Scenario-Based Programming for Mobile Applications

Anat Berkman-Chardon
Technion
Haifa, Israel

Rami Marelly
Weizmann Institute of Science
Rehovot, Israel

ABSTRACT

We introduce a novel method for creating mobile applica-
tions, integrating the Android SDK into PlayGo, a scenario-
based behavioral programming framework. The method al-
lows creating mobile applications simply by using a visual
GUI editor, and then incrementally “playing in” scenarios
that construct the application’s behavior. This allows the
developer to focus on the behavior and interface rather than
on the syntax and code.

Categories and Subject Descriptors

D.1.7 [Software|: Programming Techniques— Visual Pro-
gramming

General Terms

Design, Languages

Keywords

Behavioral Programming, PlayGo, Modeling, Mobile Devel-
opment, Android

1. INTRODUCTION

The worldwide smartphone market is in constant growth,
as is the global inventory of mobile applications. In the
recent decade, there has been a tremendous growth in the
development of applications for mobile devices. This is en-
abled both by the increased computational power and mem-
ory of these devices and by new development tools that help
developers create nice user interfaces that easily access the
mobile components (e.g., camera, GPS, etc.) through well-
defined API’s. However, to develop a mobile application,
one still needs to know “how to program”; i.e., to be able
to write code in some conventional programming language
(e.g., Java).

In [9] the author described a vision, in which engineers
(and potentially end-users) could be freed from the burden

David Harel
Weizmann Institute of Science

Rehovot, Israel

Smadar Szekely
Weizmann Institute of Science
Rehovot, Israel

Yaarit Goel
Weizmann Institute of Science
Rehovot, Israel

Guy Weiss
Weizmann Institute of Science
Rehovot, Israel

of translating their requirements, usually specified as sce-
narios of the system to be developed, into system structure
and code. The terms inter-object and intra-object behavior
were used to indicate the two complementary manners in
which system behavior can be viewed. The first captures
behavior as a set of multi-modal scenarios describing how
the system’s objects, its users and external environment in-
teract to achieve some desired functionality. These scenarios
may interact and interleave, and they can specify manda-
tory, possible and forbidden behavior. The second approach
— the more classical one — captures behavior as a set of
behaviors of the system’s encapsulated objects, focusing on
their interfaces and their inner reactions to external inputs
and activations. It has been argued that inter-object speci-
fication better reflects user intentions and is more intuitive
for the process of requirements elicitation, while intra-object
behavior reflects the system to be built and is more suitable
for the transition from requirements to design. As a result
of that paper, a novel approach for requirements elicitation
and execution was developed, titled “the play-in&play-out
approach” together with a supporting tool — the “Play-
Engine” [19]. Recently, the Play-Engine has been replaced
with a new tool called PlayGo [20].

Play-in allows the user to specify behavioral requirements
by working with a GUI mock-up of the system. The user
“plays” the GUI by clicking buttons or rotating knobs and
specifies, using the same tools, the desired reactions of the
system. As the scenarios are played in, a formal specifica-
tion in the language of live sequence charts (LSC; see [30]) is
automatically generated. After playing in (part of) the spec-
ification, the natural thing to do is to check if the current
system behaves as expected. Play-out is a complementary
process to play-in, in which the user uses the same tech-
niques to manipulate the GUI, and the results are reflected
therein, thus allowing the user to see the system in opera-
tion.

LSC is a visual language that extends classical message
sequence charts (MSCs) [5] with modalities and liveness [30].
LSCs can distinguish between scenarios that must happen
(universal) and scenarios that may happen (existential) in
the system and messages that must be received (hot) and
messages that may be received (cold). A condition can be
cold, meaning that it may be true (if not, the control moves
gracefully out of the current block or chart) or hot, meaning
that it must be true (if not, the system aborts). A more
detailed description of the language can be found in section
3.

In this paper we show how specifying behavior in the lan-
guage of LSC using play-in and play-out, can render the
development of mobile applications much easier and more
intuitive. We believe that this constitutes an important step
towards a future where end users are able to develop even
complex applications for mobile devices on their own.

The paper is organized as follows: Section 2 describes the
basic development flow of a mobile application using our
method. In Section 3 we briefly introduce the language of
LSC, while Section 4 describes the basic concepts of the
play-in&play-out approach. Section 5 describes the main
aspects of our implementation, and is followed by a detailed
example in Section 6. We conclude with related work and
future research directions.

2. THE CONCEPTUAL FLOW

(1) MainActivityjava

. Palett:
= 3 v| @Newsone +| B ~

€ *activity_mainxml 3

i Palette - o
() Form Widgets |
() Text Fields

() Layouts

) Composite

= Images & Media

@ MainActivity ~| © v‘ 2

HE BE- =EaEE

8 ImageView (i) ImageButton
11 Gallery |»| MediaController
B VideoView

9

toRightOf=imageButton2

alignTop=imageButton2

() Time & Date

) Transitions

) Advanced

) Other.

() Custom & Library Views
[T Graphical Layout| ¥} activity_main xmi

Figure 1: GUI creation

CICICL

EPIayer 1 Wins;

Figure 2: Final GUI

We now illustrate the conceptual flow of developing an An-
droid application using our framework, by walking through
a Tic-Tac-Toe example. We have modified the game so that
it makes use of smartphone features, and call it “Tic-Tac-
Photo”. This is a Tic-Tac-Toe game, but instead of placing
fixed marks on the board (X & O), each player takes a photo
and places it in (i.e., marks) the desired cell. The game is
easier to play when players use “selfies” and harder when
the pictures are similar and the players have to memorize
their own marked cells. The winner is the first player to

Remove from Context Ctri+Alt+Shift+ Down

Build Path >
Source Alt+Shift+S »
Refactor Alt+ShifteT »
= assets VExpmtr ystem Model - =
» & bin Play
& s e RinAsSmndsions 1

Figure 3: Extract system model

mark a row, a column or a diagonal with his or her photos,
as in classical Tic-Tac-Toe.
The first step in building the application is to create a

GUI. We use the popular Android Development Toolkit (ADT),

which has a ‘What You See Is What You Get’ visual GUI ed-
itor. Fig 1 describes the creation of our GUI. The user drags
and drops a text view for displaying the current player, nine
imageButtons representing nine cells, and a text view for
displaying the winner’s name. The resulting GUI is shown
in Fig 2.

The next step is to generate the PlayGo view of the sys-
tem’s structure. This is done by right-clicking on the project
and selecting “Export System Model” (See Fig 3). As a re-
sult, a system model containing the GUI classes and objects
and frequently-used mobile components (e.g., camera, GPS,
etc.) is automatically generated by PlayGo.

Tic_Tac Pho_Toe Behavior
Classes Objects Types
4 [J] System Objects
|
o status
e fileUn

2 photo

] ta!oePicBm

Figure 4: Camera play-in from system model

(2l >l (21l]

| @ New Assignment [x |

Variable name | photo +

(®) Property lifeline: | camera v] property: | v
| PR
() Variable

|name

|status
() Opaque Expression of type: fileUri
() Value of type:

SYNC on Lifelines

Covered Lifelines
camera

Add\Remove Lifelines

OK Cancel

Figure 5: The assignment dialog

The user can now start playing in desired behavior via
the GUI in the Android emulator. The first scenario we
want is the ability to click a cell and take a photo. We want
the photo taken to be displayed and the cell to “remember”
which player picked it. So, the user clicks on a cell to in-
dicate his/her selection and then right-clicks on the camera
(from the system-model in PlayGo, See Fig. 4) and picks

“takePicture”. The camera is then enabled and the user
takes a photo. In order to store the photo the user right-
clicks the camera and stores its photo property under the
variable name photo, see Fig 5. Next, the user long-clicks
the selected cell, and sets its source image to the value of the
photo. After specifying this behavior, the emulator displays
the photo in the selected cell. The user then similarly sets
the property player of the selected cell to the current player,
as displayed in the text view.

During play-in, while the user is specifying the behav-
ior from within the Android emulator, PlayGo constructs
the corresponding LSCs, thus allowing the user to view the
visual code of the specified behavior and, if necessary, to
change it. Fig 6 shows the generated LSC. At any point
during the playing in of scenarios, the user can play out
the behavior specified so far, thus testing the system under
various conditions and examining its reactions.

User

%

imageView11:Ima...i| camera:Camera | | currentPlayer:TextView

click()

takePicture()

|photh = camera.getPhotiof) |

setSli;jhoto)

| player = currentPlayer.getText()

setPla eFTIayeU

Figure 6: Camera use

During play-out the user now notices that the system does
not handle switching players after each turn. Adding this
scenario is simple. The system should wait for the event of
a player becoming associated with a cell and then switch
players. This is done as follows: the user long-clicks on a
cell, selects its setPlayer method and marks it as monitored
(i.e., an event that the system looks out for, but the event
does not drive its execution). The user then long-clicks on
the current player text view, and adds a simple if-then-else
case that switches between the two players (see Fig 7).

The final step is to specify the winning scenarios. The user
can describe each winning scenario separately, and thus add
or remove winning cases incrementally in a flexible manner.
For example, specifying winning by marking a full row is
done by long-clicking each of the three cells and monitoring
their setPlayer events, constraining them to use the same
value (which is to say the same player name). If this scenario
occurs, the winning text view is made visible and set to
contain the winning player’s name; see Fig 8.

As can be gleaned from this short section, development
interleaves sessions of play-in and play-out where require-

LSC1- Switch Player

imageView11:imageView currentPlayer:TextView

setPlayer(PlayerName)

e

Alternatives
currentPlaver.aetText() == Plaver 1

setText(|Player 2")

currentPlaver.aetText() == Plaver 2

setText(/Player 1")

Figure 7: Switching players

LSC2- Announce the winner

imageView11:.. imageView12..[|imageView13:. winningText:TextView
setPlayer(playerName)
(]
setPlayer(playerName)

- setPlayer(playerName)

- -

<, SYNC

" + playerName)

setText{"The Winrer |

setVisibility(visible")

Figure 8: Announce winnner

ments and desired behaviors are incrementally added and
tested. While playing-out, the user can use PlayGo’s de-
bugging tools, which allow tracking the execution visually
in real time, and examine the execution trace after it com-
pletes. In addition, of course, since one can apply powerful
analysis and verification tools to the PlayGo specification,
for deeper insights into system behavior and performance.
This, however, is beyond the scope of the paper; see for ex-
ample, [16]. Finally, once all the scenarios have been spec-
ified and analyzed, and the application is ready for use, an
executable APK file is generated, and can be downloaded
and installed on the mobile device with a simple single menu
click.

A short video clip, demonstrating the process of develop-
ing the Tic-Tac-Photo game with PlayGo, as well as playing
it, is available at https://youtu.be/qITmuC3S-KE.

3. THE LSC LANGUAGE

Message sequence charts (MSC), also known as sequence
diagrams, are widely used to describe behavioral aspects of
systems, by describing scenarios thereof. However, MSC
possess a rather weak partial order semantics that does not
make it possible to capture many different types of behav-
ioral requirements. Sequence diagrams can state what might
possibly happen, but not what must occur; they can express
which conditions should hold, but not what happens when
they don’t; and one can specify what we can expect from
the system under development but not what is undesired or
forbidden.

To remedy these deficiencies, live sequence charts were
introduced in 1999 by Damm and Harel [30] as a visual sce-
nario based language, enriched with liveness and modalities.
LSCs can distinguish scenarios that may happen in the sys-
tem (existential) from those that must happen (universal).
They can also specify messages that can be received (cold)
and ones that must (hot), and conditions that may be true
(otherwise the system gracefully exits from the current sub-
chart or chart) from those that must be true (otherwise, the
system aborts). In the years that followed, the LSC lan-
guage was extended in many ways, among which is a notion
of time [14,17], allowing one to specify timing constraints,
and the ability to use symbolic messages and lifelines along
with a notion of unification [29], which allows one to describe
general scenarios referring to classes and variables rather
than to specific objects and values.

Fig 9 shows an example LSC diagram that describes the
process of speed dialing in a cellular phone. After the user
dials a digit, the system, in response, should call the number
stored in the corresponding shortcut and sound a beep every
two seconds. We use this example to illustrate the basic
concepts of the LSC language.

The diagram consists of vertical lifelines representing ob-
jects and classes and horizontal elements denoting interac-
tions between the lifelines. Time is assumed to progress
from top to bottom, so that a higher element on a lifeline
precedes a lower one. The first two elements in the diagram
are messages indicating actions taken by the user: clicking
some digit and then clicking the call button. Both messages
are cold (blue), meaning that the scenario expects them to
happen but will not cause a violation if they do not . They
are also monitored (dashed), meaning that the execution
mechanism will wait for them to occur but will not trigger
their execution.

The first message goes from the user to a lifeline that is
indicated as dynamic. This means that any actual event
with this signature (name, and optional parameters) origi-
nating from the user and ending at any of the digit buttons
(which are instances of the digit class), will be unified with
this message and will advance the LSC. The next element is
a cold condition, denoted by a blue dashed hexagon. Con-
ditions are evaluated as soon as possible after the preceding
event is executed. In this case, the condition requires that
only one digit was clicked (it is assumed, and possibly de-
fined in a separate LSC, that each digit clicked is added
to the display). If this is the case, the chart will advance
beyond it and if not, the chart will exit. If indeed the con-
dition evaluates to true, the chart reaches the next element,
which is a hot (red) executed (solid line) self message. This
message indicates that the memory object should retrieve
the stored number, by calling its retrieve method with the

proper parameter.

Next, the chart reaches an assignment, denoted by a rect-
angle containing the variable name and the expression to be
assigned to this variable. Assignments are internal to the
chart (in contrast to the system’s state variables, which can
be used in several charts) and, similarly to conditions, are
executed as soon as possible after the previous event is exe-
cuted. Assignments, as well as conditions, may be associated
with multiple lifelines, which are considered to be synchro-
nized with the assignment. An assignment is enabled for ex-
ecution only after all its synchronized lifelines have reached
it and all the variables on the right hand side are bound.
After the internal variable number is assigned the value of
memory the chart reaches a SYNC element which is actually
a shortcut for a cold, constantly true condition. Later, the
display object displays the phone number by calling its show
method with the proper parameter, number.

Finally, the chart reaches a loop, denoted by a subchart
with a loop control mark on the top left corner, indicating
the number of required loop iterations or ‘*’ for unbounded
loops. All participating lifelines are synchronized with the
loop start and end. The loop exits after completing the in-
dicated number of iterations or when reaching a false cold
condition. At the beginning of the loop, we check that the
call object is not connected yet. Then, the variable time
is assigned the current time provided by Clock — a prede-
fined object capturing the passage of time in the application.
Then the chart reaches a wait hot condition. A wait condi-
tion is evaluated continuously until it becomes true (more
specifically, after each occurrence of an event or a clock tick).
In this case, the condition becomes true after two seconds
have elapsed from the assignment, and then the phone beeps.
This loop is executed repeatedly until a connection is estab-
lished.

4. PLAY-IN, PLAY-OUT AND THE PLAYGO
TOOL

In [19], two complementary methods were described for
specifying and validating software requirements termed, re-
spectively, play-in and play-out. In fact, they can be thought
of as methods for programing and executing LSCs. While
playing-in, the user describes the ‘end-user’ actions and the
desired system response, using a graphical interface of the
system. This is done by clicking on buttons, flipping switches,
rotating knobs, etc. The user specifies the desired system
reaction in a similar way, by setting values for displays or
sending messages to (invoking methods of) objects, often
by first right-clicking the relevant GUI object. Internal ob-
jects that are not part of the GUI can be changed using the
system model diagram [3], which contains all the system’s
objects.

Play-out is a complementary process to play-in, aimed to
execute the specification or program (e.g., for testing its be-
havior by various stakeholders). During play-out, the user
simply plays the GUI application as he/she would have done
when executing a system model, or the final system imple-
mentation, but limiting him/herself to “end-user” and ex-
ternal environment actions only. Every execution of an op-
eration is considered a step. Following a user action, the
system executes a superstep — a sequence consisting of the
steps that follow the user action as dictated by the univer-
sal charts. While playing-out, the current situation is repre-

LSCO-Speed_Dial

User....

digit:Digit | |callButton:CallButton

memaory: Memor¢| [display:Display

Clock..

beeper:Beeper| | call:Call

©

| click__
| click)

displaylength() ==

retrieve(digit.getValue()

[number = memory.aetValue]

A
i

show(number)

-

Loop until *

b 2llisConnecEd 0,000l

l_ -

=

it: Clock nPtT\:m?ﬁ > timie+2000}

ﬂ:()

o

Figure 9: LSC sample: speed dial

sented graphically by a cut in each LSC, which is a roughly
horizontal line that indicates where the execution is right
now for each lifeline.

The play-in/play-out approach is supported by the PlayGo
tool [20], which is a Java based framework for program-
ming and analyzing LSC specifications. PlayGo is imple-
mented as a set of Eclipse plugins and is packaged as an
Eclipse product. It also adheres to the UML standard and
has an open architecture that enables extension and integra-
tion with other tools. PlayGo includes a scenario-to-AspectJ
compiler [11] and means for debugging the execution. Thus,
in contrast to the original Play-Engine [19], which inter-
preted the LSC in runtime, PlayGo uses a compiler, thus
opening the possibility to execute the code on remote hard-
ware.

A PlayGo application consists of three main parts. The
first is a GUI, which in most cases serves as a mock-up of
the final application, but which can also be the actual fi-
nal application. The user can work with a GUI developed
specially for the application or use a GUI that is automati-
cally generated by PlayGo, based on the system model. The
second component of PlayGo is the aforementioned system
model, which consists of all the types, classes and objects
in the system. Each class has its own properties and meth-
ods and each object is an instance of a given class. The
third part is the application’s behavior, given as a set of
aspects automatically generated by PlayGo’s compiler from
the LSCs [11].

PlayGo supports multiple execution strategies that can
be applied during play-out. Besides the ‘naive’ method,
which chooses the next event arbitrarily from all the pos-
sible enabled ones, these include a strategy that uses model-
checking based look-ahead, termed “smart play-out” [16]
and a strategy that is based on controller synthesis. The
controller synthesis technique computes a controller from

the LSC specification, whose behavior is guaranteed to sat-
isfy the requirements set by the specification (if such a con-
troller exists). The computed controller is then used to guide
the play-out mechanism [13,25].

JavaGUI JavaSrvr Non Java PlayGo Generated
App for NJ App GUI App Tool JavaBehavior

d
Native IPlayGo
TCP Agent
IPlayable

Q
IPlayable
IPlayGo
o

GUI TCP
Agent

PlayGo
TCP Agent

XML over.TCP/IP

Figure 10: PlayGo new architecture

PlayGo was originally developed to interact with Java/Swing-
based GUI applications, but does not employ a specific method-

ology, framework or interface for working with non-Java
GUIs. To be able to interact seamlessly with such appli-
cations, we have now extended PlayGo and implemented a
framework and a set of interfaces to support this, both for
play-in and play-out. Fig. 10 outlines the main principles
of the new PlayGo architecture, while Fig. 11 and 12 show
the data flow between the various elements during play-in
and play-out, respectively.

At the core of the architecture lie two interfaces, IPlayable,
which abstracts elements that can be “played” (e.g., a GUI
application), and IPlayGo, which abstracts “behavioral en-
gines” (e.g., the PlayGo tool itself and the behavior auto-
matically generated by it). The behavior then uses IPlayable
to communicate with playable elements and the GUI uses

IPlayGo to communicate with its associated behavior. The
interaction between the GUI and the behavior can be carried
out using native Java, or, if we want to allow the GUI to be
written in another language, it can be executed using XML
messages over a TCP/IP connection. To allow GUI devel-
opers to develop their GUI without getting into the details
of the communication protocol, we provide agents that im-
plement the required interfaces and can communicate with
each other using Java calls or TCP communication, and they
provide the appropriate interface (IPlayable or IPlayGo) to
the GUI and the behavior.

TCP Play-in: Object Event

JavaGUI JavaSrvr

for NJ App

Figure 11: Play-in example

TCP Play-out: Change Property

Generated
JavaBehavior

JavaGUI
App

\..(

(rovcoy
l‘

.
GUI TCP
Agent

JavaSrvr NonJava PlayGo
for NJ App GUI App Tool
Native
TCP Agent
IPlayable

5
2
XML over TCP/IP PlayGo
over TCP/! /| Tcp Agent

Figure 12: Play-out example

During play-in, suppose that the user clicks a button on
the GUI. The button object informs the GUI Agent about
the event, the GUI agent forwards the message to the PlayGo
Agent over the communication channel (TCP/IP or a direct
method invocation), and the agent forwards the message to
the PlayGo tool. In contrast, if such a GUI event is triggered
during play-out, the message is forwarded to the generated
behavior and not to the PlayGo tool, since we are now in-
terested in the reaction of the system and not in building a
new scenario. During play-out, the behavior may inform the
GUI that a value of an object’s property was changed, which
should be reflected in the GUI. In this case, the generated
behavior sends a message through the PlayGo agent to the
GUI agent, who forwards it to the appropriate object.

S. THE IMPLEMENTATION

5.1 The architecture

Our system is based on the architectural principles de-
scribed in Fig. 10, where the GUI application is now an
Android application. During play-in, the Android applica-
tion runs on the Android emulator with a GUI TCP Agent
and the behavior runs as an LSC project implementing the
PlayGo interface. The two communicate over a TCP/IP
channel.

PlayGo Project

PlayGo Generated
Tool Behavior

System Model:

button1:Button
textl:TextView

camera: Camera

Android Emulator

Playable TextView

textl:TextView

Behavior
Agent

dI\dJ1

Playable Button

buttonl:Button
\ Playable Camera /

Gui Agent

Figure 13: Android application with PlayGo archi-
tecture example

Standalone Android Playable Application

e

Playable Button
buttonl:TextView

Playable TextView
textl:TextView
[Playable Camera]

-Behavior-- -
Agent Behavior

[Generated] (System Model:

Behavior button1:Button |

textl:TextView I

(&

Figure 14: Standalone play-in-able Android applica-
tion

Figure 13 demonstrates an Android application with a
text view (Textl) and a button (Buttonl), which are in-
stances of the TextView and Button classes, respectively.
Each GUI element is endowed with a suitable playable com-
ponent that handles all its interaction with the playable GUI
framework. The playable framework handles the interac-
tion with the behavior through the various communication
agents. In this example, we have also added an invisible

playable camera component to the system model. When
the user clicks on Buttonl in the emulator, the Playable-
Button handles this event and notifies the GUI Agent about
it. The GUI Agent transmits this message over TCP/IP to
the Behavior Agent. If PlayGo is in play-in mode, the mes-
sage is transferred to PlayGo and serves in the process of
creating the specification. In play-out mode the message is
transferred to the corresponding behavior object, which is
defined in the system model, and whose Java code was au-
tomatically generated by PlayGo. It can be located either
in the LSC project in PlayGo, when the emulator is used,
or on the smartphone itself when it runs as a stand-alone
application.

5.2 The GUI framework

When trying to devise an overall solution for the play-
in/play-out processes we had to decide between two alter-
native concepts for implementing the GUI. The first was to
develop a Java swing-based GUI template, in which users
can place GUI elements. In this case, play-in and play-out
would be very similar to the way other desktop applications
are developed with PlayGo, and at the end of the process
this GUI would have been automatically transformed into
an Android application according to simple conversion rules.
The main advantage of this method is the possibility to eas-
ily develop, or to use already existing, Java playable compo-
nents and to integrate them within our existing Java GUI
framework. The other alternative was to use an existing
Android emulator and to enhance it so that it is able to im-
plement the IPlayable interface and thus support the play-in
process. Although this option required developing specific
emulator-side code, we eventually chose it, because a famil-
iar editor keeps the process of creating an application sim-
ple and allows a more authentic experience of the real GUI
during play-in and play-out. We decided to work with the
popular Android Development Toolkit (ADT) IDE [1] pro-
vided by Google as an add-on to Eclipse, which is PlayGo’s
native development environment.

As part of our framework, we provide a single generic
Android application that serves as a template, so that the
developer only needs create the GUI itself (which is auto-
generated by the ADT WYSIWYG editor). An Android
GUI is controlled by activities. Our template application
contains a single generic Android activity that implements
the IPlayable interface and can thus receive notifications
from PlayGo. At system startup, the generic activity uses
reflection to inspect the GUI with which it is running, wraps
each GUI element with a playable wrapper-object, and stores
the object ID as its key. This allows the activity to redirect
method calls from PlayGo to the target wrapper object. A
wrapper object serves as an event handler for the wrapped
GUI object and manipulates it in response to changes in the
behavior object.

5.3 Building a system model

After generating the GUI using ADT, a single right-click
by the user causes automatic generation of a system model,
which captures the classes and objects participating in the
Android application. The system model is written to a file
in PlayGo format. The Android GUI editor generates an
XML file, which describes the GUI layout and the partic-
ipating widgets. This file is parsed by our framework and
each GUI object is mapped to an object in the system model

with compatible properties, methods and a unique ID. For
example, properties of an Android button would include dis-
played text, text size, width, color, visibility, etc.

Once generated, the system model can be used in PlayGo
for play-in and play-out as if it were created manually inside
the tool. We also support so-called GUI-less objects, which
are not shown on the actual GUI but still need to be rep-
resented in the system model. A set of predefined GUI-less
objects is automatically inserted into the generated system
model for every Android application. As an example, con-
sider the smartphone’s camera. There are several operations
that the camera provides and which are automatically sup-
ported by our playable camera object, such as takePicture
and getPicture, as well as the boolean property status (indi-
cating the success or failure of the last takePicture action).
Using these methods, the user can use the camera without
getting into any implementation details.

Another GUI-less object provided by our framework is
the general phone object, which can be used to capture
various general events. For example, it provides a shake
method that is invoked when shaking the phone physically
and can be monitored by an LSC to react respectively. Ob-
viously, there are many other sensors and frequently-used
objects and operations that can be supported, such as mo-
tion, GPS location, data storage and other media services
(playing and recording video, etc.). To demonstrate the con-
cept of seamlessly integrated functionality, our framework
also supports a TextToSpeech GUI-less object, which allows
synthesizing speech from text easily. TextToSpeech has one
method speakOut, which receives a string as a parameter
and reads it out loud.

5.4 Play-in and play-out

Before starting the actual programming, we automatically
transform the GUI elements into playable elements so they
can be used during play-in and play-out. This can be done,
either by using pre-built components or by automatically
wrapping existing elements with suitable playable wrapper
objects.

In “standard” play-in, the developer specifies user actions
by actually executing them (e.g., clicking a button, writ-
ing text, moving a slider, etc.) and the system’s reactions
by right-clicking an object and selecting the desired result.
Since there is no mouse in mobile applications, and hence no
right-clicks, we use long-click as the natural alternative, to
open a system model menu, change properties and activate
methods of other objects. We have also added support for
touchpad actions, such as swipe.

Play-in through the GUI is not always possible since in a
run some objects may be invisible at times (e.g., a calendar
object that is shown upon request to set a date), and other
objects are internal and are invisible all the time (e.g., the
camera). To enable playing in with such invisible objects we
support the play-in functionality also through a tree view
representation of the system model, which acts as a general-
purpose GUI, in which all objects are visible. Using the
system model view, the user can also open popup menus and
specify physical behaviors that cannot be played-in directly
through the GUI, such as shaking the phone or flipping it
upside down.

5.5 Run as standalone

Figure 14 describes the overall architecture of a standalone

Android playable application. To run as a standalone appli-
cation, the generated Java behavior and system model are
added and compiled together with the Android GUI appli-
cation. Here also, the architecture follows PlayGo’s basic
architecture guidelines; the difference is that here no TCP
agents are required and messages are sent directly to the
local behavior as method invocations (using the local Be-
havior Agent). The messages from the behavior to the GUI
are also sent by direct method calls to the generic activity,
which implements [Playable.

6. TIC-TAC-PHOTO: A WALK-THROUGH
EXAMPLE

In this section we extend the Tic-Tac-Photo game de-
scribed in section 2 with several features. In the extended
game, players can get help about cell owners in two ways:
swiping a cell to uncover its owner’s identity or clicking a
Hint T button to color all marked cells according to their
owners for T seconds.

The full specification of this game consists of approxi-
mately thirty LSCs. In this section we discuss some of them
to illustrate the nature of a mobile scenario-based applica-
tion.

LSC2-Win_Row_1

iimageVieW‘H i controller:Controller

setPlayer(PlayerName)
L setPlayer(PlayerName)

setPlayer(PlayerName)

Lt

SYNC

newGame()

Figure 15: Win horizontal first line

Let us first revisit the winning scenario, after a player
successfully marks all the cells of the first row, as illustrated
in Fig. 15. The marking events for the cells of the first row
are monitored, and have the same parameter, playerName,
thus making sure that the three markings were indeed made
by the same player. Notice that there is no order defined
among the three events, as time advances along the vertical
axis of each lifeline separately. After marking the first row,
we expect the controller to handle the winning event. In
contrast to the camera, which is part of the mobile device
and is provided with the Android application generated from
the GUI, the controller object is GUI-less and is internal and
specific to the game; it was actually added to the system
model by the user/developer, who may add as many internal
objects as he or she likes. Like other events related to hidden
objects, the user plays-in this event using the system model
tree view representation.

Finally, the chart reaches an EXIT statement (syntactic
sugar for a cold FALSE condition), which forces it to exit.
The last message, monitoring the event newGame, causes

a cold violation when a new game starts. If, for example,
Playerl marked two cells, and then a new game starts, we
want the LSC to abort, otherwise marking the third cell is
sufficient to cause Playerl to win.

setPlayer("playerName")

.

setClickable("False™)

Figure 16: Disable click events after a cell was cho-
sen

The second scenario prescribes that each cell be chosen
at most once. Fig. 16 starts with monitoring the event set-
Player and ends with a self-executing message that sets the
clickable property to false. This stops the cell from reacting
to click events, thus disabling the option of being chosen
again.

LSC4
User:...

%

hintButton:Button imageView11:imageView

setBackgréund("que")

Figure 17: Hint button changes background to blue

LSC5
User....

hintButton:Button imageView11:imageView

............................

setBackgrbu nd("red")

Figure 18: Hint button changes background to red

Figures 17, 18 and 19 refer to clicking a Hint T button in
order to show, for a duration of 7T seconds, all cells marked
according to their owners. The scenario starts by monitor-
ing (i.e., waiting for) a click event on a hint button. The
application has three hint buttons, each of them having a
different property value of hintLength (1, 3 and 5 seconds,
respectively). Notice that this lifeline is dynamic, meaning
that the LSC will be triggered upon a click of any of the hint
buttons. After the user clicks the hint button, we expect
each cell to change its background color accordingly. For
this purpose we use a dynamic lifeline of type universal all
(indicated by a dashed rectangle) which binds to all objects

imageView11l:imageView

SYNC

setBackground("blueOrRed")

e

clearBackgroundAfterMilisecorjds("hintButton.getHintLength()")

Figure 19: Hint button waits and changes back-
ground to grey

of a given class. To refer only to the cells that are occupied,
we use a binding expression, which is dynamically evaluated.
In Fig. 17, for example, we refer only to the cells whose
owneris Player 1, and in Fig. 18 we refer to the cells owned
by Player 2. The LSC in Fig. 19 waits for setBackground
to finish, using a symbolic parameter blueOrRed. The chart
then reaches its last message, clearBackgroundA fterMiliSec-
onds, which returns the background color to default after a
specific time.

The final scenario we would like to describe refers to the
swiping of a cell. The first message in Fig. 20 monitors a
swipe cell event. This lifeline is also dynamic and hence
the LSC will be triggered upon a swipe over any of the
cells. Following this, there is an alternative subchart, which
checks the owner of the cell and changes the background
color accordingly. Next, the variable T'is assigned the cur-
rent system time; the system waits for half a second (using
the variable T) and the background color changes back to
the default.

Since we want to limit the usage of hints, we reward a
player with extra points every time the other player requests
a hint. Fig 21 refers to the score update. When a player
swipes over a cell for hint, the alternative subchart checks
who is the current player and updates the score of the other
player accordingly.

7. RELATED WORK

Google has recently announced the IntelliJ IDEA based
Android Studio as the official platform for Android appli-
cations development; see [2,4]. Porting our current im-
plementation to Android Studio will require some technical
changes, such as finding the right “hooks” for invoking our
code. However, since the XML format for describing the
layout remains the same, and since most of our logic runs
as part of the Android application itself, the majority of our
work does not require changes.

There are multiple existing visual programming environ-
ments for mobile development. In 2013, IBM Research intro-
duced NitroGen, a mostly codeless, visual (drag and drop)
platform for constructing form-based cross-platform mobile
applications for enterprises; see [6,7]. NitroGen allows de-
velopers to easily create cross platform applications that in-
teract with back-end services and databases. Typically, the
generated applications contain interactive forms that allows
users to add data to a remote database and to view data
from the remote database with a flexible GUIL.

Pong Designer [23] is an environment for developing 2D
physics games through direct manipulation of object behav-
iors. In order to add behavior, the user changes the objects’
initial velocity, and then runs the physics simulation from
the current state. Meanwhile, the system displays the out-

LSC41

User... imageView11:imageView

swipe()

Alternatives
imaaeView11.plaver == Plaver 1>

setBackground("blue")

imaceView11.plaver == Plaver 2

setBackground("red")

[T £ System.CurrentTimeMillis()]

iSystem.CurrentTimeMillis().> T+500;
setBackground(“gray")

Figure 20: Swipe over and change background

LSC42

US?’“" i imageView1TimageView scoreT:textViewNumber | | score2:textViewNumber | currentPlayer:TextView

. SWipe

|Alternatives
currentPlaver.text() == Plaver 1 /

schrePlaver? = scorez.qetText()]

setText(scdrePlayer2+1)

currentPlaver.text() == Plaver i]

|
corePlayer] = scorel.getText()!

setText("scarePlayer1+1")

Bl

Figure 21: Swipe over and update points

come in real time on the screen and records internal events,
such as object collisions, as well as user inputs (mostly multi
touch-screen input). After the simulation stops, the user is
able to edit the objects from the last simulation.

MIT App Inventor [28], originally developed by Google
and now maintained by MIT, is a non commercial tool for
building mobile apps for Android, including a drag-and-drop
GUI editor, and a visual block programming editor based
on Blockly. Unlike Nitrogen, which is limited to form-based
data viewing applications of remote databases, App Inven-
tor is much more flexible and allows creating generic ap-
plications. The development process with App Inventor is
similar to the one we suggest: the developer starts with the
design of the GUI using a web-based drag-and-drop GUI

editor. Next, the developer specifies the behavior using the
visual block editor by defining a set of event handler blocks.
The editor allows the user to add a single event handler block
for each of the possible events of the application components
(GUI and non GUI components). Each event handler is a
visual block, and the user can drag action blocks into the
event handling block. When the event occurs, the blocks
inside the event handling block are invoked. The app that
is being developed can be run on a physical device or an em-
ulator, and changes to the GUI and logic are immediately
reflected in it.

We believe that our approach, which decouples the event
handling logic of independent scenarios, is more intuitive
than that of App Inventor, where a single event handler
contains all the logic for each event, since it allows the de-
veloper to focus on a single scenario at a time. Moreover,
MIT’s App Inventor and NitroGen do not include a play-out
phase, which allows the user to visually debug the system
instead of test it. In our tool, while playing-out, PlayGo
changes the LSC cuts accordingly, allowing the user to ob-
tain deep understanding of the system’s behavior. We leave
an appropriate evaluation effort as future work.

TouchDevelop [26] by Microsoft Research is a cloud-based
integrated development environment (CIDE) that allows de-
veloping mobile applications on a mobile device. In addition
to the IDE itself, TouchDevelop offers an application-store
and a community of users and programmers. TouchDevelop
runs entirely in-browser and provides an interactive environ-
ment for developing web-based applications. Applications
are coded in the TouchDevelop visual scripting language,
which can be tested in the browser or be deployed to a mo-
bile device. Expert developers can view and change the
code, as well as debug it using GROPG [27], a graphical
on-phone debugger.

App Inventor and TouchDevelop indeed allow easy devel-
opment of mobile applications, but they don’t provide an
intuitive way to examine the program state as it is being
executed. Although TouchDevelop includes a debugger, it
is intended for expert users, and understanding the overall
state of complicated programs can be hard. In our frame-
work, the user can examine the program state during the
entire development cycle and can test parts of the program
by choosing specific LSCs and running from a specific state.

Several more approaches exist, focusing more on model-
driven development than on visual programming. Arctis [22]
is based on UML activities, which are used as specification
building blocks. The Arctis Editor is essentially a UML ed-
itor for activities with state machines as their external con-
tracts. User interfaces are created with the Android SDK
and are linked to UML Activities. Arctis, like our tool,
provides a set of predefined functionalities, such as audio
handling, location management and various sensors integra-
tion.

In [21] a new approach is presented for producing graph-
ical user interfaces (GUIs) for business information system
(BIS) prototypes for the Android platform. This approach
creates the GUI based on a model specified by UML dia-
grams and textual annotations. It generates a prototype An-
droid application, which allows conceptual navigation based
on the relationships between the domain entities (as de-
scribed in a UML class diagram). In our approach, the
user can immediately see the resulting GUI right after its
creation and can change and debug it continuously during

play-in and play-out.

Mobichart [24] is a graphical notation that extends the
objectchart [8] notation for modeling mobile computing ap-
plications, and allows modeling features like object location,
migration, hoarding, cloning, etc.

In [10], it is argued that programmers should be liberated
from some major constraints such as the need to produce
the program or pit the program against the requirements.
The research carried out on this “liberating programming”
dream has yielded a large body of work on scenario-based
programming, originating in the LSC language [18, 20, 30].
The approach has been generalized and extended also to
other languages, including Java, C++, Erlang, JavaScript
and Blockly, and has been termed behavioral programming
(BP) [12]. Research results cover, among others, run-time
lookahead (smart play-out) [15,16], model-checking, compo-
sitional verification and synthesis. It would be desirable to
expend our method to be supported also by these non-visual
languages that implement scenario-based programming.

8. CONCLUSIONS AND FUTURE WORK

We have described a new method for creating playable
mobile applications. Given the advanced tools for creating
graphical user interfaces for Android applications, our tool
takes the development process one step further, by allowing
the user to focus on the behavior of the application rather
than on the syntax and code. The user can simply play-in
scenarios with a visual GUI and instantly view the gener-
ated LSC that formally describes the behavior. The user can
then play-out the behavior and visually debug it by tracing
the LSCs and the cuts changing over time. We believe that
this intuitive manner of application development and de-
bugging is not only faster and easier but may also lead to a
deeper understanding of the system’s reactions. The result-
ing application is packed, deployed and executed on Android
devices, and can be easily enhanced and modified incremen-
tally by playing in additional scenarios, including negative
ones that constraint behavior, without any need for explicit
coding or intra-object modeling.

In this paper, we have limited our applications to include
a single layout with no navigation. However, we believe
that our framework can be easily extended to use play-in
for supporting navigations and transition between layouts.
Currently we support basic UI components (such as Buttons,
TextView, Spinner, etc.), but the framework is extensible
and can support any Android components. We believe that
as users become familiar with our approach they will be able
to easily develop their own playable components and create
a rich shared open source library.

9. ACKNOWLEDGMENTS

Part of this research was carried out with the aid of grants
to DH from the Israel Science Foundation (ISF) and from
the Erica Drake & Benoziyo Fund. We are indebted to Eran
Yahav for his support, and Assaf Marron for his helpful
thoughts throughout the research.

10.

1]

2]

3]

[4

5

7]

[9]
[10]

[11]

[15]

[16]

[17]

REFERENCES
Android development toolkit (adt).

http://developer.android.com/tools/help/adt.html.
Accessed 6/2015.
Android studio.

http://developer.android.com/tools/studio/index.html.

Accessed 6/2015.

Documentation of the unified modeling language
(uml), available from the object management
group(omg). http://www.omg.org.

Intellij idea. https://www.jetbrains.com/idea.
Accessed 6/2015.

ITU-TS, ITU-TS Recommendation Z.120: Message
Sequence Chart (MSC)ITU-TS, geneva. 1996.

A. Abadi, and Y. Dubinsky, and A. Kirshin, and Y.
Mesika, and I. Ben-Harrush, and U. Hadad. Nitrogen:
rapid development of mobile applications. In
Proceedings of the 2013 companion publication for
conference on Systems, programming, € applications:
software for humanity, pages 15-16. ACM, 2013.

A. Abadi, and Y. Dubinsky, and A. Kirshin, and Y.
Mesika, and I. Ben-Harrush, and U. Hadad.
Developing enterprise mobile applications the easy
way. In Proceedings of the International Workshop on
Innovative Software Development Methodologies and
Practices, pages 78-83. ACM, 2014.

D. Coleman, and F. Hayes and S. Bear. Introducing
objectcharts or how to use statecharts in
object-oriented design. Software Engineering, IEEE
Transactions on, 18(1):8-18, 1992.

D. Harel. From play-in scenarios to code: An
achievable dream. Computer, 34(1):53-60, 2001.

D. Harel. Can programming be liberated, period?
Computer, 41(1):28-37, 2008.

D. Harel, and A. Kleinbort, and S. Maoz. S2A: A
compiler for multi-modal uml sequence diagrams. In
Fundamental Approaches to Software Engineering,
pages 121-124. Springer, 2007.

D. Harel, and A. Marron, and G. Weiss. Behavioral
programming. Communications of the ACM,
55(7):90-100, 2012.

D. Harel, and H. Kugler. Synthesizing state-based
object systems from lsc specifications. International
Journal of Foundations of Computer Science,
13(01):5-51, 2002.

D. Harel, and H. Kugler, and A. Pnueli. Smart
play-out extended: Time and forbidden elements. In
Quality Software, 2004. QSIC 2004. Proceedings.
Fourth International Conference on, pages 2—10.
IEEE, 2004.

D. Harel, and H. Kugler, and R. Marelly, and A.
Pnueli. Smart play-out of behavioral requirements. In
FMCAD, volume 2, pages 378-398. Springer, 2002.
D. Harel, and H. Kugler, and R. Marelly, and A.
Pnueli. Smart play-out. In Companion of the 18th
annual ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications,
pages 68-69. ACM, 2003.

D. Harel, and R. Marelly. Playing with time: On the
specification and execution of time-enriched lscs. In
Modeling, Analysis and Simulation of Computer and
Telecommunications Systems, 2002. MASCOTS 2002.

24]

27]

(28]

29]

(30]

Proceedings. 10th IEEE International Symposium on,
pages 193-202. IEEE, 2002.

D. Harel, and R. Marelly. Come, let’s play:
scenario-based programming using LSCs and the
play-engine, volume 1. Springer Science & Business
Media, 2003.

D. Harel, and R. Marelly. Specifying and executing
behavioral requirements: The play-in/play-out
approach. Software and Systems Modeling,
2(2):82-107, 2003.

D. Harel, and S. Maoz, and S. Szekely, and D. Barkan.
PlayGo: towards a comprehensive tool for scenario
based programming. In Proceedings of the IEEE/ACM
international conference on Automated software
engineering, pages 359-360. ACM, 2010.

Luis Pires da Silva and Fernando Brito e Abreu.
Model-driven gui generation and navigation for
android bis apps. In Model-Driven Engineering and
Software Development (MODELSWARD), 2014 2nd
International Conference on, pages 400-407. IEEE,
2014.

Frank Alexander Kraemer. Engineering android
applications based on uml activities. In Model Driven
Engineering Languages and Systems, pages 183-197.
Springer, 2011.

M. Mayer, and V. Kuncak. Game programming by
demonstration. In Proceedings of the 2013 ACM
international symposium on New ideas, new
paradigms, and reflections on programming &
software, pages 75-90. ACM, 2013.

Hrushikesha Mohanty, Satyajit Acharya,

RK Shyamasundar, and RK Ghosh. Mobichart for
modeling mobile computing tasks. In TENCON 2003.
Conference on Convergent Technologies for the
Asia-Pacific Region, volume 1, pages 193-197. IEEE,
2003.

N. Piterman, and A. Pnueli, and Y. Sa’ar. Synthesis
of reactive (1) designs. In Verification, Model
Checking, and Abstract Interpretation, pages 364-380.
Springer, 2006.

N. Tillmann, and M. Moskal, and J. de Halleux, and
M. Fahndrich. Touchdevelop: programming
cloud-connected mobile devices via touchscreen. In
Proceedings of the 10th SIGPLAN symposium on New
ideas, new paradigms, and reflections on programming
and software, pages 49-60. ACM, 2011.

Tuan A. Nguyen, Christoph Csallner, and Nikolai
Tillmann. Gropg: A graphical on-phone debugger. In
Proc. 35th ACM/IEEE International Conference on
Software Engineering (ICSE), New Ideas and
Emerging Results (NIER) track, May 2013. To appear.
Shaileen Crawford Pokress and José Juan Dominguez
Veiga. Mit app inventor: Enabling personal mobile
computing. arXiv preprint arXiv:1310.2830, 2013.

R. Marelly, and D. Harel, and H. Kugler. Multiple
instances and symbolic variables in executable
sequence charts. In ACM SIGPLAN Notices,

volume 37, pages 83-100. ACM, 2002.

W. Damm, and D. Harel. Lscs: Breathing life into
message sequence charts. Formal methods in system
design, 19(1):45-80, 2001. Preliminary version in:
Ciancarini, P., Fantechi, A., Gorrieri,R. (eds.) Proc.

3rd IFIP Int. Conf. on Formal Methods for Open Kluwer Academic Publishers, 1999, pp. 293-312.
Object-Based Distributed Systems (FMOODS 99),

