David Harel
The Weizmann
Institute of
Science

From Play-in

COVER FEATURE

scenarios to Gode:
An Achievable Dream

A development scheme for complex reactive systems leads from a user-
friendly requirements capture method, called play-in scenarios, to full
behavioral descriptions of system parts, and from there to final

implementation.

na 1992 Computer article, I tried to present an
optimistic view of the future of development
methods for complex systems. Research since
then only supports this optimism, as I will
attempt to show.

This article presents a general, rather sweeping
development scheme, combining ideas that have been
known for a long time with more recent ones. The
scheme makes it possible to go from a high-level user-
friendly requirements capture method—which I call
play-in scenarios—via a rich language for describing
message sequencing to a full model of the system, and
from there to final implementation.

A cyclic process of verifying the system against
requirements and synthesizing system parts from the
requirements is central to the proposal. The article puts
special emphasis on the languages, methods, and com-
puterized tools that allow smooth but rigorous tran-
sitions between the various stages of the scheme. In
contrast to database systems, this article focuses on
systems that have a dominant reactive, event-driven
facet. For these systems, modeling and analyzing
behavior is the most crucial and problematic issue.

MODELING THE SYSTEM

Over the years, the main approaches to high-level
system modeling have been structured-analysis/struc-
tured-design (SA/SD) and object-oriented analysis and
design (OOAD). The two modeling approaches are
about a decade apart in initial conception and evolu-
tion. Over the years, both approaches have yielded
visual formalisms for capturing the various parts of a

An early version of this article appeared in Proc. Fundamental
Approaches to Software Eng. (FASE), Lecture Notes in Computer
Science, vol. 1783, Springer-Verlag, Berlin, Mar. 2000, pp. 22-34.

0018-9162/01/$10.00 © 2001 IEEE

system model, most notably its structure and behav-
ior. The linking of structure and behavior is crucial
and by no means a straightforward issue. In SA/SD,
for example, each system function or activity is asso-
ciated with a state machine or a statechart® that
describes its behavior. In OOAD, as evident in the
Unified Modeling Language (UML)® and its exe-
cutable basis, the XUML,* each class is associated
with a statechart, which describes the behavior of
every instance object. The “Structured Analysis and
Structured Design” and “Object-Oriented Analysis
and Design” sidebars give some background on these
modeling approaches.

An indispensable part of any serious modeling
approach is a rigorous semantical basis for the model
constructed—notably, for the behavioral parts of the
model and their connection with the structure. It is
these semantics that lead to the possibility of execut-
ing models and running actual code generated from
them. (The code need not result in software; it could
be in a hardware description language, leading to real
hardware.) Figure 1 shows system modeling with full
code generation.

Obviously, if we have the ability to generate full code,
we would eventually want that code to serve as the
basis for the final implementation. Some current tools,
like Statemate and Rhapsody from I-Logix Inc. or Rose
RealTime from Rational Corp., can in fact produce
quality code, good enough for the implementation of
many kinds of reactive systems. And there is no doubt
that the techniques for this kind of “supercompilation”
from high-level visual formalisms will improve in time.
Providing higher levels of abstraction with automated
downward transformations has always been the way to
g0, as long as the engineers who do the actual work are
happy with the abstractions.

January 2001

Figure 1. System

modeling with full Code

code generation. The generation

system model

consists of structure

and hehavior

depicted using visual L s SPECIFYING REQUIREMENTS N
formalisms in When developing a complex system, it is very
executable UML @ important to be able to test and debug the model
(XUML) or structured before investing extensively in implementation—
analysis/structured hence, the desire for executable models.'

design (SA/SD). A Require.:ments are the basis foF testing and debugg.ing
rigorous semantical . by executing the model. By their very nature, require-
basis makes it possi- ments constitute the constraints, desires, and hopes we
ble to automatically entertain concerning the system under development.
generate full runable We want to make sure, both during development and
code from the model. when we feel development is over, that the system does,

(XUML or SA/SD)

or will do, what we intend or hope for it to do.

Figure 2 shows system modeling with full code gen-
eration and soft links to requirements. Requirements
can be formal (rigorously and precisely defined) or

Structured Analysis and Structured Design

SA/SD, which started in the late 1970s,
is based on raising classical procedural
programming concepts to the modeling
level and using diagrams, or visual for-
malisms, as the languages for modeling
system structure. Structural models are
based on functional decomposition and
information flow and are depicted by hier-
archical dataflow diagrams.

Many methodologists were instrumental
in setting the ground for the SA/SD paradigm
by devising the functional decomposition and
dataflow diagram framework, including
Tom DeMarco' and Larry Constantine and
Ed Yourdon.” David Parnas’s work over the
years was very influential, too.

In the mid-1980s, three methodology
teams—Ward and Mellor,” Hatley and
Pirbhai,* and the Statemate team’—
enriched this basic SA/SD model by using
state diagrams or the richer language of
statecharts® to add behavior to these
efforts. A state diagram or statechart is
associated with each function or activity,
describing its behavior. Many nontrivial
issues had to be worked out to properly
connect structure with behavior, enabling
modelers to construct a comprehensive
and semantically rigorous model of the
system. It is not enough to simply decide
on a behavioral language and then asso-
ciate each function or activity with a
behavioral description. (This would be
like saying that when you build a car, all
you need are the structural things—body,

Computer

chassis, wheels, and so on—and an
engine, then you merely stick the engine
under the hood and you are done.) The
three teams struggled with this issue, and
their decisions on how to link structure
with behavior ended up being very similar.
Careful behavioral modeling and its close
linking with system structure are espe-
cially crucial for reactive systems,”*® of
which real-time systems are a special case.

Statemate, released in 1987, was the first
commercial tool to enable model execution
and code generation from high-level mod-
els’ (http://www.ilogix.com). Modeling
Reactive Systems with Statecharts: The
STATEMATE Approach’ gives an updated
and detailed summary of the SA/SD lan-
guages, their relationships, and the way
they are embedded in Statemate.

Of course, modelers don’t need to
adopt state machines or statecharts to
describe behavior. Many other possible
languages can be linked with the SA/SD
structural diagrams. They include visual
formalisms such as Petri nets or SDL dia-
grams and more algebraic methods like
Communicating Sequential Processes or
Calculus of Communicating Systems.

References
1. T. DeMarco, Structured Analysis and Sys-
tem Specification, Yourdon Press, New
York, 1978.
2. L.L. Constantine and E. Yourdon, Struc-
tured Design, Prentice Hall, Upper Saddle

River, N.]J., 1979.

. P. Ward and S. Mellor, Structured Devel-

opment for Real-Time Systems: Volumes
1-3, Yourdon Press, New York, 1985.

. D. Hatley and I. Pirbhai, Strategies for

Real-Time System Specification, Dorset
House, New York, 1987.

. D.Harel etal., “STATEMATE: A Working

Environment for the Development of Com-
plex Reactive Systems,” IEEE Trans. Sofft.
Eng., vol. 16,n0. 4, 1990, pp. 403-414; al-
soin Proc. 10th Int’l Conf. Soft. Eng.,IEEE
Press, Piscataway, N.]., 1988, pp. 396-406.

. D. Harel, “Statecharts: A Visual Formal-

ism for Complex Systems,” Science of
Computer Programming, vol. 8, 1987, pp.
231-274; also tech. report CS84-05, The
Weizmann Institute of Science, Rehovot,
Israel, 1984.

. D.Harel and A. Pnueli, “On the Develop-

ment of Reactive Systems,” in Logics and
Models of Concurrent Systems, K.R. Apt,
ed., NATO ASI Series, vol. F-13, Springer-
Verlag, New York, 1985, pp. 477-498.

. A. Pnueli, “Applications of Temporal

Logic to the Specification and Verification
of Reactive Systems: A Survey of Current
Trends,” Current Trends in Concurrency,
J. de Bakker et al., eds., Lecture Notes in
Computer Science, vol. 224, Springer-Ver-
lag, Berlin, 1986, pp. 510-584.

. D. Harel and M. Politi, Modeling Reac-

tive Systems with Statecharts: The
STATEMATE Approach, McGraw-Hill,
New York, 1998.

Testing and debugging; .
model execution,,/'

Requirements

(Message sequence charts)

Object-Oriented Analysis and Design

-~ Development
methodologies

Code

generatio

(XUML or SA/SD)

Figure 2. System
modeling with “soft”
links to requirements.
Developers check the
model against
requirements by exe-
cuting the model
(testing and debug-
ging). Developers use
various methodolo-
gies to go from the
requirements to the
model. In general,
however, these
processes are not
comprehensive, not
guaranteed to
succeed, and not fully
automated.

The late 1980s saw the first proposals
for object-oriented analysis and design
(OOAD). As in SA/SD, the basic idea in
modeling system structure was to lift con-
cepts up from the programming to the
modeling level and to use visual for-
malisms. Inspired by entity-relationship
diagrams,! several methodology teams
recommended various forms of class and
object diagrams for modeling system
structure.”” To model behavior, most
object-oriented modeling approaches
adopted statecharts.® Each class has an
associated statechart, which describes the
behavior of any instance object.

The issue of connecting structure and
behavior is subtler and more complicated
in the OOAD world than in the SA/SD
world. Classes represent dynamically
changing collections of concrete objects.
Behavioral modeling must thus address
issues related to object creation and destruc-
tion, message delegation, relationship mod-
ification and maintenance, aggregation,
inheritance, and so on.

The links between behavior and struc-
ture must be defined in sufficient detail and
with enough rigor to support the construc-
tion of tools that enable model execution
and full code generation. Only a few tools
have been able to do this. One is Object-
Time, which is based on the Real-Time
Object-Oriented Modeling method® and is

now part of the Rational RealTime tool (see
http://www.rational.com).

Another tool is Rhapsody (http://www.
ilogix.com), which is based on the work of
Eran Gery and David Harel on executable
object modeling with statecharts.” This
work centers on a carefully constructed
language set that includes class/object dia-
grams adapted from the Booch method?
and the OMT method,* driven by state-
charts for behavior.

This pair of languages also serves as the
executable heart of the Unified Modeling
Language,® put together by a team led by
Grady Booch, James Rumbaugh, and Ivar
Jacobson, which the Object Management
Group adopted as a standard in 1997 (see
http://www.omg.org). The class/object dia-
grams and the statecharts part of the UML
is often called XUML (for executable
UML). Thus, XUML is the part of UML
that specifies unambiguous, executable,
and therefore implementable, models.

UML has several means for specifying
more elaborate aspects of system structure
and architecture (for example, packages
and components). An important part of
UML for specifying requirements is Jacob-
son’s use cases.

References
1. P. Chen, “The Entity-Relationship Model:
Toward a Unified View of Data,” ACM

Trans. Database Systems, vol. 1, no. 1,
1976, pp. 9-36.

. G. Booch, Object-Oriented Analysis and
Design, with Applications, 2nd ed., Ben-
jamin-Cummings, San Mateo, Calif.,
1994.

. S. Cook and J. Daniels, Designing Object
Systems: Object-Oriented Modeling with
Syntropy, Prentice Hall, Upper Saddle
River, N.J., 1994.

. J. Rumbaugh et al., Object-Oriented
Modeling and Design, Prentice Hall,
Upper Saddle River, N.J., 1991.

. B. Selic, G. Gullekson, and P. Ward, Real-
Time Object-Oriented Modeling, John
Wiley & Sons, New York, 1994.

. D. Harel, “Statecharts: A Visual Formal-
ism for Complex Systems,” Science of
Computer Programming, vol. 8, 1987, pp.
231-274; also tech. report CS84-05, The
Weizmann Institute of Science, Rehovot,
Israel, 1984.

7. D.Harel and E. Gery, “Executable Object

Modeling with Statecharts,” Computer,
July 1997, pp. 31-42.

. J. Rumbaugh, I. Jacobson, and G. Booch,
The Unified Modeling Language Refer-
ence Manual, Addison Wesley Longman,
Reading, Mass., 1999.

. L. Jacobson, Object-Oriented Software
Engineering: A Use Case Driven
Approach, ACM Press/Addison-Wesley,
Reading, Mass., 1992.

January 2001

A collection of MSC

scenarios cannot
be considered an
implementable

system model. How

informal (written, say, in natural language or
pseudocode). However, because this article is
concerned mainly with processes that can be
automated, the focus is on formal requirements.

Ever since the early days of high-level pro-
gramming, computer science researchers have
grappled with the question of how to best state
what we want of a complex program or system.

would such a system Notable efforts include the classical Floyd/Hoare
operate? What invariant assertions method, with its pre- and
: postconditions and termination statements’ and

would it do under the many variants of temporal logic.®
general dynamic These efforts make it possible to express the
circumstances? two main kinds of requirements of interest in

modeling reactive systems. The first requirement

is safety, which says that a bad thing can’t happen;

for example, this program will never terminate

with the wrong answer, or this elevator door will
never open between floors. The second requirement is
liveness, which says that good things must happen. For
example, this program will eventually terminate, or this
elevator will open its door on the desired floor within
the allotted time limit.

Scenarios and use cases

A more recent way to specify requirements, which is
popular in the realm of object-oriented systems, is to
use message sequence charts (MSCs). The International
Telecommunication Union (the ITU, formerly the
CCITT) adopted this visual language as a standard long
ago.” The idea of MSCs also manifests itself in UML,
but in a slightly weaker way, as the language of se-
quence diagrams.®

Both MSCs and UMLs sequence diagrams specify
scenarios as sequences of message interactions between
object instances. This approach meshes very nicely with
use cases,’ the informal statement of the possible ways
the system can be used: In the early stages of system
development, engineers typically come up with use cases
and then specify the scenarios that instantiate them.
Scenarios capture the desired relationships among the
processes, tasks, or object instances—and among these
factors and the environment—in a way that is linear or
quasilinear in time. (I include tasks and processes
because, although much of this discussion is couched in
the terminology of object-orientation and UML, there
is nothing specific to objects in my arguments.) In other
words, the modeler uses MSCs to specify the scenarios,
or “stories,” that the final system should—and hope-
fully will—satisfy and support, and these scenarios are
instantiations of the more abstract and generic use cases.

REQUIREMENTS VERSUS THE SYSTEM MODEL

As Figure 2 shows, use cases and sequence charts
are not part of the system, but rather part of the
requirements from the system. They are constructed to

Computer

capture the scenarios we would like the system to sat-
isfy when implemented.

It is interesting to compare the interobject “one-
story-for-all-objects” approach that sequence charts
reflect with the dual intraobject “all-stories-for-one-
object” approach manifest in the XUML modeling of
objects using statecharts. In contrast to scenarios,
modeling with statecharts is typically carried out at a
later stage, and results in a full behavioral specifica-
tion for each object instance (or task or process), pro-
viding details of its behavior under all possible
conditions and in all possible stories provided in the
interobject sequence charts. Because it is directly
implementable, the intraobject specification is at the
heart of the system model in Figures 1 and 2; ulti-
mately, the final software will consist of code speci-
fied for each object.

In contrast, a collection of MSC scenarios cannot be
considered an implementable system model. How would
such a system operate? What would it do under general
dynamic circumstances? Thus, MSCs and UMLs
sequence diagrams provide the behavior requirements,
stating how the system should behave when imple-
mented; statecharts—as linked to the class diagrams in
XUML—provide the implementable behavior itself.

By and large, the literature does not clearly define the
subtle difference between the two. Again and again, 1
come across articles and books that use the same
phrases to introduce sequence diagrams and statecharts.
At one point, such a publication might say, “sequence
diagrams can be used to specify behavior,” and later,
“statecharts can be used to specify behavior.” The
reader is told nothing about the fundamental difference
between the two—that sequence diagrams are a
medium for conveying requirements and statecharts are
part of the system model—or about the very different
ways they are to be used. Naive readers often are con-
fused and puzzled by the multitude of diagram types in
the full UML standard and the lack of clear recom-
mendations about what specifying a system means.

Moving hetween the two

In Figure 2, the arrows between “requirements”
(lower left) and “system model” are dashed because
they do not represent rigorous, comprehensive, com-
puter-supported processes. Going from the require-
ments to the model is a long-studied issue, and many
system development methodologies provide guide-
lines, heuristics, and sometimes carefully worked out,
step-by-step processes for this. However, as good and
useful as these processes are, they are soft method-
ological recommendations for how to proceed, not
rigorous and automated methods.

The arrow going from the system model to the
requirements depicts testing and debugging the model
against the requirements, using model execution. Here

is a nice way to do this using the Rhapsody tool:
Assume the user has specified the requirements as a
set of sequence diagrams, perhaps instantiating pre-
viously prepared use cases. For simplicity, say that the
result is diagram A. Later, when the system model has
been specified in XUML, the user can ask Rhapsody
to execute it. During execution, Rhapsody automati-
cally constructs animated sequence diagrams, on the
fly, showing the dynamics of object interaction as they
actually happen during execution. Assume that this
results in diagram B.

When this execution is completed, we can ask
Rhapsody to compare diagrams A and B and to high-
light any inconsistencies, such as contradictions in the
partial order of events, or other differences, such as
events appearing in one diagram but not in the other.
In this way, Rhapsody helps debug the system’s behav-
ior against the requirements.

While this is a powerful and very useful way to check
a system model’s behavior, it is limited to executions
we actually carry out, and thus suffers from the same
drawbacks as classical testing and debugging. Because
a system can have an infinite number of runs, some
will always go unchecked, and it could be those
unchecked runs that violate the requirements (in this
case, by being inconsistent with diagram A). As Edsger
Dijkstra put it years ago, “Testing and debugging can-
not be used to demonstrate the absence of errors, only
their presence.” This softness of the debugging process
is the reason the arrow from the system model to the
requirements in Figure 2 is also dashed.

SEQUENCE CHARTS AND LIVE SEQUENCE CHARTS

As a requirements language, all known versions of
MSCs, including the ITU standard” and the sequence
diagrams adopted in the UML,? are extremely weak in
expressive power. Their semantics are little more than
a set of simple constraints on the partial order of pos-
sible events in a system execution. Virtually nothing
can be said in MSCs about what the system will actu-
ally do when it runs. These diagrams can state what
might possibly occur, not what must occur. Thus, amaz-
ingly, if you want to be a purist, under most definitions
of the semantics of MSCs, an empty system—one that
doesn’t do anything in response to anything—satisfies
any such chart. So just sitting back and doing nothing
will satisfy your requirements. (Usually, however, there
is a minimal, often implicit, requirement that at least
one run of the system should wind its way correctly
through each one of the specified sequence charts.)

Another troublesome drawback of MSCs is their
inability to specify unwanted scenarios. We want to
forbid the occurrence of these antiscenarios, and they
are crucial in setting up safety requirements.

A recent paper addressed these deficiencies and pro-
posed an extension of MSCs, called live sequence

charts (LSCs).” As the name implies, LSCs spec-
ify liveness, things that must occur. They let
modelers distinguish between possible and nec-
essary behavior both globally, on the level of an
entire chart, and locally, when specifying events,
conditions, and progress over time within a
chart. The live, or hot, elements also make it
possible to specify antiscenarios. The other ele-
ments, termed cold, support branching and iter-
ation.

Showing how LSCs deal with conditions or
guards gives a flavor of how they work: Assume
that P is a hot condition appearing at a certain
location in the chart. Then P must be true if and
when that location is reached during a system
run, and if it is not, the system aborts. In other
words, P really must be true; otherwise there is
an unforgivable error. In this way, modelers can
specify antiscenarios (an elevator door opening
when it shouldn’t or a missile firing when the radar is
not locked on the target). In contrast, if P is a cold con-
dition, then it also should be true if and when the loca-
tion is reached, but if it is not true, there is no
catastrophe. Rather, the execution merely exits, and
we simply move up one level—out of the present chart
if P is on the top level of that chart, or out of the sub-
chart and continuing from outside of it if P is inside a
subchart block. This makes it possible to specify con-
trol structure constructs, such as if-then-else and while-
do, using P as a controlling guard.

It is not yet clear whether LSCs are exactly what we
need, and more work is definitely required. We need
to gain experience using the language and we must
build good implementations. Nonetheless, relative to
MSCs, LSCs offer a far more powerful way to visually
specify behavioral requirements. Because their expres-
sive power is far greater (essentially that of XUML
itself), LSCs also make it possible to start looking
more seriously at the dichotomy of reactive behav-
ior—the relationship between the interobject require-
ments view and the intraobject system model.

VERIFICATION AND SYNTHESIS

In Figure 3, the two dashed arrows between the
requirements and the model have been made solid.
This means we have at our disposal hard, formal, and
rigorous—and mainly fully automatable—links
between the system model (in XUML,* for example,
or in a suitable version of SA/SD) and the require-
ments (in LSCs,’ for example, or in temporal logic®
or timing diagrams'?).

From model to requirements

Going from the system model to requirements,
instead of testing and debugging by executing models,
we are interested in using true verification to check the

Janu

LSCs make it
possible to start
looking more
seriously at the
dichotomy of

reactive hehavior—

the relationship
hetween the
interobject
requirements view

and the intraobject

system model.

ary 2001

Figure 3. System
modeling with “hard”

links to require-
ments. This is a
major part of the
dream, in which true
verification checks
the model against
requirements, and
synthesis goes from
the requirements to
the model. These
processes, when
available, will be
comprehensive,
guaranteed to
succeed, and fully
automated.

N . .
| Usecases) Verification

Requirements

(LSCs or temporal logic)

system model against the requirements. This is not what
CASE tool people in the 1980s often called “validation
and verification,” which did not amount to much more
than consistency checking of the model’s syntax. Rather,
it is a mathematically rigorous and precise proof that
the model satisfies the requirements, and a computer-
ized verifier automatically does the proof.

Because we are using powerful languages like LSCs
(or the analogous temporal logics or timing diagrams),
this requires more than merely executing the system
model and making sure that the sequence diagrams
you get from the run are consistent with the ones you
prepared in advance. It means making sure, for exam-
ple, that the things an LSC says must not happen (the
antiscenarios) will indeed never happen, and the things
it says must happen (or must happen within certain
time constraints) will indeed happen. These are facts
that, in general, no amount of execution can verify.

Although general verification constitutes a non-
computable algorithmic problem, the idea of rigor-
ously verifying programs and systems—hardware and
software—has come a long way since the pioneering
work on invariant assertions and the later work on
temporal logic and model checking. These days we
can safely say that we can carry out true verification
in many cases, especially in the finite-state cases that
arise in reactive real-time systems.

I-Logix has recently produced a version of the
Statemate tool with verification capabilities that it will
release as a product in the near future. Doing the same
for an OOAD tool like Rhapsody is just a matter of
time. Before long, I believe, we will be routinely using
automated tools to verify models against requirements.

From requirements to model

In the opposite direction, going from the require-
ments to the model, we have synthesis. Instead of guid-
ing system developers in informal ways to build
models according to their desires and hopes, we would

Computer

Synthesis

Code
generation

System model

Model-code
association

Behavior

(XUML or SA/SD)

like our tools to be able to synthesize directly from
those desires and hopes, if they are indeed imple-
mentable. We want to be able to automatically gen-
erate a system model from the requirements. (For the
sake of the discussion, I assume that the structure—the
division into objects or components, for example—
has already been determined.)

This is much harder than synthesizing code from a
system model, which is really only a high-level kind of
compilation. The duality between the scenario style
(requirements) and the statechart style (modeling) in
saying what a system does over time renders the syn-
thesis of an implementable system model from
sequence-based requirements a truly formidable task. It
is not too hard to do this for the weak MSCs, which
can’t say much about what we really want from the sys-
tem. It is much more difficult for more realistic require-
ments languages, such as LSCs or temporal logic.

How then can we synthesize a good first approxima-
tion of the statecharts from the LSCs? Several
researchers have addressed similar issues, resulting in
work on certain kinds of synthesis from timing dia-
grams'® and temporal logic."" A recent paper describes
a first-cut attempt at algorithms for synthesizing state-
machines and statecharts from LSCs (albeit, in a slightly
restricted setup and for the time being yielding very large
models).'? The method first determines whether the re-
quirements are consistent (whether any existing system
model satisfies them) and then uses the fact that being
consistent and having a model (being implementable)
are equivalent notions to synthesize an actual model.

Much rather deep research into this issue is cur-
rently in progress. I believe that synthesis will eventu-
ally end up like verification—hard in principle but not
beyond a practical and useful solution.

From code to model
Figure 3 also contains a solid arrow going from the
code to the system model (“model-code association” in

the upper right). This indicates the developer’s ability to
make a round-trip back from the code to the model.
Making certain kinds of changes in the code automati-
cally reflects back as changes in the model’s visual for-
malisms. This renders the classical cycle of activities that
takes place between design and implementation easier
and less error prone. Rhapsody provides a useful form
of this model-code association. There is reason to believe
that this ability will be commonplace in the future and
that the applicability of the techniques enabling it will
become broader and more powerful.

HOW SHOULD DEVELOPMENT PROCEED?

Figure 3 appears to imply that we wouldn’t need the
arrows going from right to left at all, and developers
could do without verification, testing, or model-code
association. A system developer could go directly and
smoothly from desires to results: State your require-
ments, get your tool to synthesize the system model, get
it to generate code from the model, and you are all set.

Obviously, this is not the case. We will always need
to develop systems incrementally, with various cycles
of activity taking place, possibly according to the spi-
ral philosophy of development. Such a methodology
calls for cycles of development, producing continuously
refined and extended versions of the system. One cycle
would be between the requirements and the model,
incrementally extending and refining the system under
development by following the dashed arrows of Figure
2—development methodologies, testing, and debug-
ging—and the solid arrows of Figure 3—synthesis and
verification. The other (less significant) cycle would be
the same as the requirements-model cycle, but it would
be between the model and the implementation in code,
repeatedly fine-tuning the final artifact.

While we eventually might need to modify the clas-
sical life cycle approaches somewhat, I have not worked
out a full step-by-step methodology for how to proceed
in developing a system. Rather, this article describes the
various parts of such a methodology, the languages and
tools they involve, and their interrelationships. To pro-
pose a full-blown methodology, we will need more than
a few examples appearing in hastily written methodol-
ogy books that are wisdom-rich but technically shal-
low. This will not happen overnight. Rather, we will
need to rely on the profound knowledge and rigor that
will accumulate from years of experience in using these
techniques with their full semantic underpinnings, with
support from truly powerful tools.

PLAY-IN SCENARIOS

To complete the dream I have sketched, we need
one last piece: a far more convenient way to set up
behavioral requirements, suitable not only for system
engineers but also for their clients, such as users and
contractors.

Toward that end, I propose play-in scenar-
ios. When you execute a model, you play out a
scenario. This becomes apparent when you use
the tool to execute models interactively. It
becomes especially transparent and impressive
(useful, too) when you work with a soft panel
mock-up of the system’s final interface or even
with the system’s actual hardware, as is possi-
ble in the tools mentioned earlier. You can play
out a scenario by standing in, so to speak, for
the system’s environment, introducing events
and changes in values and observing the results
as they unfold.!

In contrast, here we would play iz scenarios.
This is done prior to building any behavioral
model of the system in order to set up the re-
quirements, perhaps driven by use cases. Rather
than using conventional languages, visual or
otherwise, to specify scenarios, modelers work

Rather than using
conventional
languages to

specify scenarios,

modelers work

directly opposite a

mock-up of the
system’s interface,
using a highly user-
friendly method of
teaching their tool
ahout the desired

and undesired

scenarios.

directly opposite a mock-up of the system’s
interface, using a highly user-friendly method of
teaching their tool about the desired and unde-

sired scenarios. Developers can do this work together
with clients or potential users, expediting the process
and eliminating many kinds of behavior-related errors
that come up during the development process.

Think of a graphical image of a cellular phone, for
example, appearing on the developer’s computer
screen. There is nothing beneath it: No behavior has
been specified for it yet. You now start entering sce-
narios by clicking and dragging, playing in inputs and
the system’s responses, indicating whether things are
hot or cold, instantiated or generic, and more. The
interactive process also includes a means of refining
the system’s structure as the work progresses by form-
ing composite objects and their aggregates and setting
up inheriting objects.

As the process of playing in the scenario-based
requirements continues, the underlying tool—the
play-in engine—will automatically and incrementally
generate the formal LSCs (not merely MSCs) or the
temporal logic formulas that capture the played-in
scenarios accurately. Instead of using abstract engi-
neer-oriented languages, we apply a friendly, intuitive,
user-oriented automated process to construct rigor-
ous and comprehensive requirements.

Here, too, much research remains to be done. While
the idea of play-in scenarios has a nontrivial mathe-
matical/algorithmic side, a large part of the effort
needed relates to its human aspects. There must be a
powerful, yet natural and easy-to-use way to interact
with an essentially behavior-free “system shell” so that
we can tell it what we want from it. A doctoral student
and I have been developing the first version of a play-
in environment at the Weizmann Institute and hope
to publish the details soon.

January 2001

Figure 4. The dream
in full. In addition to
verification and syn-
thesis, the dream
calls for requirements
to be “played in”
directly opposite a
mock-up of the sys-
tem’s interface, using
a user-friendly
method of teaching
the system its behav-
ior. Developers can
play in scenarios
together with clients
or potential users.

4 N
{ Usecases)

Play-in
scenarios

Requirements

Play-out scenarios
and verification

(LSCs or temporal logic)

Figure 4 summarizes the complete system develop-
ment dream.

is a lot more we don’t know and can’t achieve yet

in this business than what we do know and can
achieve. In addition to the topics I have presented,
many issues require further research and development
to be satisfactorily incorporated into the overall
scheme. These include real-time analysis, automatic
diagram layout, and dealing with hybrid systems that
have both continuous and discrete facets.

The efforts of scores of researchers, methodologists,
and language designers have resulted in more than we
could have hoped for a decade or so ago, and for this
we should be thankful and humble. There is still a long
road ahead, but there is a dream in the offing. While
several parts of this dream are not even close to being
fully available, the dream is not unattainable. If it
comes true, it could have a significant effect on the
way we develop complex systems. [

I tis probably no great exaggeration to say that there

References

1. D.Harel, “Biting the Silver Bullet: Toward a Brighter Future
for System Development,” Computer, Jan. 1992, pp. 8-20.

2. D. Harel, “Statecharts: A Visual Formalism for Com-
plex Systems,” Science of Computer Programming, vol.
8, 1987, pp. 231-274; also tech. report CS84-05, The
Weizmann Institute of Science, Rehovot, Israel, 1984.

3. Unified Modeling Language (UML) documentation,
Object Management Group (OMG), http://www.omg.org,.

4. D. Harel and E. Gery, “Executable Object Modeling
with Statecharts,” Computer, July 1997, pp. 31-42.

5. A. Apt, Verification of Sequential and Concurrent Pro-
grams, 2nd ed., Springer-Verlag, New York, 1997.

6. Z.Manna and A. Pnueli, The Temporal Logic of Reac-
tive and Concurrent Systems: Specification, Springer-
Verlag, New York, 1992.

7. “MSCs: ITU-T Recommendation Z.120: Message
Sequence Chart (MSC),” ITU-T, Geneva, 1996.

8. 1. Jacobson, Object-Oriented Software Engineering: A

Computer

Methodologies
and synthesis

Code
generation

System model

Model-code
association

(XUML or SA/SD)

Use Case Driven Approach, ACM Press/Addison-Wes-
ley, Reading, Mass., 1992.

9. W. Damm and D. Harel, “LSCs: Breathing Life into Mes-
sage Sequence Charts,” Formal Methods in System
Design, submitted for publication. An early version was
published in Proc. 3rd IFIP Int’l Conf. Formal Methods
for Open Object-Based Distributed Systems, P. Cian-
carini, A. Fantechi, and R. Gorrieri, eds., Kluwer Acad-
emic, New York, 1999, pp. 293-312.

10. R. Schlor and W. Damm, “Specification and Verification
of System-Level Hardware Designs Using Timing Dia-
grams,” Proc. European Conf. Design Automation,
IEEE CS Press, Los Alamitos, Calif., 1993, pp. 518-524.

11. A. Pnueli and R. Rosner, “On the Synthesis of a Reactive
Module,” Proc. 16th ACM Symp. Principles of Pro-
gramming Languages, ACM Press, New York, 1989, pp.
179-190.

12. D. Harel and H. Kugler, “Synthesizing State-Based
Object Systems from LSC Specifications,” Proc. Sth Int’l
Conf. Implementation and Application of Automata,
Lecture Notes in Computer Science, Springer-Verlag,
New York, submitted for publication; also, tech. report
MCS99-20, The Weizmann Institute of Science,
Rehovot, Israel, Oct. 1999.

David Harel is the William Sussman Professor at The
Weizmann Institute of Science in Israel and is dean of
the faculty of mathematics and computer science. He
is also cofounder and chief scientist of I-Logix and
DigiScents Israel. His research interests are in com-
putability and complexity theory, logics of programs,
automata theory, visual languages, systems engineer-
ing, and, more recently, the mathematics and algo-
rithmics of olfaction and smell communication. Harel
received a PhD in computer science from the Massa-
chusetts Institute of Technology. His most recent
books are Computers Ltd.: What They Really Can’t
Do (Oxford University Press, London, 2000), and
Dynamic Logic (with Dexter Kozen and Jurek Tiuryn,
MIT Press, Cambridge, Mass., 2000). Harel is a Fel-
low of the ACM and the IEEE. Contact him at
harel@uwisdom.weizmann.ac.il.

