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Abstract. We investigate the power of play-out, the execution mech-
anism associated with scenario-based programming, which was defined
as the operational semantics of live sequence charts (LSC). We compare
some of the play-out strategies and mechanisms suggested in the litera-
ture, and discuss their strengths and limitations. Specifically, we define a
simple infinite hierarchy of LSC programs, and use it to show that smart
play-out, the lookahead version of play-out guided by model-checking, is
strictly weaker than full synthesis from LSC.

This paper is dedicated to Prof. Willem de Roever, friend and
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ments, his impact on the community, and his boundless energy.

1 Introduction

Live Sequence Charts (LSC) [3] is a visual formalism for inter-object scenario-
based specification, and is especially useful for programming reactive systems.
The language extends classical Message Sequence Charts (MSC) [14], mainly by
being multi-modal, i.e., incorporating universal and existential modalities. Thus,
LSC distinguishes between behaviors that may happen in the system (existential,
cold) and those that must happen (universal, hot). It can also naturally express
a variety of constraints, such as behaviors that are forbidden.

Most importantly in the context of this paper, an executable (operational)
semantics for LSC, termed play-out, was defined in [11]. Thus, LSC can be viewed
not only as a specification language but also as a high-level programming lan-
guage for reactive systems. The play-out idea can be applied to any scenario-
based formalism that concentrates on inter-object behavior with multi-modal
constraints; thus, in principle it can be used also to execute certain variants of
temporal logic.

* The research was supported in part by The John von Neumann Minerva Center for
the Development of Reactive Systems at the Weizmann Institute of Science and by
a Grant from the G.I.F., the German-Israeli Foundation for Scientific Research and
Development.



In this paper we describe some of the play-out strategies and mechanisms
suggested since the publication of [3], and discuss their strengths and limitations.
These include the original (naive) play-out of [11] and two stronger strategies,
smart play-out [7,11] and planned play-out [13]. We are particularly interested
here in smart play-out, due to its novel nature, whereby a verification technique
(specifically, model-checking) is used to run a program rather than to prove
properties thereof. Thus, we define a simple infinite hierarchy of LSC programs,
and use it to show that smart play-out is strictly weaker than full synthesis from
LSC.

2 Naive Play-Out of Scenario-Based Programs

Finding ways to construct executable systems based on inter-object, scenario-
based specifications, appears to be an interesting challenge [4]. Many researchers
have approached the issue as a synthesis problem; see, e.g., [1,6, 15, 20], where
inter-object specifications, given in variants of Message Sequence Charts (MSC)
[14], are translated into intra-object state-based executable specifications for
each of the participating objects or components.

Play-out, defined in [12,11], is a recent example of a different approach.
Instead of synthesizing intra-object state-based specifications for each of the
components, the play-out algorithm executes the scenarios directly, keeping track
of all user (or environment) events, as well as system events, for all objects
or components simultaneously, and causing other events and actions to occur
as dictated by the specified scenarios. No intra-object model for any of the
participating components needs to be built in the process.

To date, two implementations of this basic play-out idea are available. The
original one is part of the Play-Engine tool [11], which works as an LSC in-
terpreter and drives the simulation of an application execution, provided it im-
plements certain custom interfaces. A more recent implementation is part of
the S2A compiler [5], which is based on a compilation scheme for translating
LSCs into AspectJ [16]. This second implementation uses a UML2-compliant
and slightly generalized variant of the LSC language, defined in [10].

Here now is a brief and simplified description of the basic play-out technique
for LSC specifications consisting of universal charts, which is sufficient for our
needs in this paper. The full LSC language of [11] is much richer than the simpli-
fied fragment we use here. It includes conditions, variables, structural constructs
(e.g., if-then-else), symbolic instance lifelines, symbolic methods, time, etc. Play-
out handles all of these. However, in this paper we concentrate on a basic version
of the language.

We assume the reader is familiar with elementary LSC notions, such as the
partial order of events defined by an LSC, an LSC cut, etc. A thorough treatment
may be found in [11]. Roughly, a run of an LSC program may be seen as sequence
of execution configurations, each representing a global cut (a tuple of all LSC
current cuts). A cut induces a set of enabled and violating events; enabled events
are the ones immediately after the current cut in the partial order defined by



the chart; violating events are all events that appear in the chart but are not
currently enabled (see [11]). Whenever a minimal event of a chart occurs, a live
copy of the chart is created. We say that a live copy of a chart is preactive
(active) if its cut is in its prechart (main chart). A configuration is stable if it
includes no active live copy.

The play-out execution mechanism works in phases of a step followed by a
valid superstep. A step is the execution of a single external event, performed by
the environment or the user (both will be referred to here as the environment). A
superstep is a finite (possibly empty) sequence of events executed by the system
as a reaction to a single external event. A walid superstep handles iteratively all
enabled main chart events in a non-violating way (a violation of a preactive LSC
is allowed), in order to reach a stable configuration. More live copies may be
created and activated during the execution of a superstep, but all copies must
be completed or preactive when a superstep ends.

Note that, in general, LSC is a nondeterministic language: after an external
event occurs, many possible supersteps may exist. There are two possible causes
for this. One is the partial ordering of events, which can lead to more than one
enabled event at a given cut. The second is the specification of pieces of behavior
in more than one chart. Events that do not appear in a chart do not violate it,
but when a number of charts are active, even if they are all totally ordered,
there may be more than one valid choice for the next event. Note, however, that
once an event is executed in a configuration, the next configuration is uniquely
determined, though some steps may yield a configuration for which no valid
superstep exists.

Different play-out algorithms differ in their approach to finding a valid su-
perstep. If a valid superstep is not realized, we say the execution wiolates the
specification. The naive play-out strategy [11] executes supersteps in a greedy
manner. It iteratively seeks and executes some enabled main chart event that
does not immediately violate an active LSC, until no such events are available.
When several such events are available, naive play-out selects one arbitrarily.

Consider a specification that contains the single LSC of Figure 1. It is a
universal LSC, with three instances, one of which is the environment.

If the environment sends message my to obji, a live copy of LSC4 is created,
the prechart completes and as the cut enters the main chart the LSC becomes
active. The following superstep starts with two enabled events, my and m3, waiting
to be executed in some order. Naive play-out picks any one of these, say mg,
executes it (in this case objs sends message m3 to itself) and advances the cut.
Self messages may represent internal actions of an object. The superstep is still
not over, as my has yet to be sent. Being the only enabled event, my is promptly
executed. Now my is enabled, so it is sent, and the chart is completed. The
configuration reached at this point is stable, since there are no active live copies,
and the superstep ends.

In this example, the specification contains only one LSC. Scenario-based
programs typically include many LSCs acting together, as we shall see in the
next section.



LSC A
Env Obj1 Obj2

Rt Bl (el N
e ma N
A > L

\\ ,/

:| mz :| ms
ma
Fig. 1. LSC,4

3 More Powerful Play-Out Strategies

The original play-out [11] process is indeed naive. Some of the sequences of events
possible as a response to an external (user or environment) event may eventually
lead to violations, and these cannot be avoided by the non-backtracking, non-
looking-ahead, play-out process. Moreover, the partial order semantics among
events in each chart and the ability to separate scenarios into different charts
without having to say explicitly how they are to be composed are very useful in
early requirement stages, but can cause under-specification and nondeterminism
when one attempts to execute them.

Consider a specification consisting of LSC 4 from Figure 1 and LSCp from
Figure 2. We first demonstrate how naive play-out may fail to find a valid su-
perstep when executing this specification.

Again, assume that the environment sends message m; to obj;. This causes
activation of a live copy of LSC4, and at the beginning of the following superstep
events my and m3 are enabled. Naive play-out again may choose to execute mz, but
in the presence of LSCp this leads to a violation of the specification, as follows:
After executing mg and advancing the cut of LSC 4, my is still enabled, so it is
now executed. After the execution of ms, being the minimal event of LSCp, a
live copy of LSCp is created and activated. The enabled events are currently my
of LSC4 and m3 of LSCpg. Note however, that my violates LSCpg and m3 violated
LSC 4, so the execution of superstep is in deadlock, and a valid superstep cannot
be realized.

After the environment performed m;, the play-out algorithm could have cho-
sen to execute mo before m3. This, however, would have conformed with the order
induced by LSCp, yielding a valid superstep, consisting of mg, m3 and my (in
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that order), after which both LSCs are completed. This rather simple example
demonstrates the need for a ‘smarter’ play-out strategy.

3.1 Smart play-out

The strategy of smart play-out (SPO) [7, 11] partially addresses these limitations,
by using model-checking techniques to avoid violations within a superstep.

The approach taken is to formulate the play-out task as a verification prob-
lem, and to use a counterexample provided by a model-checking algorithm as
the desired superstep. The system on which we perform model-checking is con-
structed from the universal charts in the specification. The transition relation is
defined so that it allows progress of active universal charts but prevents any vi-
olations. The system is initialized to reflect the status of the execution just after
the last external event occurred, including the current values of object proper-
ties, information about the universal charts that were activated as a result of
the most recent external events, and the progress in all precharts.

The model-checker is then given a property claiming that always at least one
of the universal charts is active. In order to falsify the property, the model-checker
searches for a run in which eventually none of the universal charts is active; i.e.,
all active universal charts complete successfully, and by the definition of the
transition relation no violations occurred. Such a counter-example is exactly
the desired superstep, and it is then fed into the Play-Engine for execution.
If the model-checker verifies the property then no correct superstep exists and
execution terminates in failure. Smart play-out is sound and complete for a single
superstep.

In [8] smart play-out was extended to support LSC time constructs and
forbidden elements.



3.2 Planned play-out

Often it is useful to discover more than a single valid superstep, but model
checkers are usually unable to provide more than one counter-example. In [13], a
variant of smart play-out was proposed, and termed planned play-out. Planned
play-out uses Al planning algorithms to find many valid supersteps in a single
run.

Technically, the problem of finding a valid superstep is translated into a
planning problem, and a planner is employed in order to solve it. The resulting
plans are then translated back into supersteps.

An interesting feature of this approach, and the way it was implemented
in the Play-Engine, is that it supports interactive play-out: taking advantage
of the interpreter/simulation nature of the Play-Engine, the user is allowed to
backtrack during execution and to choose between possible steps in the quest
for an acceptable superstep. This interactive, user-guided process, was called
traversable play-out in [13].

4 Smart Play-Out Is Not Enough

We now show that smart play-out is strictly weaker than full synthesis from
LSC, as defined in [6].

A superstep from a given configuration is k-valid (for k > 1) if the environ-
ment may not force the execution into a violation in the following k — 1 play-out
iterations. A superstep is thus 1-valid iff it is valid. A superstep is 2-valid iff it is
1-valid and from the configuration reached, any external event performed by the
environment leads to a configuration from which another valid superstep exists.

A superstep from a given configuration is w-valid iff from the configuration
reached, the environment cannot force the execution into a violation at all. Note
that if during the execution, a superstep that is not w-valid is taken, the envi-
ronment may eventually force the execution into a violation.

For any k > 1 we define SPO* to be a generalization of smart play-out that
is intended to find a k-valid superstep, if one exists. This may be realized by
looking k supersteps ahead, and checking all possible events carried out by the
environment between them. SPO! is the original smart play-out, which looks
one superstep ahead.

Intuitively, looking a finite number of supersteps ahead is myopic. If the
specification is ‘too deep’, smart play-out, however often repeated, may not be
able to distinguish between a choice that will allow the specification to continue
playing (an w-valid superstep), and a choice that will allow the environment
to force the execution into a violation of the specification. In LSC synthesis,
however, the synthesized controller allows only w-valid supersteps [6].

We now construct a sequence of LSC specifications. For any k& > 1,
Specr, = {LSCy, LSCs, ..., LSCky3} is a set of universal LSCs, presented in
Figures 3 and 4. In each chart there are two instances: the system and the
environment.
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Fig. 4. Specy, — continued

All the charts are linearly ordered, therefore we may describe Spec, more
concisely by:

LSCl: ep = a
LSCs: eg=b
LSCs:  a, b, e1 = ¢
LSCy: C1, €2 = C2

LSC5I Co, €3 = C3

LSC,IH_QI Ck—1, €k = Q, ﬂa v
LSCk+3: o =7, ﬂ

In this notation, each row represents an LSC. Time advances from left to
right, and ‘=’ separates the prechart from the main chart.
Eenw = {eo,€1,...,er} is the set of external events controlled by the environ-



(0,0,1,0....,0)

Fig. 5. Starting from the initial configuration, the environment may not force the
execution into a violation.

ment. Eyys = {a,b,c1,...,c—1,a, 3,7} is the set of all other events controlled
by the system.

Theorem 1. SPO* is not enough to determine a non-violating execution of
Specy (k > 1). That is, SPO* cannot decide for two possible supersteps which
one is w-valid and which is not.

Proof sketch Consider Specy. Note that in each chart the events are linearly
ordered. Moreover, the minimal event does not reoccur in the chart, so at any
point during execution there exists at most one live copy of each chart. We denote
the global state of execution as a configuration (l1,l,...,lx1+3), where each I;
is a natural number representing the current cut of the i*" chart, starting from
zero. The initial configuration is (0,...,0), in which all charts are not active.

Claim 1 Starting from the initial configuration, the environment may not force
the execution into violation, i.e., for any future action of the environment there
exists a valid superstep as a reaction, ad infinitum.

Figure 5 presents an execution graph for Specy, starting from the initial
configuration. The nodes represent configurations, edges represent environment
controlled events or system controlled supersteps. For each action of the environ-
ment (an environment controlled event from FE.,, ), the graph shows a possible
superstep as a reaction. When formulated as a game between the system and the
environment, this may be seen as describing a winning strategy for the system
(which in fact does not depend on k).



Assume now that the environment starts by performing eq (‘step zero’). LSCy
and LSC, are activated and their precharts are completed, yielding the config-
uration (1,1,0,...,0), so a and b are enabled and must be carried out (in any
order) in the following superstep (‘superstep zero’).

First, consider the possibility of executing b and a, in this order (denoted (b, a))
in superstep zero. As shown in Figure 5, (b, a) is a valid superstep (yielding the
configuration (0,0,1,0,...,0)), where for any future action of the environment
there exists a valid superstep as a reaction. Thus, it is w-valid for superstep zero
and, in particular, it is k-valid.

Second, consider the possibility of executing (a,b) in superstep zero.

Claim 2 (a,b) is k-valid for superstep zero, but is not w-valid.

After eq, (a,b) leads to configuration (0,0,2,0,...,0). To show that (a,b) is
k-valid for superstep zero, we show the environment cannot force a violation in
(k — 1) steps starting from (0,0,2,0,...,0).

Observe that in Specy, in order for a violation to occur in any run starting
from the initial configuration, LSCy2 must proceed to its main chart. In the fol-
lowing we show that if a superstep begins with a configuration in which LSCy
is not active, a valid superstep exists.

During the execution of the superstep, LSCy42 will not be activated, because
its prechart ends with an external event. Thus, o will not be executed during the
superstep, and a live copy of LSCy3 will not be created. Any live copy created
during the superstep has an external event in its prechart, so it may not become
active. Therefore, the superstep must terminate. It is now sufficient to notice
that as long as there is an enabled main chart event during the execution of the
superstep, there exists one that does not violate any active LSC. Only LSCj,
..., LSCg41 may be active, so the event enabled in the active LSC of the largest
index among these does not violate any active live copy.

LSCj 42 may proceed to its main chart only after the events ey, cx—1, ex—1,
Ck—2, ..., €1 occur. Thus, at least k external events occurred after (a,b) was
executed in superstep zero. Therefore, the environment may not violate the
specification in (k — 1) actions, and (a,b) is k-valid.

However, (a,b) is not w-valid for superstep zero. If it is chosen, the envi-
ronment may force the system into a violation of the specification (i.e., there
is a winning strategy for the environment). This, of course, cannot take place
in (k—1) steps (as shown above), but k steps are enough. Figure 6 shows an ex-
ecution graph starting from (0,0, 2,0, ...,0). For any valid superstep, the graph
shows a possible action of the environment that eventually leads to a violation;
that is, it shows how the environment can force the system into a violation in &
steps.

In conclusion, starting from the initial configuration and following the exter-
nal event eg, SPO* cannot choose between (b, a) and (a,b) for superstep zero,
as both are k-valid supersteps. However, the former is w-valid while the latter is
not. O
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Fig. 6. If (a,b) is chosen for superstep zero, the environment may force the execution
into a violation. In the last configuration presented, (0,...,0,2,0), a valid superstep
does not exist due to a contradiction between LSCy12 and LSCpys.

We remark that the set of events of Specy depends upon the index k. As k
grows, this alphabet of events grows. A stronger proof of Theorem 1 can be
formulated, which employs a different sequence of specifications, S/p\ec &> in which
all specifications share the same set of events.

We use our concise notation to describe %&k = {LSCy, LSCa, ..., LSCyy3}:
LSCy: ey = a
LSCs: eg=0b
LSCgS a, b7 e = ¢
LSC4Z C,e1 =¢ C
LSCs: c,cep=cccC
k-1
LSCyio: ¢ycy...,ce1=>a, 03,7
LSCps: a=7,0

~

These can be easily transformed into LSCs. E.,, = {eo,e1} is the set of
external events controlled by the environment, while ESyS = {a,b,c,a, 3,7} is
the set of all other events controlled by the system.

The proof of Theorem 1 for the sequence %E:k is similar to the proof for
Specy. More specifically, proving that (b,a) is w-valid for superstep zero but
that {a, b) is not w-valid, is roughly the same as in the proof of Theorem 1 above
(although the proof of the second of these claims is slightly more complicated,
because there are multiple live copies of an LSC). Showing that (a, b) is k-valid for
superstep zero turns out to be somewhat more difficult, as it requires formulating
a certain property of execution configurations, and proving that this property
may be enforced by the system in the next (k — 1) iterations.

Now, although SPO* does not determine a non-violating execution in all LSC
specifications, we show that for a given specification S there is k such that SPO*
is ‘good enough’ for S.

Theorem 2. Given an LSC specification S, one may compute a number k such
that SPO" is enough to determine a non-violating execution of S. That is, SPO*,
when ezecuting S, always returns an w-valid superstep if one exists.



Proof sketch Consider an LSC specification S = {L1, ..., L,}. We define k to be
larger than the number of execution configurations of S, as follows.

Each LSC L; has a bounded number of live copies during execution; e.g., there
are no more live copies than the number of cuts in L; (a much tighter bound will
often exist). Let b; and ¢; be the number of cuts in L; and an upper bound on
the number of live copies of L;, respectively. There are at most ¢, - cepln
execution configurations for S. Let k Lo ietn 1

Assume that after some external event, an w-valid superstep exists. In par-
ticular, a k-valid superstep exists, so SPO* returns a k-valid superstep. We show
that any k-valid superstep is, in fact, w-valid, as required.

Assume to the contrary, that the environment may force the execution into
a violation. Let ¢ be the smallest number of steps in which the environment may
thus force a violation. Since there are at most (k — 1) configurations, if ¢ > k,
then there are two steps after which the execution is in the same configuration,
thus contradicting the minimality of . Consequently, ¢ < k, and the superstep
returned by SPO” is not k-valid. O

5 Related and Future Work

There have been several efforts to generate executable programs from LSC spec-
ifications. Synthesis from LSC specifications was investigated in [6, 9]. Bontemps
et al. [2] investigate different variants of synthesis from LSC. In [19], Wang et
al. describe the synthesis of SystemVerilog programs from an LSC specification.
In [17], Sun and Dong present a translation from an LSC specification to a CSP
specification, for the purpose of synthesizing executable distributed processes.
In [18], the same authors investigate also the generation of a distributed design
from a combination of interaction-based and state-based modeling, given in LSC
and Z.

In other work in our group (in progress), we suggest optimizations for smart
play-out. These are based on an approximation of the set of LSCs that may
participate in the current superstep, and on other methods, inspired by stan-
dard compiler optimizations. All this is aimed at reducing the size of the model
without affecting the soundness and completeness of finding a correct superstep.

Finally, finding effective and efficient ways to compute a reasonably small k
such that SPO* is good enough for a given specification as a whole, or for certain
possible execution configurations, might very well be of theoretical and practical
interest.
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