branches are allowed to bend back-
ward, but to ancestors only. In the same year, Ashcroft
and Manna showed that for any flowchart in this form
there is an equivalent while-program with additional
auxiliary variables. (This result is stated in [2, p. 148],
relying on a proof appearing in a preceding technical
report. The full proof appears in their final version [3,
pp- 135-138], and also, with reference to {2], in Grei-
bach’s monograph {38, pp. 4.53-4.54].) Being uninter-
ested in ruining the structure of the original program,
Ashcroft and Manna make no attempt to push their
techniques any further.

However, in a paper published in 1972, Hirose and
Oya [42, pp. 369-370; 43, pp. 65-68], apparently without
having seen [2], lay down the final brick by proving that
every while-program can be transformed into one with
a single while-do, using auxiliary variables. (In [43], the'
proof starts from arbitrary flowcharts but the part leading
to while-programs is rather sketchy compared to [2],
whereas the transformation to single while-do form is
detailed and precise.)

All three components of this proof are “local,” i.e.,
proceed by induction on the structure of the program. A
sample transformation from [42] appears in the Appen-
dix. Here, too, enumeration (modulu different versions
of the same paper) gives ([23] v/ [33]) A ([2] v [38]) A
[42].

And so our folk tale ends and barring unexpected
complications, our Folk Theorem has good chances of
living happily ever after. We have found that it has two
versions, the first of which has two different proofs, one
of these essentially going back to the cave-dwelling days
of Kleene (1936) and von Neumann (1946). The credits
are illustrated in Figure 1. Besides over fifty references

Communications July 1980
of Volume 23
the ACM Number 7

Fig. 1. The Roots of the Theorem.

(Bohm and Jacopini) (Beki¢ v Mirkowska)
local proof | flowcharts + while-programs » single while-do
Boolean version
(Kleene v/ (Burks, Goldstine, and von Neumann))
global proof } flowcharts > single while-do
(Engeler \; Cooper) (Ashcroft and Manna) (Hirose and Oya)
auxiliary version | local proof flowcharts ?block-form 3 while-programs ——————?single while-do

to the Theorem or its parts, we have found (4 A 5) + (2

A 20) + (2 A 2 A 1) printed occurrences of its proof,®

which evaluates to 27, 36, or 64, depending, respectively,
upon whether “A” is interpreted as “max”, “+”, or
“x”. These proofs, which span forty-four years, also
span the complete spectrum of recognized scientific lit-
erature: textbooks, monographs, survey articles, journal
papers, conference proceedings, newsletters, theses, tech-
nical reports, lecture notes, letters to editors, and self-
referential folk tales.
Quite a folk theorem, it seems....

4. The Future

We have postulated the appropriately adapted prop-
erties of popularity, age, and anonymous authorship as
criteria for determining if a statement is a folk theorem,
and have illustrated by exhibiting a theorem, the folkish-
ness of which seems to be beyond doubt.

As for the future, we envision three possible direc-
tions for further research:

(1) Compiling an encyclopedic list of folk theorems in
computer science.

(2) Investigating the related concepts of folk definition
and folk technique (that is, proof-technique).

(3) Showing that folk facts such as P # NP are folk
theorems.

5. Appendix

First, some definitions. A flowchart is a finite directed
graph with nodes labeled either with an assignment of
the form x « f(7) for variable x, function symbol f, and
vector of variables y, or with a test which is a Boolean-
combination of expressions of the form p(y) for predicate
symbol p and vector j. Assignment nodes have one

8 We would greatly appreciate pointers to those occurrences of proofs
we might have missed in our ignorance, in our haste, or otherwise.

385

outgoing edge and test nodes have two, labeled 1 and 0.
There is one START node with no incoming edges and
one outgoing edge, and at least one STOP node with no
outgoing edges. An interpretation 1 of a flowchart F
consists of a set of domains, an appropriate association
of domains with the variables of F, and an appropriate
association of functions and predicates over various
cross-products of the domains with the function and
predicate symbols of F. Given an interpretation I and
initial values for the variables appearing in F, the way in
which F proceeds to compute its values is straightforward
and is assumed to be known to the reader. Denote by F;
the function, associating with each set of input values for
F its output values, or a special “undefined” symbol if F
does not terminate. Also, let asn(F) and test(F) be the
sets of assignments and tests appearing in F.

Next, we define an appropriate set of while-programs,
relative to sets of assignments and tests A and T. Define
WH(A, T) as the least set such that:

(1) ACWHA,T)
(2) if Wi, W € WH(A, T) and P € T, then
(i) (Wy; W) € WH(A, T),
(i) if P then W, else W; € WH(A, T), and
(iii) while P do W; € WH(A, T).

Again, given an appropriate interpretation and initial
values for the variables appearing in a while-program W,
the standard method of defining the computation of W
is assumed to be known. We use Wp similarly as with
flowcharts. Let WH;(A, T) be the set of those elements
of WH(A, T) which contain at most one occurrence of
while-do.

Now, to be able to rigorously state the Boolean
version of our Theorem, we let

Basn(F) = asn(F) U { pi; < true, p; <« false}, 1 =i < oo,
and

Btest = the set of Boolean combinations of tests in test(F)
and expressions of the form p;?, for 1 =i < oo,

Communications July 1980
of Volume 23
the ACM Number 7

Fig. 2. Cooper’s Global Proof.

sTOP]

[B-—next(l)l [Bio-n 1(2) [B«true (m IE«folse (nﬂ IVB‘-vrue (m)l IB-—folxeL‘

Fig. 3. Elgot’s Proof.

“o’m#l

|

~

test,,

next (1, | [,g_(z»,,,ﬁ r_g(mn,,,, If_g(nm,,,,J trueim)y,| [false(m)

7 NS

where py, pz ... are new variables and F is an arbitrary
flowchart. An mterpretatlon is called nice if the p; range
over the domain {true, false} and the test pi? is true (i.e.,
evaluates to 1) iff the value of p; is true. Denote the set
of nice interpretations by NICE. Then the Boolean ver-
sion of our Folk Theorem states:

(*) (VF) @W € WH, (Basn(F), Btest(F)))
(V1 € NICE) (F1 = Wi).

386

In order to illustrate the Bhm and Jacopini [15] A
Mirkowska [70] “local” proof, we provide one of the
transformations of Mirkowska [70]:

while P; do (W,; while P; do W»)

|

“p1 < Pi” p2 false; while (p: \/ p2) do (if p; then W else Wy, “pz
P P2”, “pl -« Pl)’

Communications July 1980
of Volume 23
the ACM Number 7

where, e.g., “p1 « P,” stands for if P; then p1 « true
else p; « false.

Cooper’s global proof [22] proceeds as follows: Given
a flowchart F, denote the assignment nodes of F in some
arbitrary, but fixed order by asn,, ..., asn,, and the test
nodes similarly by festn+1, ... , festm. Think of all the
STOP nodes as being numbered m + 1. For each 1 < i
=< n, let next(i) be the subscript corresponding to the
node adjacent to asn; (by its outgoing edge), and for each
n + 1 <i=m let true(i) and false(i) be the subscripts
corresponding to the nodes adjacent to fest; (by the 1 and
0 outgoing edges, respectively). Let io be the subscript
corresponding to the node adjacent to the START node.
Assume now that a new variable B ranges over the set
{1,2,..., m+ 1}, and that we have assignments B « i
and tests B = i? for each i in that set, with the meaning
obvious. It should be clear that B can be replaced by
[log m]+ 1 Boolean variables encoding the value of B,
with B «— i and B = i? being replaced by the appropriate
sequences of assignments and conjunctions of tests.

The while-program W € WHy(Basn(F), Btest(F))
which is equivalent to F in the sense of (*), is given
(using the obvious translation into while-form) by the
flowchart in Figure 2.

To illustrate Elgot’s proof [32], we will not provide a
rigorous definition of his multiwire flowcharts, but trust
that the reader will be able to gather as much as is
needed from the following. For positive integers j and p
where j < p, the “trivial scheme j,” of [32] is simply the
“cable” of width p with all but the j’th component
disconnected:

L. j1 j 41 ..p

)
(1l1y

Elgot’s proof is illustrated by the multiwire flowchart of
Figure 3. In it, e.g., next(i)m+1, which follows asn;, is a
cable of width m + 1 in which control, so to speak, may
only flow through the nex#(i)’th wire, which is ultimately
connected tO asmnexs, as expected. In other words,
Cooper’s variable B is “hard wired” into the multiwire
cables of Elgot’s program.

In order to state the second version of the Theorem
rigorously, we let Aasn(F) be the set of assignments of
the form x « f(y), where x and the components of
come from the union of {u;, uy, ...} and the set of
variables appearing in F. Here the u; are new variables,
and f is a function symbol appearing in F. Atest(F) is
defined as the set of Boolean combinations of tests of the
form p(y), for y as above and p in F. The “auxiliary”
version of the Folk Theorem states:

(**) (VF) @W € WHy(4asn(F), Atest(F))
(VI)(Fr = Wy).

As an illustration of the ([33] v/ [23]) A (2] v [38D A
[42] proof of this version, we provide the transformation
of Hirose and Oya [42] analogous to that of Mirkowska
[70] given above:

while P; do (W;; while P, do W)

|

«- x, if P, then Wy; while P,’ do if P, then W; else (i « X; if P,
then W)),

where X is the vector of all variables appearing in the
original F, & is a vector of new variables, and P, is the
result of substituting the «’s for the x’s in P;. Here, for
clarity, the clause else x < X has been omitted.

Received 10/79; revised and accepted-2/80

Acknowledgments. We are indebted to N. Pippenger
for helpful discussions about folk theorems in general
and about the one described in Section 3 in particular.
Also, thanks go to all the people we have pestered
recently with questions about folk theorems and trans-
lations from flowcharts to while’s; may this work help
erase the puzzled looks we often saw on their faces as a

result.

References

1. Arsac, J. Un langage de programmation sans branchements. Rev.
Franc. d’Autom. Inf. Rech. Oper. (June 1972), 3-34.

2. Ashcroft, E,, and Manna, Z. The translation of “go to” programs
to “while” programs. In Inform. Proc. 71, 1971, pp. 147-152.

3. Ashcroft, E., and Manna, Z. Translating program schemes to
while-schemes. SIAM J. Comping. 4, 2 (June 1975), 125-146.

4. Baker, B.S. An algorithm for structuring flowcharts. J. ACM 24,
1 (Jan. 1977), 98-120.

5. Baker, B.S,, and Kosaraju, S.R. A comparison of multilevel
break and next statements. J. ACM 26, 3 (July 1979), 555-566.

6. Banachowski, L. Investigations of properties of programs by
means of the extended algorithmic logic I. Annal. Soc. Math. Pol.,
Series IV; Fundamenta Informaticae I, 1 (1977), 93-119.

7. Banachowski, L., et al. An introduction to alogrithmic logic. In
Mathematical Foundations of Computer Science, Mazurkiewitcz and
Pawlak, Eds., Banach Ctr. Publications, Warsaw, Poland, 1977, pp.
7-99.

8. Bates, J.L. A logic for correct program development. Ph.D. th,,
Cornell Univ., Aug. 1979.

9. Beki¢, H. Definable operations in general algebras, and the
theory of automata and flowcharts. Tech. rep., IBM Lab., Vienna,
Dec. 1969.

10. Benson, J.P. Structured programming techniques. Proc. IEEE
Symp. on Comptr. Software Reliability, New York, April 1973, pp.
143-147.

11. Bjorner, D. Flowchart machines. BIT 10 (1970), 415-442.

12. Bloom, S.L., and Tindell, R. Algebraic and graph theoretic
characterizations of structured flowchart schemes. Theoretical
Comptr. Sci. 9 (1979), 265-286.

13. Boehm, B.W. Software design and structuring. In Practical
Strategies for Developing Large Software Systems, E. Horowitz, Ed.,
Addison-Wesley, Reading, Mass., pp.103-128.

14. Bohl, M. A Guide for Programmers. Prentice-Hall, Englewood
Cliffs, N.J., 1978.

15. Bohm, C., and Jacopini, G. Flow diagrams, Turing machines,
and languages with only two formation rules. Comm. ACM 9, 5 (May
1966), 366-371.

16. Brainerd, W.S,, and Landweber, L.H. Theory of Computation.
John Wiley and Sons, New York, 1974.

17. Bruno, J,, and Steiglitz, K. The expression of algorithms by
charts. J. ACM 19, 3 (July 1972), 517-525.

Communications Juty 1980
of Volume 23
the ACM Number 7

18. Burks, A.W., Goldstine, H.H., and von Neumann, J. Preliminary
discussion of the logical design of an electronic computing
instrument, 1946. In J. von Neumann, Collected Works, Vol. V, A H.
Taub, Ed., MacMillan, New York, 1963, pp. 34-79.

19. Chandra, A K. Degrees of translatability and canonical forms in
program schemas. Proc. 6th ACM(SIGACT) Symp. on Theory of
Comptng., 1974, pp. 1-12.

20. Clark, K., and Cowell, D. Programs, Machines and Computations:
An Introduction to the Theory of Computing. McGraw-Hill, New
York, 1976.

21. Cohen, A.T., and Levi, L.S. Structured flowcharts for
multiprocessing. Comptr. Languages 3, 4 (1978), 209-226.

22. Cooper, D.C. Bohm and Jacopini’s reduction of flow charts.
Comm. ACM 10, 8 (Aug. 1967), 463, 473.

23. Cooper, D.C. Programs for mechanical program verification.
Machine Intell. 6, Edinburgh Univ. Press, 1971, pp. 43-59.

24. Culik, K. Structured algorithms and structured programming,
Rep. CS-79-40, Dept. of Comptr. Sci., Penn. State Univ., Aug. 1979.
25. Culik, K. Entry strong components and their applications (in
computer science). Rep. TR Nov. 79-01, Dept. of Comptr. Sci.,
Wayne State Univ,, Nov. 1979.

26. Culik, K. What is a flowchart loop and about structured
programming. SIGPLAN Notices (ACM) 15, 1 (Jan. 1980), 45-57.
27. Denning, P.J. Comments on mathematical overkill. SIGPLAN
Notices (ACM) 10, 9 (Sept. 1975), 10-11.

28. Denning, P.J. Two misconceptions about structured
programming. Proc. Ann. ACM Conf., Minneapolis, Minn., Oct.
1975, pp. 214-215.

29. Dijkstra, E.W. Go to statement considered harmful. Comm.
ACM 11,3 (March 1968), 147-148.

30. Donaldson, J.R. Structured programming. Datamation 19, 12
(Dec. 1973), 52-54.

31. Elgot, C.C. Monadic computation and iterative algebraic
theories. In Logic Colloquium *73, North-Holland Pub. Co.,
Amsterdam, 1975, pp. 175-230.

32. Elgot, C.C. Structured programming with and without go to
statements. IEEE Trans. Software Eng. SE-2, 1 (March 1976), 41-54.
33. Engeler, E. Structure and meaning of elementary programs. Proc.
Symp. Semantics of Algorithmic Languages, Lecture Notes in Math.,
Vol. 188, Springer-Verlag, New York, 1971, pp. 89-101.

34. Engelfriet, J. Simple Program Schemes and Formal Languages.
Lecture Notes in Comptr. Sci., Vol. 20, Springer-Verlag, New York,
1974.

35. Fischer, B., and Fischer, H. Structured Programming in PL/I and
PL/C. Marcel Dekker, Inc., New York and Basel, 1976.

36. Goldschlager, L.M. Synchronous parallel computation. Ph.D. th.,
TR-114, Univ. of Toronto, Dec. 1977.

37. Goodman, S.E., and Hedetniemi, S.T. Introduction to the Design
and Analysis of Algorithms. McGraw-Hill, New York, 1977.

38. Greibach, S.A. Theory of Program Structures: Schemes,
Semantics, Verification. Lecture Notes in Comptr. Sci., Vol. 36,
Springer-Verlag, New York, 1975.

39, Harel, D. And/or programs: A new approach to structured
programming. Proc. IEEE Specifications for Reliable Software Contf.,
Cambridge, Mass., April 1979, pp. 80-90.

40. Harel, D. On folk theorems. Comm. ACM 23,7 (July 1980).

41. Harel, D., Norvig, P., Rood, J., and To, T. A universal
flowcharter. In Proc. ATAA/IEEE/ACM/NASA Comptrs. in
Aerospace Conf. I1, Los Angeles, Calif., Oct. 1979, pp.

218-224.

42. Hirose, K., and Oya, M. Some results in general theory of flow
charts. Proc. of the First USA-Japan Comptr. Conf., Sponsored by
AFIPS, Tokyo, Japan, Oct. 1972, pp. 367-371.

43. Hirose, K., and Oya, M. General theory of flow charts. Comment.
Math. Univ. St. Pauli, XXI-2 (1972), 55-71.

44. Hopkins, M.E. A case for goto. SIGPLAN Notices (ACM) 7, 11
(Nov. 1972), 59-62; Proc. ACM Ann. Conf,, Boston, 1972.

45. Hughes, JX. PL/I Structured Programming. John Wiley and
Sons, New York, 1973.

46. Hughes, J.K., and Michtom, J.1. 4 Structured Approach to
Programming. Prentice-Hall, Englewood Cliffs, N.J., 1977.

47. Indermark, K. On a class of schematic languages. Technical rep.
82, Inst. for Res. and Programming, Gesellschaft fur Mathematik und
Datenverarbeitung mbH, Bonn, Germany, Nov. 1974.

48. Jensen, R.W., and Tonies, C.C. Software Engineering. Prentice-
Hall, Engelwood Cliffs, N.J., 1979.

49. Kasai, T. Translatability of flowcharts into while programs. J. of
Comptr. and Syst. Sciences 9, 2 (Oct. 1974), 177-195.

388

50. Kleene, S.C. Introduction to Metamathematics. Van Nostrand
Co., New York, 1952.

51. Kleene, S.C. General recursive functions of natural numbers.
Math. Annalen 112 (1936), 727-742.

52, Knuth, D.E. Structured programming with go to statements.
Comping. Surv. 6, 4 (Dec. 1974), 261-301.

53. Knuth, D.E., and Floyd, R.W. Notes on avoiding “go to”
statements. Inform. Processing Letters 1, (1971), 23-31.

84, Kosaraju, S.R. Analysis of structured programs. J. of Comptr.
and Syst. Sciences 9, (1974), 232-255.

55, Kreczmar, A. Effectivity problems of algorithmic logic. In Annal.
Soc. Math. Pol. Series IV; Fundamenta Informaticae I, 1 (1977), 19-
32.

56. Leavenworth, B.M. Programming with(out) the goto. SIGPLAN
Notices (ACM) 7, 11 (Nov. 1972), 54-58; Proc. ACM Ann, Conf.,
Boston, 1972.

57. Ledgard, H.F., and Marcotty, M. A genealogy of control
structures. Comm. ACM 18, 11 (Nov. 1975), 629-639.

58. Lee, R.C.T., and Chang, S.K. Structured programming and
automatic program synthesis. SIGPLAN Notices (ACM) 9, 4 (April
1974), 60-70; Proc. Symp. on Very High Level Languages, Santa
Monica, Calif., March 1974.

59. Linger, R.C., and Mills, H.D. On the development of large
reliable programs. In Current Trends in Programming Methodology,
Vol. 1, R.T. Yeh, Ed., Prentice-Hall, Englewood, Cliffs, N.J., 1977,
pp- 120-139.

60. Linger, R.C, Mills, H.D., and Witt, B.I. Structured Programming:
Theory and Practice. Addison-Wesley, Reading, Mass., 1979.

61. Martin, J.J. The “natural” set of basic control structures.
SIGPLAN Notices (ACM) 8, 12 (Dec. 1973), 5-14.

62. McGowan, C. Structured programming: A review of some
practical concepts. Computer 8, 6 (1975) 25-30.

63. McGowan, C.L., and Kelly, L.R. Top-Down Structured
Programming Techniques. Petrocelli/Charter, New York, 1975.

64. Merton, R.K. On the Shoulders of Giants: A Shandean Postscript.
Harcourt, Brace and World, New York, 1965.

65. Meyer, AR, and Ritchie, D.M. The complexity of loop
programs. IBM Res. Rep. RC-1817, 1966.

66. Miller, E.F., Jr., and Lindamood, G.E. Structured programming;
Top-down approach. Datamation 19, 12 (Dec. 1973), 55-57.

67. Mills, H.D. Mathematical foundations for structured
programming. IBM rep. FSC 72-6012, Fed. Syst. Div., Gaithersburg,
Md,, 1972.

68. Mills, H.D. The new math of computer programming. Comm.
ACM 18, 1 (Jan. 1975), 43-48.

69. Mills, H.D. How to write correct programs and know it. Proc.
IEEE Tutorial on Structured Programming, Washington, D.C., Sept.
1975, pp. 84-91.

70. Mirkowska, G. Algorithmic logic and its applications. Doctoral
diss., Univ. of Warsaw, 1972 (In Polish).

71. Myers, G.J. Reliable Software through Composite Design. Van
Nostrand Reinhold Co., New York, 1975.

72. Myers, G.J. Composite/Structured Design. Van Nostrand
Reinhold Co., New York, 1978.

73. Nassi, L, and Shneiderman, B. Flowchart techniques for
structured programming. SIGPLAN Notices (ACM) 8, 8 (Aug. 1973),
12-26.

74. Neely, P.M. On program control structure. Proc. Ann. ACM
Conf,, Atlanta, Ga., 1973, pp. 119-125.

75. Nicholls, J.E. The Structure and Design of Programming
Languages. Addison-Wesley, Reading, Mass., 1975.

76. Partch, B. Improved technology for application development
management overview. Proc. SHARE XLI, Miami, Florida, Aug.
1973, pp. 1281-1300.

77. Perkowska, E. Theorem on the normat form of a program. Bull.
Acad, Pol. Sci., Ser. Sci. Math. Astr. Phys. 22, 4 (1974), 439-442.
78. Peterson, W.W., Kasami, T., and Tokura, N. On the capabilitics
of while, repeat, and exit statements. Comm. ACM 16, 8 (Aug. 1973),
503-512.

79. Plum, T. W-S. Mathematical overkill and the structure theorem.
SIGPLAN Notices (ACM) 10, 2 (Feb. 1975), 32-33.

80. Prather, R.E. Structured Turing machines. Inform. and Control
35 (1977), 159-171.

81. Pratt, V.R. Semantical considerations on Floyd-Hoare logic.
Proc. 17th Symp. on Foundations of Comptr. Sci,, Houston, Texas,
Oct. 1976, pp. 109-129.

82. Rogers, H,, Jr. Theory of Recursive Functions and Effective
Computability. McGraw-Hill, New York, 1967.

Communications July 1980
of Volume 23
the ACM Number 7

83. Tiuryn, J. Fixed-points and algebras with infinitely long
expressions; Part 1L u-clones of regular algebras, Technical rep. 311,
Inst. of Comptr. Sci., Polish Acad. of Sci., 1978.

84. Van Gelder, A. Structured programming in COBOL: An
approach for application programmers. Comm. ACM 20, 1 (Jan.
1977), 2-12.

85. Wand, M. A concrete approach to abstract recursive definitions.
In Automata, Languages and Programming, M. Nivat, Ed., North-
Holland Pub. Co., Amsterdam, 1973, pp. 331-341.

86. Wise, D.S., Friedman, D.P., Shapiro, S.C., and Wand, M.
Boolean-valued loops. BIT 15 (1975), 431-451.

87. Wulf, W.A. A case against the goto. SIGPLAN Notices (ACM) 7,
11 (Nov. 1972), 63-69; Proc. ACM Ann. Conf., Boston, 1972.

88. Yourdon, E. Techniques of Program Structure and Design.
Prentice-Hall, Englewood Cliffs, N.J., 1975.

89. Yourdon, E. Managing the Structured Techniques. Second edition,
Yourdon Press, New York, 1979. (First edition, How to Manage
Structured Programming, 1976.)

90. Yourdon, E., and Constantine, L.L. Structured Design:
Fundamentals of a Discipline of Computer Program and Systems
Designs. Yourdon Press, New York, 1978.

91. Zelkowitz, M.V., Shaw, A.C., and Gannon, J.D. Principles of
Software Engineering and Design. Prentice-Hall, Englewood Cliffs,
N.J., 1979.

