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Abstract: The borderline between decidable and un-
decidable Propositional Dynamic Logic (PDL) is sought
when iterative programs répresented by regular ex-
pressions are augmented with increasingly more com-
plex recursive programs represented by context-free
languages. The results in this paper and its com-
panion [HPS] indicate that this liﬁ,e is extremely
tlose to the original regular PDL.

The main reéalt -of the present paper is: The

validity pfoblem for PDL with additional programs

aAtB)YA for reqular o ,B and ? , Aaefined as

Uui iB; Yi . is Hi -.complete. One of the results of
i ’

A
{HPS] shows that the single program AAls) A for

atomic A and B is actually sufficient for obtain-
ing HJI' - completeness. However, the proofs of this

paper use different techniques which seem to be worth-

while in their own right.

*
Department of Applied Mathematics, The Weizmann
Institute of Science, 76 100 Rehovot, Israel

+ .
Department of Mathematics and Computer Science,
Bar-Ilan University, Ramat~Gan, Israel

310

CH1695-6/81/0000/0310$00.75 © 1981 IEEE

1. Introduction

Propositional Dynamic Logic, henceforth PDL, is a
formal logic for reasoning on a propositional level
about programs. PDL was defined by Fischer and Ladner
{FL], based upon work of Pratt {Prl], as a direct ex-
tension of the propositional calculus, in which asser-
tions concerning the in/out {i.e., before/after) be-
havior of programs can be made.

Given an alphabet I of atomic programs and tests,
the class of programs allowed in formulas eof PDL is
taken to be the set RG of regular expressions over L.
'i‘he‘justification of this choice is rooted in the
v'vell-kn'cﬁn correspondence between iterative programs
over I, as modelled, say, by flowcharts, and regular
sets of strings over I. See, e.g. {dBM]. The set of
strings defined by a program QERG is thought of aé the
set of possible computation sequencés constituting a. .
In the sequel this fixed version of PDL is denoted by
PDLRG'

In [FL] it was shown that the validity problem for

P!.'aLR is decidable.

G In fact, it is decidable in de-

terministic exponential time [Pr2], and to within a
polynomial this upper bound is/ the best possible {FL].
_ Consider the set CF of context-free grammars over
L. There is an analogous correspondence (see [dBM])

between recursive programs over I and context~free

sets of strings over I, justifying the study of PDLCF'



Unfortunately, the equivalence and inclusion problems
for context-free grammars, which are undecidable, can
easily be reduced to the validity problem for PDLCF,
rendering the latter undecidable too. This was
pointed out in 1977 by R. Ladner.

One question arising here concerns the degree of

undecidability of PDL .

CF Since the equivalence prob-

lem for CF is co-r.e., the aforementioned observation
canmot be used to show that PDLCF is any harder than

no

1 However, of even greater interest is the problem

of locating the precise point between RG and CF at
which PDL becomes undecidable. This question gains
some momentum upon observin§ that there are interest-
ing classes of context-free grammars for which in-
clusion and equivalenée are known to be decidable,
and others for which some of these, and similar prob-
lems, are open. See, e.g9., [H,L,Y,GF}. In many of
these cases, the restrictions which admit a context-
free grammer into the class in question correséond

to reasonable syntactic restrictions on the corres;
poinding recursive program;

In this paper and its companion [HPS] it is shown
that the borderline between decidable and undecidable
PDL is extremely close to RG, and, furthermbre, that
the transition is most striking:

from decidable in

exponential time for PDL__ to Hi-—completeness for

RG

most of our extensions.

specifically, the general class K of programs

which we consider contains RG and all programs

of the form aA(B)YA for o,B,y € RG. The new pro-
gram is defined to contain all computations of

0.

ai;S;Yl, for all i 3

In Section 2 we define PDL,

K and show that the in-

clusion and equivalence problems for K are decidable
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so that PDLK cannot be shown undecidable by Ladner's

observation. We also show that PDL

K lacks the fi-

nite model property, so that it cannot be shown decid-
able by the finite model method of [FL].

In Section 3 we use a reduction of the Post cor-
respondence problem to show the undecidability of
PDLK. This result, although subsumed by the main re-
sult of the paper, is presented by virtue of its rela-
tive simplicity.

In Section 4 we prove that PDLK is H;-complete
by reducing to it the truth of formulas of the form
V£3ixP, where P

is a diophantine relation. That

these formulas are universal Hi {see [R]) follows
ffdm Matijasevic's Theorem [M]. We also show how to
improve this proof method obtaining a stronger version
of the result. Our strongest version of this result,
namely, that PDL with the additional single program
AA(B)AA is ﬂi—complete, is proved in {HPS] using a
different technigue consisting of encoding réertain
Turing machine computations.

In [HPS] several results concerning other nonregular

programs, notably programs over one-letter alphabets,

are also presented.

These results ¢onstitute a full answer to the first

question posed, and a partial answer to the second.

First, since PDLCF is easily seen to be in Hi, our
results establish its Hi—completeneSSu Second, the

results show that some extremely conservative additions
to RG result in a highly undecidable PDL, to be con-
trasted with exéonential time decidability in their ab-
sence. A comprehensive characterization of thé classes
of programs for which PDL is decidable remains an in-
triguing topic for future research. In particular,

it is open at the time of writing as to whether there



is any nonregular program whose addition to RG does
not destroy the decidability of PDL. (See note at end
of paper.)

2. Definitions and Preliminary Observations

Let 11 be a set of atomic programs, with O€I,
(the empty program), and let ¢ be a set of atomic

propositions.

Let I =10V {p?2lp € ¢} U {~P2|P € ¢}. Let PROG

be a given set of expressions, called programs, each

associated with some subset of I* . For a€PROG this

subset is denoted LP or just L(a) when the

roG (¥

Throughout we assume L(0) = @ .

context is clear.

The formulas of the propositional dynamic logic of

PROG, denoted PDL,

pROG’ 2 defined as follows:

1) & S PDL, .
2) if p,q.EPDLPROG then ~p,qu€PDLPROG,
3) if pEPDLPROG and a€PROG then <a>p€PDLPROG .

We use true, false, A, D and = as abbreviations in

the standard way. 1In addition, we abbreviate ~<a>~p

to [alp .

s

s . s s
A structure (or model) is a triple S = (W , 7, p°),

where W° is a nonempty set, the elements of which

are called states, % is a satisfiability relation

- zwxw

on ¢, i.e., 1%:0 2w, and ps: provides a
binary relation on W as the meaning of each atomic
program in II. Most often we will omit the super-
script of the components of S.

We extend p to words over I as follows:

1 p (A) ={(u,u) |uew}, ( Ais the empty string),
2) p(P?) = {(u,u) lu€n(p)} pEo,

3) p(~P2) = (WxW) - p(P?),

4) p(x:y) = p(x) o py). x,y €L*, (o is the com~

position operator on bi-
nary relations)

in

Given a structure S, the satisfiability relation is

defined for all formulas of PDLPROG as follows:

1) uk P iff u€wn(P), for pE%,

2) uk ~ iff not uk p,

3) ukpvgq iff either ukp or uk q

4) u bk <a>p iff Ix€L(a). 3IvEW. (u,v)€E p(x)

and v F P.

Although we allow only atomic tests and their ne-

gations in PDL

PROG' since our results are all ne-

gative, they hold also for the more general case of

tests p? for any formula pEPDLPROG.

Let RG be the set of regular expressions over

L . The reader can easily check that PDL coin-

RG

cides with PDL, as defined, say, in [FL], with

the above restriction on tests.

In particular, since L{a*) = (L(a))* = UL(ai),

i
i+l

° =2 and o =

. i
with a a;a” , we have

‘uk<o>*p iff 3i, uk<a’sp -

A formula p€ PDL is valid, denoted Fp , if

PROG

for every structure S and for every UEWS. ukp;

it is satisfiable if ~p is not valid. Hence p is
satisfiable if there is a structure S and state
u€ws

such that ukp. The latter is sometimes writ-

ten S,ufkp.

The inclusion (respectively, equivalence) problem

for PROG is the problem of deciding, given «a,BEPROG,

whether or not L(a) € L(B) (resp. L{a) = L(B)).

The validity problem for PDLPROG is the problem of

deciding, given pEPDLPR » whether or not Fp.

0G
Fischer and Ladner [FL].have shown that every satis-
fiable formula p of PDLRG is satisfied in a struc-
tuie in which the number of states is finite and expo-
nential in the size of p. This fact, termed the small

model property, is used in [FL) to show that the va-



lidity problem for PDLRG is decidable.

Let CFo (respectively, CF) be the set of context,

free grammars over terminals Il (respectively I) and

some fixed set of nonterminals. It is well known that

the equivalence (and hence also the inclusion) pro-

blem for CPo is undecidable [BPS]. This fact can

be used to show that the validity problem for PDLCF ’
o

and hence also for PDLCF’ is undecidable.

(due to R. Ladner):

Proposition 2.1
PEY,

For any «a,B € CFO,

E(<a>P > <B>P) iff L(a) € L(B).

Proof: (if) Immediate from the definition of <a>P.

(only if) Let x€L(a), where x = Al,...,Ak, and

the Ai are (not necessarily distinct) elements of II.

Define the structure S_ ({uo,...,uk},',p) such that

w(P) = {uk}, and such that for any A € II,

(ui,uj) € p(@) iff j = i+l and A = A;.

S, 1is illustrated in Fig.l. Clearly Syr Yy E<a>pP

and hence by assumption also Syr Uy E<B>P . But this

implies that x € L(8). o
U, L L2 u3 Upot Uy
O e . Qe ) o o = [
A Rp A3 Ak
=P =2 ap =2 2P P
Figure 1

Corollary 2.2: The validity problems for PDL F and

C
o

PDL

CF are undecidable.

We now define our set of programs K. It will be-

come clear that RG <K< CF, where PROGl < PROG2

whenever (LPROGl(a)IuE PROGL} ¥ {kaocz(a)lu€ PROG2}.

3

K = RG v {(aA(B)yA)I a,B8,y € RG}.

When there is no ambiguity we will drop the additional
parentheses.
Sets of strings over I* are associated with programs

in K as follows:

1 IL(x) = {x}, for x€r - {0}, Le(e) =g .
2) L (aUB) = L (@ U LB ,
D Ly (a:B) = L@ L (B) = {xylx€Lc(a) , yEL (B},
9 L(an) = (L(a)* =il:or.x(ai).
5 L(at® vy = U oncatsyh.
ix0

We shall abbreviate (GA(G*)YA) to (GAYA)

Proposition 2.3: The inclusion and equivalence pro-

blems for K are decidable.

Idea of proof: Each a€EK can be written as a grammar

in CF which is simple-deterministic stack uniform

[L]. The result then follows from [L]. We omit the

details. o
It follows that PDLK cannot be shown to be un-
decidable by Proposition 2.1. We prove now that it

cannot be shown decidable by the Fischer-Ladner method,

since it lacks the small model property. Let force
be the following formula of PDLK :
(P A [A*] <A;B*> P) A [(auB)* ; B; A] false
A at; A a8 A a%B%; B) false .

Proposition 2.4: Force is satisfiable but has no fi-

nite model.
Proof: Let So be the structure illustrated in Fig.
2, in which the only states satisfying P are those

marked @ . It is easy to see that S, u k force .
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Assume now that S, u k force where

lwsl <, u€ W> . S can be thought of as a finite

directed graph with atomic programs labeling edges and

sets of atomic propositions labeling nodes. An (A,B)-

path is one in which each edge is labelled A or B .

Associating paths in S with the sequences of labels

along their edges, Let U< {A,B}* be the set of

words labelling (A,B)-paths connecting u with states

satisfying P. Since S is finite, this is exactly

the definition of a set of words recognized by a fi-

nite transition graph, hence u is regular. On the

other hand, the second conjunct of force eliminates
from U paths which contain B followed by A, for-

cing U to be contained in A*B* Moreover, the

third and fourth conjuncts force U to be a subset of

{a'B"li 3 0}. Finally, the first conjunct of force

i_i . N
> A Bl is i1in U.

states that for each i > O,

>

Hence U = {A*B'li > 0}, and so cannot be regular,

contradicting the assumed finiteness of S. o
3. PDLK is Undecidable

In this section we reduce the solvability of Post
Correspondence Problems (PCP's) to the satisfiability

of formulas of PDLK* Since the former is undecidable,
in fact r.e., so is the latter, rendering the dual vali-

dity problem Hi-ha»rd.
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Specifically, let H = {(xl,yl),...,(xn,yn)} be a
PCP, where Xi0¥y € {a,b}*, for 1 < i ¢ n. A solu-

tion to H 1is a sequence (il,...,ik), where 1 < i, ¢ n

J

1 < such that, denoting the reverse of a

for <3 <€k,

reeer X,

word x € {a,b}* by xR, we have x. i

1 k
y.R ,...,y.R . Note that if w = Xy reeniXy then
! *x 1 k
WR = yi 0 SR It is easy to relate the classical

1
formulation of PCP to our slightly modified version.

We shall construct a formula reduce, € PDLK such

——H
that reducgn is satisfiable iff H has a solution.

The formula reduce, involves

Let H be given.

the two atomic programs A and B and atomic pro-

positions P,Q,Rl,...,Rn . The letters a and b will

be encoded as the programs A;~Q? and A;Q?, respec-

tively, or similarly with B replacing A, so that

words over {a,b}* can be identified with sequences

of truth values of Q‘ along paths of A's gy B's.

Rl,...,Rh will be used to encode indices between 1

and n. (Actually, log n atomic propositions suffice

here.)

The idea is to force models of reduceH to con=~

tain a block of A's followed by a block of B's of

R

equal length, encoding, respectively, w and w

for some word w € {a,b}*, and such that w consists

of a sequence of words from among the x's , w of

a sequence of the same length of words from among the

y's, and such that indices of words in both blocks
correspond.
. ; (1)
Far each 1 ¢ i £ n define R to be the pro-
~R.?: ~R.?: . 2 i 2
gram Rl" RZ"""NRn' with ~Ri. replaced by

R;? . For any z € {a,b}* define the program M)

inductively as follows:

cMa) = a;0? cAb) = a~0?

?

. A A A
C (2122) =C (zl)C (22) .



CB(z) is defined in the same way with B replacing

A throughout.

i A

Define L = U (R(l);C (x,))

b : i

lgign

r,= U Pyt

Y 1gign
Now, let reduceH be the conjunction of the following
formulas:

exist-path: ~P A <LxALyA>P

* g1 o, 8y Byl

indices-correspond: [Lx ;R x Ty
same-length: [AABA]P A [A*:A;AABAINP

A [(AUB) *; p?; (AUB)]false ,

[A*;A;02; AABA:B]Q A

[A*;A;~Q2; AABA;B]~Q .

same-word:

Lemma 3.1l: For any H = {(xl,yl),...,(xn,yn)}. H

has a solution iff reduceH is satisfiable.

Proof: (if) Assume S, u E reduce

a - By exist-path

there is a nonempty path p in S, starting at

u, which encodes in order the words x. ,...,X.

i i

1 k
for some k > 0 and some il,...,ik, using A,
followed by ij,...,yjl for some jl,...,jk, en-

coded using B. Furthermore, by same-length we know
(respectively, in the order of its conjuncts) that

any path of the form ‘a%8® ends with P holding,
that P iholds at the end of no path AiBj with

j < i, and that P holds at most once along any

other words Ixi yeeor X,

b = ly. +eceyy. | By
1 *k I I

indices-correspond considered along path p, we have

il = jﬁ. Finally, by same~-word considered along p
we conclude that Xy reeesXy = (yi reeesY, )R =
1 k " 1
y R y R
o reeegYs e
11 lk
(only if) Let (il,...,ik) be a solution to H.

Construct the structure S of Fig.3, where the words

x4 and Yi

L L

The reader can easily verify that S, u k reduceH. a

are encoded using ¢ as described above.

Corollary 3.1:

undecidable.

The validity problem for PDLK is

4. PDL, is Hl-cqulete.

X 1

In this section we reduce to PDLK

the truth of

formulas F(m) of the form Vf(f(0)=1 D 3IxP) where

P(m,f(x),£(x+1)) is a diophantine relation involving

m and the two values of f, f£(x) and f£(x+1).

It can be shown using Matijasevic's Theorem [M,DMR],
that associated with each Hi—complete set X of

natural numbers there is such a formula F with

X'
mEX iff Fx(m) is true. Moreover, the equation P

can be transformed into a conjunction of equal-

ities of the form t.=0, t.=1, t.+t.=t, and t.-t.=t ,
i i i j k i7j k

where the t's are from among m ,f(x),f(x+l) and

new variables Yyree1¥y which are existentialy quan-

{A;B} path. Consequently, p consists precisely of tified, i.e. P = 3yp . Here 2 depends on the equa-
two blocks of A's and B's of equal lengths. 'In tion P.
P P
A O N e e )
[ i T it e T TR = s Y M Ll L 3 om
AAA o AA‘B B 0B B
T | N R | I L It }
Xi' xia xik yik ylg YL'
Fiqure 3.
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In the sequel w(xo,..‘,x£+2) will denote a con-

junction of such equalities over X reeerXg o o

sequently, in order to show that the validity problem

for PDL is Hl-hard, or equivalently that the satis-

K 1

l—hard, it suffices to find,

fiability problem is 21

for each such ¢ a formula reduce$ of PDLK, ef-

fectively depending on m, which is satisfiable iff
If(f(o) =1 A anyl,...,Syzw(m,yl,...,yl,f(x),f(x+1))
is true.

First we show how to simulate the conjunction

w(xo,...,x£+2) by a PDLK formula on particularly

well behaved structures.

Let n = (no,...,n2+2

) be an arbitrary tuple of

natural numbers. A nice structure for n is any

structure S = (W, w, p) such that {uo,...‘,up} c W,

{(uj,u; V10 € i <plcop@, u; € ﬂ(Pj) iff i = ny.

and u, € n(Sj) iff i = a'nj for some a 3 0. More-

over, p 2 maxi(niz). In other words, the "A-part"

of S (termed the A cut of S from Uo in [MSM]) con-

tains an initial segment of the natural numbers

large enough to contain all squares of the n;. P

b]
by being true precisely at distance nj

encodes similarly all

encodes nj

from the start, uo, and Sj

multiples of n, which fall within the segment.

b]

Given ¢, define the formula simulate

inductivel:
p inductively

on the structure of ¢ as follows:

Con-

simulate
xi+xj—xk

- A - . A

= (a7(p;2; A% Pj?) A’] B
A A

Ala (Pj?. A%; pi?) A ]g( '

simulate

Xj X=X

= ((p; v Pj) S Pp)
AIA;AA(P.?;A*;p.?)((A;»s.?)* ; A;S.?)A] P
1 J j 3 k

A A
. A%, :nS . As
Ala;A (Pj?,A ,Pi?N(A, i?)*, A'Si?) ] Pk .

Lemma 4.1: For any n = (no,...,n£+2), S, u F sim-

ulat:e‘p for some nice structure S for ;, iff w(;)

is true.

Proof: (only if) Let S be nice for ;, and let

S, ug E simulatgw . We show that @(n) is true by
induction on the structure of @ . The cases ® AP

and X, = 0 are trivial. For the case X, = l, we
have s, u E [A)JP;, which implies s, uy E P,, or
ul € K(Pi), which in turn, implies n, = 1.

For the case where ¢ is of the form x, + xj = Xpo

the formula simulate
—_— xi+xj=xk can be seen to state

that when n; < nj (i.e., Pi becomes true before P,
when traversing the u branch of the structure S
starting from u_ ) we h i . -n, =

g o) ave in fact n1+(nj n1)+ni—nk,

and that when . £ n, n, o= =
nJ nl, n] + (nl nj) +n, n In

K ¢
it - R . . .
either case ni + nj n . Fig. 4 illustrates this
case.
For the case where ¢ is of the form xi'xjsxk '

the formula simulatex states that if one of

simulate¢~p. = simulatew A simulatqw; ’ i-xj=xk
simulate
—X,=0 =P, ,
i
imulat
mexial = [A] Pi .
- - T Ts. -——
//”’ S\ - N7 /”'- h RN
r . A N 4 -
: > e &0 S o i) - -
Yo Pi P; g
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i
then 1 + (n;,-1) + (nj-ni) + (ni-l)'nj =n,, and some n = (no,...n2+2); i.e., it consists of a large
if 0 < nj <, then 1 + (nj-l) + (ni-nj) + enough finite path of executions of atomic program
(nj-l)-ni =n . In either case ni-nj= no. Fig. 5 A, upon which the n, and their multiples are en-
illustrates this case. The structure has to be long coded with the aid of the Pi and Si as above.
enough to encode all multiples of the n, so that Furthermore, Po encodes m on each block, and
the clauses for + and - should not be vacuously true. P£+1 and P2+2 are forced to encode the values of
A
-—— T T -
A 3% - - =~ ~<

P v z .

e et S o> L e T e el e e e Ere e I e, DR e i ey = = =

Uy Pi Py Pk

Sj S} Sj S)

Figure 5.

(if) If @(n) is true, construct the nice struc- f(a) and f(a+l) for some function f,

ture S— for n simply by replacing both < by
n
= in the definition of nice structures. There is

now only one linear A-path in the structure. By hold at the beginning state of each block.

induction on the structure of ( one shows that

Sg v Yy E 51mulatew - We argue the case x; + x. = X i

j (io,...,i£+2) o 1

and leave the rest to the reader. If n, + nj =n.
and n, < nj then the first conjunct of simu-

late is true in u, since it states that

n, or n, is 0 then so is ny, and if 0 < n; g ny Each block looks basically like a nice structure for

block considered is the a'th from the start, begin-

ning with a=0. Finally, simulatew is asserted to

Define the program block in RG as follows:

block: U (A*; P, ?;A*; Pi ?;...;Pi

where the union is taken over all permutations

(io,...,i“z) of {0,1,...,242}. For each 1l ¢ i g 2+2,

xi+xj=xk define the formulas Pi—behaves and si-behaves

ny ot (nj—ni) *+ny = ny - The second conjunct is va- as follows, where A% abbreviates A*;A

cuously true by virtue of the structure containing

- . * . . at
Pi behaves [a*; P.?; A ]~Pi

no path upon which Pj becomes true no earlier than

A
s : 2 3 = * . . * o ?
P]- . Slmllar]-YI if nj < n, then the first conjunct S.-behaves = S, A ([A ; P.?) S, A [A(P, ?; A*; S.?)

is vacuously true and the second follows from n;+n.=n, .

Finally, if n, = nj, both conjuncts state that

a *, s.2; at bns.2; ax; 4
ATls)) A ([a7; 5,2; A1~ A [A7(~5;2; A*; S;2)A71~6))

n,+n, =n,+n, =n. o Pi—behaves prevents Pi from holding more than once

on any A-path. If n, is the distance between the

We now turn to the construction of reduce$ . The
idea is to force models of reduce$ to contain an
infinite (possibly cyclic) sequence of blocks sepa-

rated by a single execution of atomic program B. to hold at all reachable distances a-n,
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start and the single state on some A-path which

satisfies Pi, then Si-behaves forces Si (respece

tively by its conjuncts in order) to hold at the start,



and to hold at no reachable distances a-ni+b, for at precisely one point on each block BLa, and thus

a>0, 0<bc« n, . That is, si-behaves forces si encodes a distance nz from the beginning of the
to encode reachable multiples of n; . that block. On each block BLa we choose n: =nm,
a a .
The formula reduce$ is now defined to be: noy = f(a), N = f(a+l), and for 1 ¢ i < £ the
{a} P2+l A [block*] {<block> true value of n; will be the value of yi guaranteed to
[ A . A exist for x = a by the truth of VxB;b . Further-
A A ANAT(R ) (A8 ) T A S o
i=o more, n1+1= 1, thus capturing f(o) = 1 . On each.
(A;Asi?)*; B] false block BLa‘ s will hold at precisely all distances
442 which are multiples of n? and which are still within
A A (Pi-behaves A Si-behaves) 1 )
i=0 the block. It is now easy to éee that all but the
™
A (7] L . simulatew conjuncts appearing in the definition of
A A m . .
A A (P2+2?: A*; B) A7) P+l reduc%m are true in the state u, of s . 1In par
ticular, [AA(P2+2?; a%; B)VAAiP,Hl holds at the be-
A simulatew) . . )
A% L o : a _ a+l _
ginning of each block by virtue of N1 = N = f(a+l)
Lemma 4.2: For any m reducez is satisfiable iff holding. See Fig. 7. Also, the second conjunct in
the formula the parentheses prevents a block from ending before
2 . . ] :
3£ (Flo) =1 AV X 3Y1"'~'Yz @ (M, Yys-oee¥pe £(x), n,” . Now, since 51mu1atew contains no.reference to

B, and since any A-block in § <can be regarded as a

£{x+1)) is true.

nice structure for n = (nz,-..,n )y, it follows

a
242
proof: (if) TLet £ be a function satisfying from the (if) direction of Lemma 4.1 that sixm:tlate‘p

£(0) = 1 A Vx3yp . Construct the model § illustrated .;., 45195 at the start state of any such block.

in Fig. 6 . T1f we number the blocks of A's BL . Hence S, u, E reduceg .

BLl"" each Pi' 0 ¢ i € 242, is taken to hold
XK= 0 x= L X= 2 . X= 3
Uo W uz uy ug
f P P AP DAL BUVSR 20 . IS S B
’J—‘—-——-— ‘‘‘‘‘‘‘ .‘] Tra | Rt} ;—' 4 L -
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(only if) Let S, uj E reduce$ . By [block*]

<block> true there is an infinite (possibly cyclic)

path p in S of the form A*BA*B..., and each Pi

is true at least once on any maximal A-block of p.
Furthermore, the next clause forces each such block to
be at least as long as is required from a nice struc-

ture for the appropriate n . Let u, denote the

start state of the a'th block of A's on the path p.

See Fig. 6. By virtue of Pi—behaves holding at all

states u_, P, cannot be true more than once in any

block, thus we can denote by n? the distance between

u, and the unique state satisfying Pi on the a'th

block of p. By virtue of [Am]P0 being true at each

u we know that nz = m for all a, and by
A A a a+l
2. * . =
[a (P2+2., A*; B)A ]P2+l we know that nl+2 nl+l
We now define the function f with f(a) = nZ+l
for all a, and are guaranteed by the previous remark
that nz+2 = f(a+l) . The reader can also verify that

the truth of Si—behaves at each u, guarantees that

Si holds precisely at all multiples of n? within

the a'th block of A's on p. Thus each such block

. - a a
can be regarded as a nice model for n = (m, nl,...,nl,

f(a), f(a+l))

By the (only if) direction of Lemma 4.1, the truth

of §}mulatew at each u guarantees the truth of

@(m, ni,...,nz, f(a), f(a+l)). Thus, observing that

. . . 1
the truth of [A]P£+l at Ug implies that f£(0) B

we conclude that 3J£(£(0) 1 A Vx ayl,...,y£ w(m,yl...

,yk'f(x), f(x+1))) 1is true. o

Corollary 4.3: The validity problem for PDLK is
Hi—hard. o

It is a standard exercise to verify that the pro-

blem is in Hl

10 (For some details of such an exercise

see Proposition 4.3 of [HPS].) We thus obtain

Theorem 4.4: The validity problem for PDLK is

Hi-complete. o

It is possible to push this proof technique

further. One can simplify the programs of the form

A A . .
a (B)Y" used in the above proof by suitably refining
and complicating the block models constructed and the

. m
corresponding formula reduce .

0 We breifly indicate

how this can be done.

In general o,B and y in programs of the form

A A . X m
a (B)y appearing in reducew are not atomic. Al-

though a is always the atomic A, B8

is invariably

of the form Q?;A*;X, X

where is either a test or

B, and Y, when not atomic, expresses execution of

a maximal block of A;~€i? . These two complex forms

of B and ¥y can be simplified as follows. For

each i define the new atomic formula Vi to hold

precisely at the first n, distances which are multi-
ples of ni—l In this way, if ni-nj =n, and
i < 3j, V. will hold at distance n -n,, and S,

J k 1 ]
will hold (as will Pk) at distance n . This con-

struction makes possible the replacement of the ap-

propriate part of simulate Cex.=x by
i 7§ "k
A A L.
[A7(P,?2;A%;P_?2;A*;V.?2)A ]1(S, D P ) . A similar re-
i 3 3 b k

placement is possible in the second conjunct under

[block*]

An additional formula, Vi-behaves, forcing Vi

to behave as described above, can be constructed

using only atomic o and Yy .

As far as making B atomic is concerned, one

introduces, for each i, a new atomic formula Qi

holding at distance [ni/ZJ . With the aid of Qi

(easily forced to behave properly with an additional
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A
formula Qi—behaves), one replaces, e.g. [A (Pi?;A*;Pj

A . A A op o.pb
A ]pk with [A*,Pi?,A (Qk?)A ]Pj or [A P ?iA (Qk?)

AA;A]Pj , depending upon the (easily tested) parity

of nk .
A similar device, involving a new atomic formula

Q, true halfway through each block, can be used in

conjunction with a clause which "copies" n of

2+1

each block at the end of the previous block with, say,

R, to reduce [AA(PR+2?; A*; B)AA]P to the form

2+1

A A
; ; ?) A JR .
[a*; P 0?7 A (Q?) ]

These observations can be formalized to yield:

proposition 4.5: If K' is the set of programs of

K in which aA(B)YA is allowed only in the form

AA(X)AA, where X is either B or some atomic test

s 1
p?, then the validity problem for PDLK, is Hl—com—

plete.
As remarked in the introduction, this result is

actually true if X is always B. See [HPS].

Finally, we should remark that the nondeterminism

A
present in the a* and aA(B)Y constructs of K

is not essential for obtaining the results. The read-

* and A con-

er will notice that all uses of the
structs involve tests (or an application of B) to de-

termine the number of iterations. It is possible to

formalize this observation to yield:

If K' is the set of programs of

Proggsition 46 :

K is allowed only in the deterministic

in which *

and A only in the deterministic

form (P?;a)*;~P?

form (NP?;a)A(P?;B)YA , then the validity problem

l—complete.

is Hl

for PDLK,

We close by remarking that the possible nondeter-
minism of the atomic programs A and B is of no

help in the proofs, and appropriate versions of

Theorem 4.1 and Propositions 4.1 and 4.2 where atomic
programs are deterministic, trivially follow from the

proofs of the original versions.
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Note added in proof: Recently T. Olshansky and the

second author have been able to show that

PDLRG+{AABA} is decidable.
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