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Abstract: The borderline between decidable and un-

-decidable Propositional Dynamic Logic (POL) is sought

when iterative proqrams represented by regular ex-

pressions are augmented with increasingly more oom-

p1ex l;ecursive programs represented bycontext.;.free

languaqes. -'fhe results in this paper and its cam-

panion. {HPS] indicate that this lio,e is extremely

--close -to the -original regular Pi>L.

The main resJlt -of the present paper is:: The-

validity problem for PDL with -addit:i-Qnalproqrams

fJ,l1 tS11'A for regular a 18 and y, defined as

i Q i ~ nl -
~ a;-~ ; y ~ J.S I-complete. One -of the results of

, .. 6 . - f:J
{MPS) shows that the sinqle program. A lB) A for

1. Introduction

Propositional DynatnicLoqic, henceforth PDL, is a

formalloqic for reasoning on a propositional level

about proqrams .PDL was -de-fined by Fischer and Ladner

{FL) I based upon work o,f Practt {Prl], as a dir~ct ex-

tension of the pr-opositional -calculus ~ in whiCh as-ser-

tions -eoncerninq the in/out (i.e • ., before/af.tar) be-

Mvlor of prQ9rams can be _made.

Giv~n an alphabet 1: of atomic programs and tests,

the class of proqrams allowed in formulas of, PDL .is

tak~ to be the set RG of regular expression-s over E.

The justifi-cation of this choice is rooted in the

well~kn·own correspondence between iterati.eproqrams

,atomic A and B i'8.actually sufficient for obtain- over E" as modelled, say, by flowcharts -I and regular

ilig .~ - completeness. However., the proofs of this sets of strings overE. See, -e.g. tdBM:]. The set of

paper use different techniques which seem t-o be worth- strings defined· by a program aERG is thought of as the

while in their <>Wn right.. set of possible computation sequences constituting Q.

In the sequel this fixed version of POL is den0 tea by

PDLRG•

In [FL] it waS shown that the validity problem for

PDLRG is decidable. In fact" it is decidable in de­

terministic exponential ·time (Pr2] $ and to within a

-I

polynomial this upper -bound is the best possible {FL].

Consider the setCF of context-free grammars over

*
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E. There is an analogous correspondence (see [-dBM})

between recurs'i:-ve programs over I: and conu:xt-free

sets of strings ovex- Z, justifying the study' of PDLcr-



Unfortunately, the equivalence and inclusion problems so that cannot be shown undecidable by Ladner 4 s

observation.for context-free grammars, which are undecidable, can

easily be reduced to the validity problem for PDL
CF

,

rendering the latter undecidable too. This' was

pointed out in 1977 by R.Ladner ..

One question arising here concerns the -degree-of

undecidability 6f POL
CF

. Since the equivalence prob-

lem for CF is co-r~e., the aforementioned observation

cann.ot be used to show that PDL
CF

is any ha~der~han

We also show that POLK lacks the fi­

nite model property, so that it cannot be shown decid-

able by the finite model method of {FL].

In Section 3-we use a reduction of the Post cor-

respondence problem t-o show the undecidability of

POLK· This result, although subsumed by the main re­

sult of the paper~ is presented by virtue of' its ·rela-

tive simpii-city.

,However ,of even greater int~rest is the problem In Section 4 we prove that PO~ is 1
TIl-complete

of locating the precise point betwe~n RG and CF at

whichPDL becomes undecidable. This que'stion gains

by reducing to it the truth of' formulas of the fO-rnl

Vf3xp, where P 1S a diophantine relation. That

some momentum upon observing that there are interest- these formulas are universal {see (Rl)foll-ows

ing classes of context-free granmars for. which in-

elusion and equivalence are-known to be decidable.,

and' others fur which some of these" and sLriilar .prob-

lems, areop·en. See, -e.g., [H,L,Y,GFl.. In many of

from Mati)asevic's Theorem fMl. -We also show how t-o

improve this proof method -obtaining a stronger version

of the result. Our strongest version of this result,

namely, that POL with the additional s'ingle program

these cases, the r-estr.ictions which admit a context-- is 1TIL-complete, is proved in {BPS] using a

freegrammer into the class in question correspond differ~nt t.echni~ue consisting of encoding -certain'

to reasonable synta-eticrestrictionson fhecorres- Turing-machine computations.

poinding recurs~i-ve proqram. In [HPS] several results concerning oth-er nonregular

In this paper and its companion {HPsf it is shown programs-l' notably programs over one-letter alphabet.s,·

that the borderline»etween decidable and undecidable are also presented.

PDL is extremely close to RG, and, fUr'tbermore.,that

the transition-is most striking: from di!cidable in

1 __ _ .
expOnential time for PDL

RG
to IT

l
~ complet:eness for

These results constitute- a full answer to the fir'st

question posed, and a partial answer to the se·cond..

most of our extensions • First, since PDL
CF

is easily seen, to be in 1
n1#our

specifically, the general class K of programs results e-stablish its Second, the

which we consider contains RG and all programs

of the forln c/};(8)yLi for (llB,y € RG. The' new pt'o-

gram is defined to contain all computations ot

o.i;Siyi " for all i>, O.

re~h.ilts show that some extremely conservative additions

to' RG result in- a highly undecidable PDL, to be con-

trasted with exponent·ial time decidability in their ab-

sence. A comprehensivecharaeterization Of the classes

of programs: for which PDL, is decidable remains an' in....

In Section 2· we define PDL
K

. and show tha.t the~ in- triguing topic for future researcfi. In particular,

elusion and eqUivalence problems' for K are decida,ble it is open at the time 0:6 writing as to Whetbe'r there
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is any nonregular program whose addition to RG does Given a structure 5, the satisfiability relation is

not destroy the decidability of POL. (See note at end defined for all formulas of as follows:

of paper.)
1) u 1= P iff u€n(P), for p€~,

2. Definitions and Preliminary Observations 2) u 1= -p iff not UP p,

Let n be a set of atomic programs, with eErr , 3) u ~ P v q iff either u ~ p or u p q

(the empty program), and let t be a set of atomic

propositions.

4) u 1= <a>p iff 3x€L(a). 3v€w. (u,v)€ p(x)

and v F P.

Let I = n U {P?lp E t} u {~?Ip € t}. Let PROG
Although we allow only atomic tests and their ne-

be a given set of expressions, called programs, each

associated with some subset of I*. For a€PROG this

gations in PDLpROG ' since our results are all ne­

gative, th~y hold also for the more general case of

when thesubset is denoted LpROG(a), ·or just L(a)

context is clear. Throughout we assume L(e) = ~ •

tests p1 for any formula pEPDLpROG•

Let RG be the set of regular expressions over

We use true, false, /\,:::> and - as abbreviations in

to [alp •

(L(a) ) *L(a*)

the above restriction on tests.

it is satisfiable if ~ is not valid. Hence p is

I. The reader can easily check.that POL
RG

coin­

cides with POL, as defined, say, in [FL), with

A formula p€ PDLpROG is valid, denoted ~p , if

for every structure S and for every u€wS , ul=Pi

In particular, since

with aO = A and a i +l

.up<a> *p iff 3i, u t=<ai>p

are defined as follows:

t ~PDLpROG'

if p,q,€PDLpROG then ~,pVq€PD~ROG'

if p€PDLpROG and aEPROG then <a>p€PDLpROG •3)

the standard way. In addition, we abbreviate ~a>-p

2)

A structure (or model) is a triple

The formulas of the propositional dynamic logic of

1)

PROG, denoted PDLpROG '

We extend p to words over L as follows:

program in TI. Most often we will omit the super-

script of the cQmponents of S.

binary relation on W as the meaning of each atomic
The inclusion (respectively, equivalence) problem

S and state

u€W
S

such that ul=p. The latter is sometimes writ-

ten S, u t= p •

for PROG is the problem of deciding, given a,B€PROG,

whether or not L(a) ~ L(B) (resp. L(a) = L(B».

The validity problem for .PDLpROG is the problem of

deciding, given P€PDLpROG ' whether or not ~p.

Fischer and Ladner [FL}.have shown that every satis-

fiable formula p of PDL
RG

is satisfied in a struc­

turein which the number of states is finite and expo-

nential in the size of p. This fact, termed the small

~property, is used in [FL} to show that the va-

pEt,

x,y €I*, (0 is the com­
position operator on bi­
nary relations)

( Ais the empty string),

1T s: ~ -+ 2
W

, and p s: n -+ 2WxW provides a

p(x) 0 p(y).

(W><W) - pep?),

where wS is a nonempty set, the elements of which

are called states, 1T
S is a.satisfiability relation

1) p (A)={(u,u)lu€w},

2) pep?) = {{u,u)lu€n{P)}

3) p (-1>1)

4) p (x,y)

on t, i.e.,
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lidity problem for PDLRG is decidable.
K = RG u {(aA<8) yA) I a ,8 , y E RG}.

When there is no ambiguity we will drop the additional

Let CFo (respectively~ CF) be the set of context,

free grammars over terminals n (respectively r) and

parentheses.

Sets of strings over r* are associated with programs

fJ _A . (!:l fJ.
We shall abbreviate «(I ca*) r) to, a y )

in K as follows:

1) rx<x) = {x}, for xEr - {e}, lx(e)

2) ~(aUB) =lx (a) U LK(B) ,

some fixed set of nonterminals. It is well known that

the equivalence (and hence also the inclusion) pro-

blem for CF0 is undecidable [BPS). This fact can

be used to show that the validity problem for, PDL
CF

'
o

and hence also for PDLCF ' is undecidable.

Proposition 2 .1 (due-toR. Ladner): For any a,8 E CF0'

pE~, 1=«a>P:;:) <B>P} iff L(a) =L(S).

3)

4)

5)

~ .

Ix (aiB) =lx(-a)·~(a) = {xylxELK(a) , yE!x(B)},

i
~(a*) = '(~(a» * = UIx(a ),

1)0

~ ~ i,_ Q I. 'iLK(a (a) y ,= U L
X

( a p y ) •
i~-o

Proof: (if) Immediate from-the definition of <a>P.

(only if) Let xEL(a), where x = Ai-' ••• '~' and

the Ai are (not necessarily distinct) elements of IT.

proposition 2.3: The inclusion and equivalence pro-

blems for K are decidable.

Define the structure sx Idea of proof: Each aEK can be written as a grammar

n(P) = f,\}" and such that for any A E il,

(u. , u.J E p fA) iff j = 1+1 and A = Al..•
l. J

Sx is illustrated In Fig.l. Clearly Sx' ~o t=<a>P

and hence by assumption also Sx' uo l=<8>P. But this

{L). The result then follows from [Ll. We omit the

in CFwhich is simple-deterministic stack uniform

It follows that POLK cannot be shown to be un­

decidable by proposition 2.1. We prove now that it

Ddetails.

oimplies that xE 'L('B) .

cannot be shown decidable by the Fischer-Ladner method,

since it lacks the small model property.

be the following formula of POLK:

Let force

[(AUB)*; B;A) false

[Al1
BfJ. i -B] !!!!!. .

(P A [A*l <A;B*> p)

fJ. 6
A [A*i A; A B )-P

p

-Ak

FiQure1

- ':J...

Uo t:, U2 U3
~~_""-4r••.--_--:~

Al A.2 /4.3

Corollary 2.2: The validity problems for PDLCF and
o Proposition 2.4: Force is satisfiable but has no fi-

PDLCF are undecidable. nite model.

We now define our set of programs K. It will be- Let So be the structure illustrated in Fig.

come clear that RG <K < CF, ,where PRQGl < P·ROG2 2, in which the only states satisfying P are those

when.~ver {L
pROGl

(a) -Ia€ PROG1} i {I;,ROG2(a> la€ PROG21'. marked ... It is easy to see that S, u 1= force •
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1 ~ i. t; n
J

then

x. , ... ,x.
J.1 ~k

w

It is easy to relate the classical

to our slightly modified version.

Note that if

is a sequence

R R
y. , ..• ,y.

J.1 ~k

R
W = y. , •.• ,y.

l.k ~l

formulation of PCP

for 1 ~ j 'k, such that, denoting the reverse of a

word x E {a,b}* by x
R

, we have

~to H

Specifically, let H = {(xl,Yl ) , •.• ,(Xn'Yn)} be a

PCP, where xi'Yi E {a,b}*, for 1 ~ i ,n. A solu-

A

B

:8
(

3

A

, ".y~...
B

{

ls
1s

A
\::l

Figure 2

Assume now that S, u·~ force where

IwSt < ~, u ~ wS .. S can be thou9h~ of as a finite

di~ected graph with atomic programs labeling edges and

We shall construct a formula reduceu-€ PDI.x such

that reduc~1 is satisfiable iff H has a sOlution.

Le-t H be_ given. The farmu-la reducen involves

sets
- of a-t ....~ 't' lab l' the two atomic programs A and B and atoml.'c pro-
- OII1"C proposl. ~ons e J.ng nodes. An -(A,B)-

path is one in which each edge is labelled A or B. positions P,Q'I1., ••• ,.Rn • The letters a and b will

be encoded as the programs Ai-Q? .and A:Q-?, respec­

tively, or similarly.with B replacing A,. so that

Associating paths in S with the sequences of labels

along their edges, Let U ~ {A,a}· be the set of

words labelling (A~B)-paths connecting u with states
words over {a,b}· can be identified with sequences

satisfying P. Since s is finite, this is exactly
of truth values of Q along paths of A's or

the definition of a set of words recogni~ed by a fi-

nite transition graph, hence u is reqular. On the

Rl' ••• '~ will be used to encode indices between 1

and n. (Actually, log n atomic propositions suffice

other hand, the second conjunct ot force eliminates
here.)

from U paths which contain B followed by A, for-

cing U to be contained in A*B*,. Moreover, the

The idea is to-force models of reduce to con­
---H

tain a biock of A's followed by a block of B's of

third and fourth conjuncts force u to be a subset of
equal lenqth, encodinq, respectively, w and R

w

Finally, the first conjunct of~
for some word w € {a,b}*, and such that w consists

states that for each i ~ 0, A_iBi -' ,1.S 1.n u. of a sequence of words from among the x's R, w of

c.

Hence U = {AiBi t i ~ o} 1 and 'so can-not be regular,

contradicting toe ~ssumed finitene'ss'of s~

a seq.uence of the same length of-words from among the

y's, and such that indices of words in both blocks

correspond.

3. PD~is Undecidable Fareach 1 ~ i ~ n define R(i) to be the pro-

In this section- we'reduce the solvability of Post

CorrespOndence Probletns (PCP's)to the satisfiability

gram -R
1

?; rvR2?; ••• ;~n? with NRi ? 'replaced by

R
i

? For any Z € {a,b}* define the program CA{z)

in fact r.e~ ~o is the latter? rendering the dual v~li-
cA{a) = A;Q? CA(b)

A A A
C(Zl Z2) c (Zl)C (Z2)dity. problem

Since the former is undecidable- i:nduct-ively .as follows:
, - ,
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is defined in the same way with B replacing other words Ix. , .•. ,x. 1= Iy. , ••• ,y. I. By
J. l J.k J

k
J l

A throughout.
indices-correspond considered along path p, we have

i~ = j~. Finally, by same-word considered along p
Define

Now, let

Lx

L
Y

reduce
H

U (R(i) ;cA(x.»

l~i~n J.

U (CB (y . ) ; R ( i) )

l~i,n J.

be the conjunction of the following

we conclude that

R Ry. , ... ,y. •
~l J.k

x. , ••. ,x. = (y. , ••• -Iy. )R =
J.1 J.k ~k ~l

formulas:

exist-path: -P A <L 8L ~>p
- x y

indices-correspond: [Lx* ;R(i) ?;L
x

6L/,l R(i) ,

same-length: [A8
B

8
JP A [A*iA;A~B8]-p

1\ [(AUB) *; P?; (AUB)] false ,

8 8
~word: [A*;AiQ?; A B iB1Q A

6 8
[A*iAi-Q?: A B iBl-Q .

has a solution iff reduce is satisfiable.
---H

proo~: (if) Assume S, u F ~eH. By exist-path

there is a nonempty path p in S, starting at

(only if) Let (il, .•• ,i
k

) be a solution to H.

Construct the structure S of Fig.3, where the words

x. and y. are encoded using Q as described above.
~R. ~R.

The reader can easily verify that S, u ~ reduce
H

. a

Corollary 3.1: The validity problem for PDL
K

is

undecidable.

4. PDLK~~-comPlete.

In this section we reduce to PDL
K

the truth of

formulas F(m) of the form Vf(f(O}=l::> 3xP} where

P(m,f{x) ,f(x+l» is a diophantine relation involving

m and the two values of f, f(x) and f(x+l).
u, which encodes in order the words x.- , .•• ,x.

~l J.k

for some k > 0 and some il~···,ik' usin.9 A,

It can be shown using Matijasevic's Theorem [M,DMR!,

natural numbers there is such a formula
followed by Y. , ••• ,y.

Jk J 1
for some jl,·~·,jk' en-

that associated with each 1
ill-complete set X of

with

coded using B. Furthermore, by same-length we know

(respectively, in the order of its conjuncts) that

mEX iff Fx(m) is true. Moreover, the equation P

can be transformed into a conjunction. tp of equal-

P holds at the end of no path AiBj

any path of the form A
6

B
8

that

ends with P holding,

with

ities of the form

where the tIs are from among m ,f(x) ,f(x+l) and

j < i, and that P holds at most once'along any

{A,B} path. Consequently, p consists precisely of

two blocks o~ A I S and HiS of equal lengths. 'In

p

new variables Yl' ••• /Y~ which are existentialy quan-

tified, i.e. P = 3y~. Here R. depends on the equa-

tion P.

p

......~ .•-"-.-._>-~-s-..:-~>-~
l\ f\ .~

L__.__· .1'--_---1

Xii Xi2

_ ••:>--r~~"J't~ __:>->
1.\ A~B 8

L---_....Jl------'

Al k Yik

~t--~.f~>-~~

o B 8
l ... .. _.-lL--J

Yi2 Yi I
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is true.

First we show how to simulate the conjunc~ion

A ~
/\{AiA (P. ?iA*iP.?) «A;-6

J
.1)* ; AiS).?) ] P

k1 J

A [A;A~(P j? ;A*;Pi ?)«A;-5
i

?) *; A;Si?} Al P
k

•

simulate ~ *?) AIJ.] -lk. x.+x.=x. = {A (P1·1i A i P
J
. -

.1. J K

~ ~
A [A (p j ? ; A"; Pi1) A ] lk '

simulate
xi·Xj=~

Lemma 4.1: For any n = (no' ••• ,nf,+2)' S, u
o

1= sim­

ulate for some nice structure S for n., iff <p(~)---q>

Con-

will denote a con-In the sequel <P(xo , ••• ,x
1
+2}

junction-of such equalities over

sequently, in order to show that the vali~ity problem

for PDL
K

is n~-hard, or equivalently that the~atis­

fiabilityproblem is I~-hard, it 'suffices to find,

for each such q> a formula reduce: of PDlx' ef­

fectively dependinq on m, which is satisfiable iff

3£(£(0) = 1 1\ Vx3Yl, ••• ,3Yt\p(m'Yl' ••• 'Yl,f(x).,f(x+l»

) by a PD~.. - formula on particularlytP(xo '·· .'XR.+2 A

well behaved structures.

Let ; = (no , ••• ,nR,+2) be an arbitrary tuple of

natural nunt>ers. A nice structure -for n is an.y

tains an initial segment of the natural numbers

large .enough to contain all squares of the n i • Pj

or

n. = 1.
1

can ·be seen to state

For the -case Xi = I, we

U € 1I'(P1.)' which in turn, implies
I

have S-, Uo p(A1Pi ' which implies S, ull:: Pi.l

and x. = 0 ar-atrivial.
3.

is true.

proof: ~only if) Let S be nice for n, and let

S, uol= simulate
iP

• We show that <p(n) is true by

induction on the structure of -<p-. The cases <p-.A (I)'

For the case where (I) is of -the form Xi + x
j

= x
k

'

the formula Simulatex.+x.=~_
1. J - K

tha·t when n., n. {i. e. "- P. becomes true before P
J
.

1. J 1

when traversing the u branch of the structure S

con-

{U , •••"ll} c:w,o p-
·such that

(termed' the A -~ of ,S from U0 in [MSMj)s

and u.€ n(S.) iff i = a·n. for some a ~ o. More-
1 J J

2 d th "A-part"over, p ~- maxi (n l ) · In other wor -s,· e

of

structure S = (W, 11', p)

Givenq>, define the formula simulatecp inductively

on the structure of <pas follows:

from the start,

multiples of n
j

simulate<PHP'

In

n. +{n .-n. ) +n .=n. ,
.1 J1 1 X

n. ~ n., ft i + (n
1
·-n

J
.) + n

J
. = n

k
•

J 3. J

ni + n j =~. Fig. 4 iliustrates thiseither case

case.

and that when

starting from .uo)wehave in. fact

For the case where <p is of the 'form Xi ·Xj.~'"

the formula simulate states that if one of
xi·Xj=~

n.
J

= simulatecp ./\ simulate~, ,

, and S. encodes 'similarly alluo ' J

which fall within the segment.

by being true precisely at distancen.
J

encodes

simulatex.=l
1 (Al Pi

'*

p.
L

.,--.... -- - .....
/'-- ... - ....,3// ....,,7/... ---- .....,.l',)

/' ~~' ,- ~ .~ ~Q L' g;.8 ;'"'" _~
t-·

l' ~"
uo
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n. or n.
1 J

is o then so is nk , and if o < n. ~ n.
1 J Each block looks basically like a nice structure for

if

some n = (no , ••• n1+2); i.e., it consists of a large

enough finite path of executions of atomic program

and their multiples are en-n.
1

upon which theA,Fig. 5

and

In either case

o < n. , n.
J 1

(n.-I)·n. = nk •
J 1

illustrates this case. The structure has to be long coded with the aid of the Pi and Si as above.

enough to encode all multiples of the n.
1

so that Furthermore, p
o encodes m on each block; and

the clauses for + and • should not be vacuously t~ue. P1+l and P1+2 are forced to encode the values of

Figure 5.

(if) If ~(n) is true, construct the nice struc- f(a) and f(a+l) for some function f, where the

block considered is the a'th· from the start, beg:ln-ture s- for n simply by replacing both C by
n

i.n the definition of nice structures. There is ning with a=O. Finally, simulate is asserted to
----- q>

now only one linear A-path in the structure. By hold at the beginning state of each block.

induction on the structure of ~ one shows that Define the program block in RG as follows:

where the union is taken over all permutations

(io , ••. ,i1+2) of {O,l, •.• ,1+2}. For each 1, i ~ t+2,

define the formulas P.-behaves and S.-behaves
1 1

as follows, where A+ abbreviates A*iA:

block: U (A* i Pi ?; A*; P. ? i ••• ; P . ? i A,* iB) ,
-----(i

o
, ... ,i

1
+

2
) 0 1 1 1 1+2

If

We argue the case xi + xj

is true in u since it states that
o

n i + n j = nk

then the first conjunct of· simu-

and leave the rest to the reader.

and n. < n.
1 J

late
-- xi+xj=xk

ni + (nj-ni ) + ni = nk • The second conjunct is va-

cuously true by virtue of the structure containing

no path upon which P.
J

becomes true no earlier than Pi-behaves·

P.
~

Similarly, if n. < n.
J 1

then the first conjunct S.-behaves
1. ------

both conjuncts state that

is vacuously true and the second follows from ni+nj=nk •
AliISil A ([A+; Si?; A+I~i A IAl'l(""5 i ?; A*; Si?IAl'l]""5

i
l

Finally, if

n. + n.
1 1

o Pi-behaves prevents P.
1.

from holding more than once

start and the single state on some A-path which

satisfies Pi' then Si-behaves forces Si (respec-.

tively by its conj~cts in order) to hold at the start,

to hold at all reachable distances a·n
i

for a > 1,

We now turn. to the construction of reducem • The
--. q>

idea is to force models of reducem to contain an
---~

infinite (possibly cyclic) sequence of blocks s.epa-

rated by a single execution of atomic program B.

on any A-path. If n. is the distance between the
1.
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and to hold at no reachable distances a·ni+b, for at precisely one point on each block BLa , and thus

a > 0, o < b < n ...
.~

That is, S.-behaves forces
1.

s.
1.

encodes a distance an.
1.

from the beginning of the

to encode reachable multiples of n .•
-1.

that block. On eacb block BL we choosea

exist for x = a by the trutho£ Vx3~. Further-

o
more, n1+1 = 1, thus capturing fto) = l. On each_

a a
01+1 = f{a), n1+2 = f(a+l), and for 1 ~ i ~ t the

Y
i

-guaranteed towill be the value ofan.
1.

value of

i=a

The formula redu-eem is nowedefined to be:
--<I)

{A] Pl+1 A [block"] {<block>~

1+2
1\ A

bl.ock S i will hold at. precisely all -distances

the block. It is now easy to se~ that-all but the

1+2
A A

i=o
-(p . -behaves

1.
5 i-behaves)

which are multiples of n~ and which·are_still within
1.

simulateq>' •

In-
Lemma 4..2: For anym,reducel,p i-s satisfiable iff

simulateq> conjuncts appearing in the deflniti-on of

m
reduceqlare true· in the state _uo of S. In par-

ticular, [All (P.2.+2?; A*; Bll'l P.2.+1 holds at the be­

aa+l
ginninq 'o-f ea-ch blodtby' -virtue of nR..... l = n

1
+2 =f{a+l)

holding. S~e Fig. 7• Also# the ~econd conjunct in

the formula
the parentheses preven·ts a block from ending be-fore-

2
n.

i
Now, ~ince s.imulateq> contains -no .r-eference to

f{x+l) is true.

~: (if) Let f bea functi-onsati-s£ying

B-,andsi-ooeany A"'"'block in S .-can beo·regarded as a

_ .. .. - . a .a
nice structure forn = (n.o'- .-.,nR;+2" it folloWs

from-t:he (if) direction of Lemma 4.1 ·that simulate- .q>

in Fig. 6 1:f ¥Ie number the bloc~s of A's BLo '

BLI #··· each Pi' 0 ~i , 1+2# is taken too hold

£(0) = 1 " VX3Y\p. construct -the model -So illustrated also holds at the start· -state of any such block.

Hence S # U t= -reducem
o .~

x= 1.
Uo U1 U2

~--._---~--_. -:;.{ .. :. J-··_·,··------,;~··'-~~l--"",,: ~------~--:-~.;.--
A~1 B I\'~ B l\i'I

U:t
L..,.1
1 '-oJ

:3

x=3
U4

J It
--...·--~··f·-::; d'--":>

A::'I 0

e

x~o

f>
l-t2 B p

1-:·.

f • f'I ~.. ~. l: -_.--:-:,. _. •.•

E)

Figure 7.



(only if) Let S ~ reduce
m

.,uo --- <.P By [block*] see Proposition 4.3 of [HPS].) We thus obtain

<block> true there is an infinite (possibly cyclic)

path p in S of the form A*BA*B ... , and each

is true at least once on any maximal A-block of

P.
1

p.

Theorem 4.4-:

1
TIl-complete.

The validity problem for

c

PDlx is

Furthermore, the next clause forces each such block to
It is possible to push this proof technique

be at least as long as is required from a nice struc-

ture for the appropriate n . Let u denote the
a

further. One can simplify the programs of the form

a~(8)Y~ used in the above proof by suitably refining

start state of the a'th block of A's on the path p.
and complicating the block models constructed and the

states u, P. cannot be true more than once in any
a 1

See Fig. 6. By virtue of P.-behaves
1

holding at all corresponding formula

how this can be done.

reduce
m

--<.P We breifly indicate

block, thus we can denote by a
n.

1.
the distance between

In general 0.,8 and y in programs of the form

Al-appearing in reduce
m

are not atomic.
--tp

on the a'thP.
1

and the unique state satisfyingu
a

block of p. By virtue of [Am]Po being true at each though a is always the atomic A, 8 is invariably

and are guaranteed by the previous remark

The reader can also verify that

holds precisely ,at all multiples of
and

For

to holdV.
1

These two complex forms

distances which are multi-n.
l.

Ail'V$.? •
1

n.-l .
1

define the new atomic formulai

B, and y, when not atomic, expresses execution of

each

a maximal block of

of 8 and y can be simplified as follows.

precisely at the first

pIes of

of the form Q?;A*;X, where X is either a test or
a+l

n£+l
a

n£+l

n~ within
1

f(a)

guarantees that

withf

for all a, and by

a
we know that n£+2

m

S.-behaves at each u
1. a

a
n£+2 = f(a+l) .

We now define the function

that

a
ua we know that no

/1 /1
[A (P£+2?; A*; B)A ]P£+l

the truth of

S.
1

for all a,

- a a
can be regarded as a nice model for n = (m, nl,···,nt , will hold (as will P

k
) at distance n

k
.

the a'th block of A's on p. Thus each such block i ~ j, V. will hold at distance nk-ni ,
J

and S.
J

This con-

f(a), f(a+l» . struction makes possible the replacement of the ap-

By the (only if) direction of Lemma 4.1, the truth

of simulate at each u guarantees the truth of
----<.P a

a a f() f(a+l» Thus, observing that<'p(m, n l , ... ,n£, a, .

propriate part of simulate . _ by
xi xj-xk

[A/1 (P . ? ; A* i P . ? i A* ; V. ? ) Ali] (S. ::> P
k

) . A similar re-
l. J J J

placement is possible in the second conjunct under

we conclude that 3f(f(0) = 1 A Vx 3Yl'···'Yt ~(m'Yl··.

is true.
to behave as described above, can be constructed

the truth of '[A]P t +
1

'Yt,f(x), f(x+l»)

at uo
implies that

c

f (0) = 1,
[block*] .

An additional formula, V.-behaves, forcing V.
1 1

using only atomic a and y.

o
introduces, for each i, a new atomic formula Qi

Corollary 4.3:

I
TIl-hard.

The validity problem for PDLK is
As far as making atomic is concerned, one

It is a standard exercise to verify that the pro- holding at distance In.12J ·
1

with the aid of Qi

blem is in (For some details of such an exercise (easily forced to behave properly with an additional
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!:J.formula Qi-behaves), one replaces, e.g. [A (Pi?;A*;P j We close by remarking that the possible nondeter-

~ !:J. ~ ~A ]P
k

with [A*;Pi?;A (Qk?)A ]P
j

or [A*;Pi?;A (Qk?) minism of the atomic programs A and B is of no

A~;A]P. , depending upon the (easily tested) parity help in the proofs, and appropriate versions of
J

of ~. Theorem 4.1 and Propositions 4.1 and 4.2 where atomic

A similar device, involving a new atomic formula programs are deterministic 1 trivially follow from the

Q, true halfway through each block, can be used in proofs of the original versions.

conjunction with a clause which "copies" nR,+l of

each block at the end of the previous block with, say,

R, to reduce
~ ~

[A (PR,+2?; A*; B)A ]PR,+l to the form

[A*; P ?; A~(Q?) A~]R .
R,+2

These observations can be formalized to yield:

proposition 4.5: If K' is the set of programs of

K in which a~(8)Y~ is allowed only in the form
Acknowledgments:

A~(X)A~, where X is either B or some atomic test We are grateful to A. Yehudai for his help concern-

P?, then the validity problem for POLK' is Ill-com­
1

ing the formal-languages part of the paper; namely,

plete.
Proposition 2.3 and references [L,Y,GF]. Y. Feldman

As remarked in the introduction, this result is pointed out an error in a previous version of Section

actually true if X is always B. See [HPS]. 4.

Finally, we should remark that the nondeterminism

present in the a* and a!:J.(8)Y~ constructs of K

is not essential for obtaining the results. The read-

er will notice that all uses of the * and !:J. con-

structs involve tests (or an application of B) to de-

termine the number of iterations. It is possible to
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Note added in proof: Recently T. Olshansky and the

second author have been able to show that

PDLRG+{A8B8 } is decidable. This result will appear

elsewhere.
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