
Theoretical Computer Science 12 (1980) 61-81 
@ North-Holland Publishing Company 

PROVING THE CORRECTNESS OF REGULA 
DETERMINISTIC PROGRAMS: A UNIFYING S 
USING DYNAMIC LOGIC 

David HAREL* 
IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, U.S.A. 

Communicated by Z. Manna 
Received June 1978 
Revised February 1979 

Abstract. The simple set WL of deterministic while programs is defined iand a number of known 
methods for proving the correctness of these programs are surveyed. Emphasis is placed on the 
tradeoff existing between data-directed and syntax-directed methods, and on providing, especially 
for the latter, a uniform description enabling comparison and assessment. Among the works 
considered are the Floyd/Hoare invariant assertion method for partial correctness, Floyd’s 
well-founded sets method for termination, Dijkstra’s notion of weakest precondition, the 
Burstall/Manna and Waldinger intermittent assertion method and more. Also, a brief comparison 
is carried out between three logics of programs: dynamic logic, algorithmic logic and programming 
logic. 

1. Introduction 

In this paper we provide a uniform description of some of the central works in 
proving the correctness of programs. The tas!k becomes manageable by adopting an 
ultra-simple programming language, namely, that of deterministic whik programs. 
In this way, problems appearing.in the presence of recursive, nondeterministic or 
concurrent programs are avoided (cf. [5, 15, 22, 24,441). 

A central, but somewhat hidden issue in the literature on program proving is the 
dichotomy of data-directed versus syntax-directed methods of proof. !;I the majorit) 
of cases, a proof of correctness which employs some sort c)f reasoning (say induction) 
directly on the data manipulated by the program is quite natural and in some cases 
reasonably easy to come by. The generic name used for many of these methods is 
structural induction. There are, however, many advantages in tying up the reasoning 
to the syntax of the program, even though the proofs are sometimes quite unnatural 

* Part of this work was done while the author was with the Laboratory for Computer Science at the 
Massachusetts Institute of Technology, and was supported by NSF grants MCS76-18461 and MCS77- 
19754. Author’s address from August 1980: Department of Applied Mailtt=matics, The Weizmann 
Institute, Rehovot, Israel. 

61 



62 D. Hare1 

and difficult to find. The reasons for preferring the latter are not unlike those given by 
the proponents of structured programmin,; a small number of constructs to deal 
with, rigor and preciseness in description, discipline in style, program and proof 
developed simultaneously etc. To these we might add that syntax-directed methods 
lend themselves in a straightforward manner to investigations in meta-theory, such 
as soundness and completeness, comparative power of expression etc. Compu- 
ta&zaZ induction is sometimes used as a name for these methods, since the structure 
of the computation is invariably tied up with the structure of the program. 

As it turns out, it is sometimes possible to describe a syntax-directed method as 
a specialized version of a data-dircited one obtained by some restrictions, includ- 
ing the adoption of a simple, structwczd programming language. Consequently, 
most of the methods we will be a%e to talk about in a reasonably precise 
manner will be either syntax-directed or syntax-directed versions of data- 
directed methods. However, the distinction between methods of these two kinds is 
often quite v.:gue. 

Considering the diversity in language, notation and rigor which one finds in the 
relevant literature we are forced into adlpting, besides a simple programming 
language, an equally simple language for describing the types of correctness consi- 
dered anl-,$ the proof methods themselves. We have chosen to use standard concepts 
from msrhematical logic such ds formula-. axiom and inference rule (see e.g. [40]), 
augmenzed with concepts frown the recently proposed logic of programs, dynamic 
logic 147.221. We hope that the ability to compare otherwise incomparable methods 
by tran$ating them into a uniform language will partly compensate for the fact that 
an author’s motivation and the naturalness and appeal of his particular presentation 
are occasionally lost when his method is quite violently Feduced to a mere rule of 
inference. This is particularly true in the data-directed methods, and to the authors to 
whom we do such violence, we apologize in advance. 

Our main thesis is that, for the simple programs we consider, the syntax-directed 
methods appearing in the literature fall into two main categories: those which use 
invariar-rce to prove the partial correctness of programs and those which use 
convergence to prove their total correctness. 

We certainly do not mention all published methods, nor do we exhaust all the ideas 
in those we do mention; the goal is to illustrate the way in which a formal framework 
for reasoning about programs can be put to good use in order to compare and 
evaluate proof methods originally expressed in a variety of other frameworks. The 
paper is aimed at the reader with some knowledge, both of mathematical logic and of 
program proving techniques, and is not on a description-by-example basis. Examples 
of proofs of programs using the m&hods we mention can be found e.g. in [16,22,30, 
37, 393. 

Section 2 contains preli;ninary notions and results, and Sections 3 and 4 treat 
partial and total correctness. Section 5, although short, is some:;,hat broader in 
character, comparing three hgics in which many properties of programs, besides 
correctness, can be expressed and proved. 



Correctness of regular detervtinistic programs 

2, Preliminaries 

63 

In this4 section, we define the 
WL and the reasoning language 
referred to in the sequel. 

we are given a set of function symbols and a set of predicate symbols, each symbol 
with a fixed nonnegative integer arity. We assume the inclusion of the special binary 
predicate symbol ‘ = ’ (equality) in the latter set. Predicate symbols are denoted by 

P9 4, l l - and k-ary function symbols for k>O byf,g,... . Zero-ary function symbols 
are denoted by z, X, y, . . . and are called variables. A term is some k-ary function 

syntax and semantics of the programming language 
RL, and state some properties of them which will be 

symbol followed by a k-tuple of terms, where we restrict ourselves to terms resulting 
from applying this formation rule finitely many times only. For a v-Gable X, we 
abbreviate x 
respectively. 

t ) to x, thus f(g(x), Y 
An atomic formula is 

) 
a 

is a term provided f and g are binary and unary 
k-ary predicate symbol follosred by a k-tuple of 

terms. 
The set L of first-order formulae is defined inductively in the standard way: an 

atomic formula is in L, and for any variable x and formulae p and Q of L, --I P, 3xP 
and (P v Q) are in k. The set of programs WL is defined as follows: 

(1) for ;ny variable x and term e, x f- e is in WL, 
(2) fcr any first-order formula S of L and for any (Y and p in WL, the following are 

programs in WL: 

b; PI9 if S the3 a else 6, while S do cy. 

When there is no chance.&f confusion, we will abbreviate the last two constructs 
simply to if and whi!e r&pectively. We use Vx, A, =, and = as abbreviations in the 
standard way. The copstruct x + e in ( 1) is called a (simple) assignment. The progralm 
constructs in (2) can be expressed as regular expressions over assignments and tests 
(see, e.g., [§, 47]), hence the adjective ‘regular’ in the title of this paper. 

The semantic; of a program in WL is based on the concept of a state. A 
state J consiQsics of a nonempty domain D and a mapping from the sets 
of function a;id predicate symbols to the sets of functions and predicates over D, 
such that tu a k-ary function symbol f (resp. predicate symbol p) there corre- 
sponds a,$otal k-ary function (resp. predicate) over D denoted by fr (resp. pr). In 
paatlcular, to a variable there corresponds an element of the domain and to a 0-ary 
predicate symbol (propositional letter) a truth value (true or faZse ). The 
star&rd equality predicate over D should always correspond to the equality 

iraL syl,tibol (=). 
We are interested in special sets of states, namely, the (simple) universes. A 

universe U is a set of states with a common domain, in which all function and 
predicate symbols have a fixed value, except possibly for a designated set of 
variables. These are to be uninterpreted in U. (See [22] for detailed definitions ) The 
variables which are fixed are called 

The vrlue of a term e = f(e1,. . . 

constants. 

‘I ek) in a state I is defined inductively 

el =fI(eh,. . . y ekd 



64 D. Hare1 

and the following standard clauses are adopted for defining the truth of fkst-order 
formulae: : 

II=p(el,. . . , ek) iff pr(elI, , . . , ekl) is true, 

IklP iff it is not the case that It= P, 

Il= 3xP iff J I= P for some state J differing from I 
at most in the value of a, 

IHPVQ). iff eitherIl=PorIi=Q. 

I I= P is read ‘P is true in I’, and we use I= uP to abbreviate ‘I I= P for all I E U’. Given 
a universe V, the meaning of a program cy E WL is the partial function M(cr) : U + U, 

defined inductively as follows: (Recall that if and while abbreviate ifs then a else p 
and while S do QI respectively.) 

M(x e e)(l) = J, where J is the state which differs from I at mcst in the 
value of X, and xJ = el 

M(a)(l), if Ik=S, 
M(if,cn=(M(p)(I). if II=+. 

Let M’(a)(l) stand for I and M”‘(a)(l) for M(a)(M’(a)(I)). Then, 

Mk(a)(I), if k 2 0 is such that Mk(a)(I) is defined, S is False in 

M( while)(l) = Mk(a)(I), but true in A&X)(I) for any j < k, 

Undefined, if no such k exists. 

‘Afe shall say that a program cy, when started in state I, terminates in state J if and only if 
M(a)(l) is defined and is equal to J. 

Our reasoning language RL is now defined as follows: 
(1) LcRL, 
(2) for any formula P E L, program ar E WL and formulae E and F in RL the 

following are formulae of RL: 
lE, E :‘F, (a )P* 

The last construct is read ‘diamond-a! P’. The truth of a formulae of RL in a state 1 is 
defined standardly, with the addition of the clause 

Ik(a)P iff M(a)(I) is defined and (M(a)(I)) b P. 

We abbreviate l(a)lP to [a]P (‘box-cu P’). Thus, one can see that given a universe 
U, t= u (R =[LY]Q) asserts that under the assumption R, if cy terminates, then it 
terminates in a state satisfying Q, and k u (R 2 (cu)Q) asserts that under the 
assumption IZ, (Y indeed terminates and does so in a state satisfyi’ng Q. Jn this paper, 
we will be mainly interested in formulae of RL of the forms (R 1 [IY]Q) and 



Correctness of regular deterministic programs 65 

(R 3 (ar)Q) for first-order R and Q, but have defined RL in order to provide a formal 
framework for stating axioms and rules of infez-eilce. 

Definition 1. Given a universe U, a program (Y E WL is said to be partially (respec- 
tively totally) correct with respect to first-order formulae R and Q if we have 
I= u (R 3 [cLjQ) (respectively I=&? 2 (ar)Q)). In both cases, R and Q are Jled the 
precondition and postcondition of Q! respectively. We say that cy terminates under 
condition R if a! is totally correct with respect to R and true. 

Manna [36] makes essentially first mention of the :’ :ct that total correctness is 
‘dual’ to partial correctness (i.e. that by [a ]P we mean -I{(Y) 1P) by expressing, in 
[36, Theorem 21, the formula R 3 (~y)c3 as l(R A [cull 0). 

RL is a sublanguage of the deterministic dynamic logic (DDL) of [22]. The 
following lemma summarizes some properties of RL, and proofs of the various parts 
of it can be found in [47,22]. In the following, for first-order Q, let Q”, stand for Q 
wifrh all free occurrences of the variable x replaced by the term e where no free 
variable in e becomes bounded by the replacement (otherwise rename bounded 
variables appropriately). 

Lemma 1. For any (Y, p E WL and first-order formulae Pand Q, the following are true 
in all states: 

(a) (a )P = b I& 
(b) ((u)P = ([a]P A (cu)true), 
Cc) (QI)(P~Q)~((cY)PI\(~)Q), 4 
(4 CdP A Q) = (MJ A MQh 
(e) (x +e)Q=QS, 
(f) (a, ; @)Q = (cu)P, where P = (@)Q, 
(g) (if)Q = ((S A WQ) v (7s A tP)Qh 

Lemma l(a) confirms that total correctness is stronger than partial correctness, 
and by Lemma l(b) total correctness can be seen to be equivalent to partial 
correctness plus, so to speak, termination. Lemma l(c) anti 1 (d) allow in effect 
splitting a proof of correctness into two parts by splitting the required postcondition. 

Central to this paper are the syntax-directed proof methods. These involve the 
idea of proving the partial or total correctness of a complex program by proving 
similar statements about the immediate components of that program (e.g. (Y and 0 in 
if S then cy else 8): and then combining these subresults to obtain the required one 
using some kind of rule. The rules are to be, in our case:, formally expressible in the 
language RL and when the program is simp y an assignment, i.e., has no program 
components, there should be a rule for composing an ‘initial’ correctness assertic -U 
about it simply from formulae of the first-order langcage L. All the methods we 
consider in this paper use, for an assignment x + e, a composition cr ; /3 and a 
conditional if, Lemma 1 (e, f, g) for total correctness and, for partial correctness, the 



66 D. Hare1 

easily derived duals: 

[x + e]Q = Q’x, 

[a ; p]Q 3: [cu]P, where P = [@IQ, 

[ifjQ = ((S = [alQ> A (1s = @IQ)). 

The case for composition requires some clarification. Lemma l(f) gives rise to a rule 
which states that, for any P, from l=U(cu)P and i=(/(P= (P)Q) one can conclude 
l==&; P)Q. This can be written, having U in mind, 

MP, k -GB)Q 
(w9Q l 

Thus, the proof of a claim of the form (a; P)Q involves finding an intermediate 
formula P satisfying the premises of the rule. 

The main issue which we shall address when describing various proof methods is 
the approaches adopted for tackling the problem of loops; in our case the while 
construct. Here, straightforxvzrd equivalences such as Lemma l(e, f, g) which would 
reduce the problem to one involving only components of the while construct are not 
available. However, we have the folRowing results, the significance of which will 
become apparent in the sequel. 

Lemma 2: Given a universe U, if l=v ((P /\ S) 3[a]P), then I=” (P 3 
[ while](F I\ -1s)). 

In other words, if, whenever P holds and the body of the loop is guaranteed to be 
executed (i.e. S holds too), we know that P will hold upon termination, then if 
the while loop as a whole is started in a state where P holds, then it (as well as 1s) will 
be true upon termination. 

Now let A be an arithmetical universe (cf. [22]). Intuitively, the domain of A 
includes the natural numbers, and variables n, m etc. range over these. Also, 
standard symbols, such as +, X, 0,l etc., receive their standard interpretations. 

Lemma 3. Assume n does not appear in CY. If bA (P(n + 1) 1 (S /\ (a,)P(n))) and 
+A (P(O) 3 IS), then C=A (P(n) 2 (while) P(0)). 

Here the intuition is as follows: if, whenever some property is true of n + 1, it is the 
case that the body of the loop will be executed (S holds) and will indeed terminate 
properly in a state in which that property is true of n (i.e. we are guaranteed a 
‘decrease’ of sorts), and if furthermore, we are assured that when the property 
‘reaches’ being true of 0 the body of the loop will no longer be executed (IS will 
hold), we can conclude that whenever the while loop as a whole is started in a state in 
which the property holds of some arbitrary natural number, then it will indeed 
terminate in a state in which the property will be true of 0. 

More information on the subject matter of this section cairn be found in the survey 

paper [31- 



Correctness of reguhr deterministic programs 47 

Lemmas 2 and 3 illustrate the fundamental ideas of invariance and convergence, 
and will be seen to be the essence of almost ail the methods we consider in the 
following sections. These two concepts are shown in [22] to be based, rather 
straightforwardly, on the principle of mathematical induction. 

3. Partiall correctness 

Naur [43] and Floyd #KJ can be regarded as the first substantial contributions to 
the art of proving the correctness of programs, and in them, independently, the 
invariant assertion method for proving the partial correctness of a deterministic 
program is described. The invention of the method is attributed by Floyd to Gore 
[2l] and Perlis and appears implicitly in the early work of Goldstine and Von 
Neuman [20] and Turing [Sf]. According to this method, a proof of the partial 
correctness of a program given in flowgraph form, is carried out by attaching 
assertions to some points in the program (the set of points including at least one on 
every cycle of the flowgraph), and verifying local implication between pairs of them, 
assuming that the path connecting them is indeed taken. This establishes the truth of 
the postcondition, whenever the precondition is true and the program terminates. 
This method, usually referred to as ‘Floyd’s method’, can be viewed as being 
data-directed since the particular points to which assertions i\re attached are left 
unspecified and depending upon how they are chosen, the proof can take the form of 
an induction over a natural part of the data manipulated by the program (cf. [31]). 
However, specialized versions of Floyd’s method, obtained by restricting the pro- 
gramming language to be rigidly structured become syntax-directed, as the points 
chosen in each cycle (loop) are fixed. The first and main such special version was 
introduced by H;;;; c [27] who adopted the programming language WL and 
described Floyd’s method as an axiom system, writing R{cu}Q for l=~ (R 3 [(Y]Q). 

( 
66 

. . . the treatment given below is essentially due to Floyd but is applied to texts 
rather than to flowcharts. . .” [27].) In fact, the idea of syntax-directed proofs in 
itself, substantiated by designing rules of inference which allow for proving the 
correctness of a program by ‘breaking it up’ and thus reducing its complexity, is due 
to Hoare. 

The while loop is dealt with in [27] by observing that Lemma 2 gives rise to the 
following rule of inference 

(PAS)+Y]P 
Ejwhile](P A -is) 

(3.1) 

from which, in turn, one can derive 

RDP, (PnSjz[a]P, (PATS)DQ 
R ‘3 [ while]Q 

. (3.2) 

According to rule (3.4), in order to prove the partial correctness of a while loop 
with respect to R and Q one must find a first-order formula P which is implied by R, 



68 D. Had 

which, together with -7S, implies Q, and which remains invariant under execution of 
the body CY ti)f the wh!ile loop. Such a formula must be found for every ioop in the 
program to be proved and these are the kmriant assertions. (Naur [43] calls them 
general snaphots). Thus, the points in every loop are fixed to be those immediately 
preceding the body cy. 

Notice that in the process of proving the partial correctness of a progra 
Floyd/Hoare method, new first-order formula? are constructed (e.g. R 3 P of (3.2)). 
These are the verification conditions of [I 131. A proof, then, consists of appropriately 
choosing a set a,f invariiant assertions ar,d <with them, using Hoare’s axiom system or 
the algorithm described by Floyd, translating the R 3 [a]Q formula into a set of 
first-order (i.e. program-free) verification conditions. These are to be checked, 
manually or otherwise (e.g. using a theorem prover), to be true in all states of a given 
universe U Another specialized version of Floyd’s method is obtained by consider- 
ing the programming language of and/or subgoal trees in which the points in loops 
are similarly fixed, cf. [23]. 

Katz and Manna [31] and others describe heuristics for constructing invariant 
assertions, but it is known that there is no general algorithm for producing ones which 
are suffjcient for proving partial correctness. Some issues related to Hoare’s system 
are discussed in [29] and a detailed implementation-oriented version of it is 
presented. The precise sense in which Hoare’s axiom system is a specialized version 
of Floyd’s method is described in IV, 2571. 

Cook [14] introduces the imporiant concept of the relative compkteness of 
Hoare-like axiom systems for partial correctness, and proves that for some specific 
universes invariant assertions always.exist, i.e. a proof as described above can always 
be carried out. 

The work of Manna [36] serves to formalize the notion of P 3 [cY]Q (and also 
P 1 {a>Q, see Section 42.3) in terms of satisfiability of logical formulae. Manna 
constructs, for a program a! and first-order R and Q, a formula Wa[R, Q] which is 
basically the conjunction of Floyd’s verification conditions where uninter- 
preted predicate symbols repllace the invariant assertions. The result in [36] is that 
R 3 [a]0 is true (in all states of a universe U) iff W,-JR, Q] is satisfiable (in U); 
put another way, a proof using Floyd’s method exists iff one can find suitable 
invariant assertions. 

A method for proving partial correctness which is similar, and in a yay dual to 
Floyd’s is the subgoal iducti~ cp method of 136,421. We refer the reader to 
[42,39,22] for more information on the analogy. 

All the aforementioned methods are based on the concept of invariance, which 
itself is an offspring of the method of computatiobnal induction for a more general 
class of programs (cf. [37,&l). In fact, natural extensions of WL in which programs 
can be nondeterministic, recursive or concurrent, cf. [S, 22,23,26,44], all give rise to 
similar invariance-based methods of proof. 



Correctness of regular deterministic programs 69 

4. Totd correctness 

Here too, the basic method for proving assertions of the form bv(P 3 (cu)Q) was 
introduced by Floyd [ 181, and was described for flowgraphs. In [ 181, however, only 
termination, i.e. taking Q to be true, was considered. The method, termed the 
well-founded sets method, calls for attaching an expression over r+ program 
variables to points in the flowgraph (similarly also a point in every cycle) and 
showing that, whenever, these points are reached, the attached expressions will take 
values in some well-founded set W. Furthermore, one must show that whenever 
control moves from one such point to another, the value of the second expression is 
smaller in W than the value of the first. Thus, since the set is well-founded, this 
process cannot go on forever and the program must eventualiy terminate. 
As in Floyd’s method for partial correctness, this method can be viewed as being 

data directed. However, here describing a specialized, syntax-directed version seems 
to require that the well-founded set used, and the way in which decreasing values are 
obtained be made explicit. 

In Section 4.1 some suggestions for solving this problem are described, while 
Section 4.2 describes some data-directed variants of the well-founded sets method. 

4.1. Syntax-directed methods 

One way of providing a syntax-directed version of Floyd’s well-founded sets 
method [18] tailored to the language WL, is given by Lemma 3, from which the 
following rule, interpreted in arithmetical universes, can be derived: 

P(n + I) 1 (S n (a!)P(n)), P(0) 2 7s 

P(n) 3 (while)P(O) 
9 (4.1) 

which in turn gives rise to 

R 3 3nP(n j, P(n + 1) 3 (S h (&P(n)), P(0) 1 (Q n 1s) 
R D(whik)Q 

. (4.2) 

(Note: in i&e and other rules we mention, the integer variables n, m, k etc. are 
assumed not to appear in ar.) 

In order to see why this rule represents Floyd’s method, note that P(n) can be 
taken to be n = E for some expression E, and the well-founded set to be the set of 
natural numbers. (Here we have immediately generalized the method by having 
arbitrary Q as a post condition instead of simply true, thus providing for the ability to 
prove total correctness.) As mentioned in Section 2, assignments, composition and 
conditional statements are taken care of via Lemma 1 (e, f, g). 

The notion of arithmetical completeness [22] has been used, analogously to the 
relative completeness of Cook [ 143, to show that in arithmetical universes rule (4.2) is 
sufficient for proving total correctness. In other words, an adequate formula P(n) 
(termed convergent in [22], analogously to invariant for partial correctness) always 
exists. 



70 D. Hare1 

Manna and Pnueli [38] were the first to suggest a syntax-directed acalogue of the 
well-founded se% method. Also, they generalized it, as above, to prove total 
correctness. bv (H 3 (a)Q) is written in [38] as (R/a IQ). The notation of Manna 
and Pnueli is somewhat complicated by allowing Q to refer to the values of the 
variables as they were in the state before cy was executed. This seems to be needed in 
order to compare the values of the “convergence function u (x) mapping the 
program variable’s domain X into [a well-founded set] W” [38], before and after cy. 
However, here too we can, for simplicity, take W to be the set of natural numbers 
and ‘freeze’ the value of the decreasing function in a variable n, thus capturing the 
basic idea in their whlile rules as follows: 

P 3 (whi!e)(P h is) 
9 (4.3) 

where x is the vector of variables assigned to in cy. This rule can be modified to 

(P(n)An>k)D(SA(cw)(P(m)An>mzk)), P(k)I+ 

(P(n) A n 2 k) 2 (while)P(k) 
. (4.4) 

The differences between (4.1) and (4.4) are: 
(a) some fixed integer k (not necessarily 0) is the ‘lower bound’ on P, and 
(b) the decrease when a is executed need not necessarily be by 1. 
This renders (4.4) more helpful in practice. 
The work of Wang [S2] is very similar to that of [38]. Lang’s notation for 

br/ (R 3 (a)Q) is [in: R{a}out: Q] and he does not treat loops directly, but derives a 
treatment of them from ar axiomatization of goto programs. Wang’< derived rule for 
while (rule TG of [52]) is identical to (4.3) and his rule TF is identi::al to (4.1). The 
presentation of (4.1) is justified in [52] by: “It often happens that the induction useti 
. . . is based directly on the number of executions of the controlled statement CL” This 
remark serves to illustrate the delicate borderline between data-directed and 
syntax-directed methods. 

Sokolowski [SO] describes an axiom system for proving total correctness, which is 
similar to [38], but in which the while rule is based on ‘bounding loop counters’, a 
method used by Knuth [32] anc? described in [30]. In [SO], /=v (R 3 (cu)Q) is written 
{R}a{Q} and the rule (rule K4’ in [SO]) can be written: 

R 2 (while)Q 
9 

(4.5) 

where x is as in (4.3). The first three premises indicate that, starting from R being 
true, the body Q! of the while can be re,peatedly executed keeping T true for 
increasing values; the fourth makes sure that for every value of the input variables 
there is a bound on the number of times c11 can be executed. This rule, however, is 
derived from rule (4.2) by defining P(n) in state Z to be T(k-n) where k is the leas? 
integer in Z such that Vx( T( k) 3 -S), and to be faZse if such a k does not exist. Thus 



Correctness of regular deterministic programs 71 

the loop counter method of [30] and [SO] is derived from Floyd’s [ l.81 well-founded 
sets method applied to the integers. 

Sokolowski also proves arithmetical completeness of his system (“it i: assumed 
that . . . the language incorporates the calculus of the non-negative integers”), using 
essentially the convergents approach appearing later in [22], 

We turn to Dijkstra [lS, 161. The notion of weakest precondition of a program ti 
with respect to a predicate Q, written wp&, Q), was introduced by Dijkstra f~ 
dealing with nondeterministic programs, where wp(a, Q) is to be true precisely in 
those states which have the property that when started in them Q! is guaranteed to 
terminate in a state satisfying Q. In [28,22,24] it has been shown that wp is, for 
nondeterministic programs, a nontrivial notion depending on methods of execution. 
However, for the special case of deterministic programs, in particular for WL, 
wpl(cr, Q) turns out to be simply (ky)Q. That is, (cu)Q is the weakeslt condition one can 
impose on the starting state such that (Y, when started in that state, is guaranteed to 
terminate in a state satisfying Q. Now, since it was Basu and Yeh [9] who applied wp 
to while programs, we summarize the parts of [9] which are relevant to this paper. 
t=“v (P 3((u)Q) is denoted in [F) by P[(Y]Q, and (a)Q, as noted, by wp(a, Q). 
Although not presenting explicit inference rules for while, Basu and Yeh describe 
(whiZe)Q [9, formulae (6), (7) and (S)] as 

(while S do a od)Q = 3n((ifS then CY else loop)“)(lS A Q), 

where (p)“, for sc\me program @, abbreviates 6; p; . . . ; p with n appearances of & 
and loop stands for some nonterminating program. Interestingly, they show that 
F(ra), in a rule such as (4.2), can be taken to be ((if S then a! else loop)“)(+ A Q), and 
thus are essentially using convergents as ii1 [22]. The examples in [9] involve 
computing this P(n) as a function of n, and then (in order to prove R 3 (whiCe)Q) 
proving R 3 3n P(n) “from properties of the integers”. This again sketches the 
basics of the well-founded sets method of Floyd [ 183; i.e. the program-free formulae 
resulting from carrying out the transformation from RL to the first-order language L 
are to be separately verified. 

Here too, we see that these syntax-directed methlrids are all varia4ioG; of the 
generic notion of convergence captured, for the well-founded set of the natural 
numbers, by Lemma 3. 

4.2. Data-directed methods 

This section is aimed at describing three different directions taken in the literature, 
each of which can be considered as providing a data-directed, but very general recipe 
for proving the total correctness of deterministic programs. Here it is more difficult to 
unify the presentation; in fact, the approach mentioned in Section 4.2.2 would 
require the development of so much additional technical machinery that a complete 
description would be well out of the scope of this paper. However, although 
somewhat artificially, we do attempt to describe one of the approaches, in Section 
4.2.1, by presenting a syntax-directed analogue. 



72 D. Hard 

4.2.1. Intermittent assertions 
A method for proving the total correctness of deterministic goto programs was 

suggested by Burstall [ 111, and was described in detail, using a variety of examples, in 
[39]. The :.rlethod, termed the interkttent assertion method in [39], consists of 
proving kU (R 3 (rr)Q), written 

: “if sometime R at start, then sometime Q at finish “, 

by attaching assertions to points in (x (as in [ 181) and by proving that execution will 
eventtially reach the points, satisfying the assertions. This is to be contrasted with 
Floyd’s whenez~er a point is reached the assertion will be satisfied. For the non- whife 
parts of (Y, the method coincides with Lemma l(e, f, g). 

In order to focus on the treatment of a loop, and so to see how while’s are dealt 
with, we introduce, for a program CX, the notation a* to stand for the nondeter- 
ministic program “execute cy any number of times” (including possibly 0). The 
notation of RL is temporarily extended with (a*)0 thus being equivalent to 
3n(a”)Q, or in other words “there is a way of executing cy some number of times 
such that the execution will terminate in a state satisfying Q”. Rule (4.1) for (while) 
can be derived from the following rule appearing in [47,22]: 

P(n -i 1) z(cu)P(n) 

P(n) 3 (a*>P(O) * 
(4.6) 

Both the fact that this rule imposes the use of the natural numbers as the well- 
founded set, and the fact that one has to show decrease by 1, can be eliminated by 
rewriting i’t as 

P(x) = WP(y) A y <:x) 
(4.7) 

where x, y, t do not appear in cx and are always to be elements of some set W with the 
well-founded order <. Rule (4.7) then, provides a general syntax-directed descrip- 
tion of Floyd’s method: 

Attach a function to a cutpoint of each loop in a! and show that its 
value is in some well-founded set W, and also show that the value 
decreases each time around the loop. (4.8) 

Note now, that if (a) in the premise of (4.7) is replaced by (ar *) the rule remains 
sound. (If you can eventuaiIly get a decrease by doing cy ‘s, then you can eventually get 
as far down in W as you wish.) However, as it stands this modified version of (4.7) is 
no longer helpful since we have not reduced the complexity of the program involved; 
proving a (a*) cliaim requires proving a different (a*) claim. The point of using this 
rule though, is that one might be able to prove its premise by applying induction on 
sr,me other quantity that the program manipulates. Hence, we can replace (4.7) by 
both the rule 

P(x)I(u*)(P(V) icy <x> -- 
x 2 z = (P(x) 3 (z-,qP(y) A 2 3 y)) 

(4.9) 



Correctness of regular deterministic progranw 73 

(differing from (4.7) only in the additional * in the premise), and an induction axiom 
scheme of the general form 

(Q(y) A WWx < z)Q(x) 2 Q(z))) 3 W’x a y)Q(x) (4.10) 

with the appropriate restrictions on x, y, t E W, and these for any relevant well- 
founded set W. Of course lacking here is a rigorous definition of Q(y), for in (4.10) 
we are providing for the proof of an arbitrary formula Q of RL, one w8,.zh might 
involve a program. However, for the sake of this discussion the above should suffice, 

What we have done is basically to describe a method for proving (a*j formulae 
based on a generalized well-founded set method. While (4.7) serves to prove (a*) 
using (4.$),.the combination of (4.9) and (4.10) requires that one 

Attach a function to a cutpoint of each loop in cy, and show that its 
value is in some well-founded set W, and also show that the value 
eventually decreases after some times around the loop. (4.11) 

Whereas proving the last part of (4.8) is easy since the loop has been ‘cut open’ 

((a*) has been reduced to (cu) in (4.7)), proving the last part of (4.11) is of the same 
degree of difIiculty as the whole of (4.11) ((ar *) stays (a *) in (4.9)). To our help comes 
(4.10). 

This is the essence of the intermittent assertion method of Burstall [ 111 and Manna 
and Waldinger [39]. The property they express is bv (R =(cx)Q)~ and the method 
they use to prove it is that of (4 9) and (4.10). The main idea is the transition from 
(4.8) to (4.11). ‘zJ;‘e mention [ 10, Gction 41, where a similar explanation of this 
method is apparent from their example. 

Of course, what makes the intermixtent assertion method data-directed is the fact 
that in [ 11,391 it is not described as )(4.9) and (4.10) but rather as (4.1 l), and for a 
general programming language in which goto’s replace while’s. The present section 
can, therefore, be viewed as an attempt to present almost a syntax-directed analogue. 
It is obvious to anyone who has seen the examples in [ 11,391 that the power 
of the method lies in the fact that proofs are obtained in a natural manner. It is 
perhaps the intermittent assertion method which best exposes the naturalness of 
o&a-directed methods versus the rigidity of syntax-directed oues when it comes 
to manual proofs of programs. [ 121 also contains an exposition of this method, 
showing that in luction on some quantity in the program is its basic feature (see also 
Section 4.2.3). 

For the, reader familiar with [ll, 391, it is worth noting that the only examples 
appearing in these papers, the proofs of which make essential use of the subtle 
difference betweczn (4.8) and (4.1 l), are two programs which are iterative versions of 
naturally described recursive ones, and which can be proved totally correct quite 
easily in their natural versions. Thes& e zre the tips-of-the-tree program ([l 1, Section 
51 and [39, Section 2.11) and Ackerman’s function ([39, Section 2.21). It would be 
interesting to find a naturally constructed example for which (4.11) gives a natural 
proof whereas (4.8) does not. 



74 D. Hare1 

4.2..2. Temporal-like logics 
The papers of Schwarz [49], Ashcroft [l, 21, Kroeger [34,35] and Pnueli [46] all 

describe temporal logics for reasoning about one given program. (A logic with the 
property that the one program it can discuss is implicit and does not appear in the 
formulae, is termed endogenous in [46]. In its original form, the intermittent 
assertion method [11,39] is essentially endogenous too.) An implicit time scale, 
measuring the time passin,g as more of the program is executed, is assumed in all 
cases. With the aid of such a scale, one might state that P will eventually become true 
at some future time. In 11491 these explicit time phenomena are somewhat less 
transparent (and for this rleason we c.rose to include [49] in the works discussed in 
Section 4.2.3 too). The iaforementioned notion of eventuality, for example, is 
expressed, in [2,34,46] as ‘6eventually P”, “som P” and “FP”, respectively. 

All four approaches regard their systems as kinds of modal logics, and they al! 
claim to be formalizing the intermittent assertion method of [l 1,391. However, the 
precise relationships between these and other non-endcsenous logics of programs 
(cf. Section 7) is still to be worked out. Restricting our atteruion to proof methods for 
deterministic programs, these works do not seem to go beyond the general notions of 
invariance and convergence, occasionally (as in [46]) in a form which captures the 
additional power of the intermittent assertion method, i.e. (4.11). 

4.2.3. Transliterating total correctness 
We now turn to three papers, Manna [36], Harel, Pnueli and Stavi [26] and 

Schwarz [49], which at first sight seem unconnected but which all describe the same 
process. The process is that of translating a formula of the form R 3 (cx)Q into a 
first-order formula V with free predicate symbols, having the property that I= u V iff 
t=zv (R 1 (cu)Q); i.e. cy is totally correct w.r.t ZZ and Q iff every assignment of 
predicates to the free predicate symbols of V satisfies V. How +u V is to be proved 
(establishing the total correctness) is left unspecified, although all three papers give 
examples in which V is proved by induction on the integers. Of interest is the fact that 
V is essentially the same in all three cases, and is of the form l(R A Y), where Y is 
the conjunction of the verification conditions generated when Floyd’s method is 
applied to tr- UC 2 [a] 1 Qj, with uninterpreted predicate symbols replacing the 
concrete invariant assertions. In this way, (by [36, Theorem 11) [a] 1 Q holds iff there 
exists an assignment of predicates satisfying Y. Consequently, l(R A (3 predi- 
cates) Y) or really (V predicates) 1 (R A Y), is the same as +u 1 (R A [a] 1 Q) which 
in turn is equivalent to kc, (R 1 (cu)Q). 

Manna’s GJ??, Q] (without the 3) is our (W A Y), and his Theorem 2 is essentially 
“cy is [totally] correct w.r.t R and Q iff (R A Y) is unsatisfiable [in states of U]” (or 
equivalently i=v 1 (R A Y) hoids). Y is constructed by supplying a new predicate 
symbol for every label (essentially before every statement, if we translate Manna’s 
programming language into ours). In [36] an example is presented, in which a 
program is proved totally correct by showing R A Y to be unsatisfiable “using the 
induction principle [for thle integers]“. 



Con-cc-tness of regular deterknistic programs 75 

Although the relatively complete axiom system of IIarel, Pnueli and Stavi [26] was 
designed for nondeterministic recursive programs, we shall ignore these features 
here and consider the parts relevant to this study. The system is an extension of 
Hoare’s system and provides for proofs of sequents of the form s: Al, . . . , A, I= A, 
where A and the Ai are either first-order or of the form R 2 [L~]Q. Here, s means 
that if bu Ai holds for all 1 G i G rt, then so does /=u A. Using this AL Btation, 
t=u (R 2 (ar)Q) can be written as the sequent 

R(c), c=x+ij~Qi=false, (4.12) 

where c is a constant tuple, and x is the tuple of all variables in (Y. This is the technique 
of [26] for relating the world in which R is assumed to hold to the world in which 
[al-Q does. Focusing on the while statement, a [while] formula appearing in this 
fashion (i.e. on the left of the t= symbol) is derived essentially by the rule (0 15 in [26], 
termed the rule of Inverse Iteration) 

F. RDP, (PAS)+]& (P~S)IQI=A 

F, R x[while]Ql=A 
-9 (4.13) 

where P is a new predicate symbol and F is any set consisting of first-order formulae 
or formulae of the form R 3 [a]Q. Another way of stating this rule is 

R 1 rwhilelQ 
(4.14) 

A proof of (4.12) is carried out in the system of [26] by a ding new predicate 
symbols for each ‘;’ and while. The final program-free formulae will involve these 
new symbols, and careful analysis of this system shows that the conjunction of these 
formulae is precisely l(R A Y). 

Schwarz [49] has described a proof system whi& he states “is based directly on 
Burstall” [ll], but which seems to fit into the pyesent framework too. The real 
connection with [ll] seems to be that the same property is proved, namely, 
bu (R =)(a)Q). The method in [49] is based on an ana!ysis of the computation 
sequence of a program. An ‘event’ is the fact that a label is reached with specific 
values for the variables. I=u (R 3 (a)Q) then, is written as in [ 111, I: R 3 I’ : Q, where 
I and I’ are the labels attached to both sides of Q respectively. [49] too supplies a 
predicate symbol for each label of the program precisely as in [36], and a method for 
deriving theorems to be proved about them. The truth of these theorems implies the 
truth of the original cJaim. For (while), the method in [49] reduces to rule (4.14), and 
the R 1 $)Q assertion is to be proved “from the axioms genr:rated by [the program] 
together with what we know about the data structures involved”. In the examples in 

WI 66 . . . normal mathematical induction [is used] 3ut any other form of induction 
can . . .“. This remark conveys the essence of this approach which is perhaps the 
‘most’ data-directed of all. The assertion of total correctness is translated into a large 
formula to be proved by induction and one is left with the problem of finding an 
appropriate part of the manipulated data on which Zo carry out thi1.t induction. 



76 D. Hare1 
P 

Cartwright and McCarthy [12] have ahempted to put the intermittent assertions 
method [ 11,391 into the frame’work of the present section, by pointing out that for 
programs such as ours, taking ~1’ to be a function symbol results in R 3 (r)Q being a 
first-order formula (see Section 4.3). Then, they claim, [ 11,391 tells one to prove the 
validity of that very formula by induction. We feel that, as expressed in Section 4.2.1, 
the intermittent assertion method is somewhat more substantial. 

4,3. Notations for total correctness 

An unfortunate phenomenon observed when reading the papers described above 
is the variation of notation introduced in them. For partial correctness, Hoare’s 
R{a}Q and its variant {R}LY{Q} have been quite widely accepted, but for total 
correctness we can almost state 

InotationsI = lauthorsl. 

We summarize this Ternark by tabulating authors ~..!th their notations of & (R 3 
(a)Q) for deterministic programs. In each case, a fixed universe U is implicit, and 
whenever labels are required we take start and finish to be the entrance and exit 
labels respectively: 

Reference Notations for t==v (R ~(cY)Q) 

De Bakker [4, S] 
Basu and Yeh [9] 
Burstall [ 1 l] 

Cartwright and 
McCarthy [12] 

Constable [ 131 
Dijkstra [IS, 161 
Harel, Pnueli and 

Stavi [26] 
Kroeger [35] 
Manna [36] 
Manna and Pnueli [38] 
Manna and 

Waldinger [39] 
Pnueli [46] 
Salwicki [48] 
Schwarz [49] 

and Manna [37] 
Wang [52] 

RGCPQ, 
RMQ, 

Sometime(At(start) and R), implies 
Sometime(At(fmish) and 0) 

(Vx E D)(R(x) = (Q(X) E D A Q(a (x)))), 

R-;Q, 
R =wpb, Q), 
R (c), c = X{CY} 1 Q b= false, 

som (start II R) 3 som (finish A Q), 

1 %-JR, Ql, 
Wbia), 
if sometime R at start, then 
sometime Q at finis!& 

[ v = start A R] % [w = finish A Q], 

R-Q, 
start: R 3 finish : Q, 

CJ+N21, 

[start: R(cy) finish : Ql. 

In this paper, we do not attempt to justify our use of yet another notation. 



Correctness of regular deterministic programs 

5. Lo&s of pifograms 

In this section, we briefly describe three logics which are all extensions of 

Y-7 

icate calculus oriented towards reasoning about programs The main 
concern will be to compare notation and power of expression, enabling free 

translation between them. We shall also indicate the approaches each takes towards 
supplying a proof theory. A common denominator is the fact that a formula can 
contain many programs and thus the power of expression of the logic is not limited to 
one or more kinds of correctness. 

5.1. Dynamic Logic (Pratt et al.) 

The ideas incorporated into first-order dyr:amic logic (DL) were suggested by Pratt 
[47] and the logic was further investigated ir. a variety of papers. Since our reasoning 
language in the present paper, RL, is derived from DL, we will only briefly indicate 
;he general spirit here referring the reader to the literature for more detaiis. 

DL consists of predicate calculus augmented with an additional formation rule 
stating, inductively, that for a formula P and a program cy E PROG, (a! )P is a formula, 
where PROG is i;hv J predetermined class of programs. In most of the work on DL the 
set RG of regular (nondeterministic) programs over assignments and tests was 
adopted. This class is defined as the least set of programs including assignments and 
tests (P?, for first-order or quantifier-free P) and closed under the binary operations 
‘;’ and ‘u’, and the unary operation ‘*‘. The semantics of a program is given as a 
binary relation over a universe of states, with the meaning of x + e being given as 
m (x + e) = {(I, M(x + e)(I))}, that of P? as m (P?) = ((I, I) 11 t= P), and the meanings 
of Q! ; p, CY u /3 and Q! * being the composition, union and reflexive transitive closure of 
those of their components, respectively. The semantics of formulae are similar to 
those of RL in Section 2, with 

Ib(a,)P iff 3J((I, J)Em(a)h Jl=P). 

One can see that in DL, formulae such as [cY](R A (@[fJQ) =(a)R are legal. 
Deterministic DE (DDL) is defined in [22], writing ifs then (Y else p for the program 
(S?; CY) u (is?; 0) and while S do QI for (S?; CY)“; is?. 

A proof theory is supplied in [22] by providing arithmetically complete axioma- 
tizations in the spirit of rules (3. a), (4.1) and (4.6). A bibliography of relevant papers, 
including work on the propositional version of DL, PDL, can be found in [22]. 

5.2. Algorithmic logic (Salwicki et al.) 

Algorithmic logic (AL) was iutrodl!ced by Salwicki [48], whose work touched off 
many subsequent papers. A bibliography can be found in [8]. The g,eneral ideas 
incorporated into AL are based on early work of Engeler [17] and the structure of 
AL and DL (which was developed later) are remarkably similar. Most of the work on 
AL is concerned with a deterministic programming language al?d the proof methods 
considered are embodied in dnfinitary axiom systems. 

. 



78 D. Hard 

Salwicki [48] uses (essentially [xf e] for x cc- e (terming assignments substitutions), 
o[@] for CU; p, y [SO@] for if S then ar else ,I?, and *[Sap] for (while -S do a); /3. 
Banachowski [6] later modifies the latter and lvrites *[SLY] for while S do cy. Thus, the 
programming language of AL is precisely WI, a Formulae are defined in [48] similarly 
to DL, but with the following three formatio;r rules, for a formula P and program LY, 
replacing the (cw)P formation rule of DL: 

aP, &P, and n(l~P, 

which mean, respectively, 

wp, 3n(a”)P and Vn(a”)P. 

And we immediately adopt here Mreczmar’s [ 331 extension, in which VxP is added to 
the list of formation rules. 

At first glance the naP = Mve (a! “)P construct does not seem to be of use (notice, on 
the other hand, that 3n (cu “)P is the same as (a, *)P of dynamic logic). The interesting 
thing is that although in AL ~LYP is definable m terms of other constructs its 
importance lies in its application to nondeterministic programs where n can be used 
to succinctly express the absence or presence of infinite loops [22], 

Mirkowska [41] is concerned with providing a complete axiomatization of AL 
using infinitary axiom systems. Loops are treated by transforming whi:‘e into U via 
the equivalence *[S&JP = Uy[Scu[ ]I(+ A P) and then using the axiom 

(5.1) 

and the infinitary rule 

[2]P for all n 

[a*]P l 

(5.2) 

If one attempts to prove the infinite set of premises of (5.2) by induction on N, then in 
formulating the right inductive hypothesis he will in fact be coming very close to 
finding the invariant a:;sertion of Floyd [18]. (See also the example in [34].) Fcr 
applications of AL to proving correctness of programs see [6,7]. 

5.3. Programming logk (Constable ) 

Programming Logic (PL) introduced by Constable [ 131 is very similer to the AL of 
Salwicki [48] in that (a)P is taken 3s a primitive and the programs are deterministic. 
No provision, however, is msde for top level iteration such as Ua! of [48]. We will 
refer here only to the first order logic of [ 13) (‘polyadic’) and not to either the 
propositional case (‘monadic quantifier-free’) or the version which ~‘1. ‘ws 
quantification over states (‘monadic’). 

The programming language of [ 131 is, again, precisely WL; assignments, QI ; Ps if 
(written (S -+ cy, p)) and while (written (S*LY )). Formulae are built up inducrively from 
first-order formulae, and the constructs CY and CX; P for a program e and formula P, 



Correctness of regular de?erministic programs 79 

standing respectively for (a)true and (a)P. R 3 (a)Q then, is written as X 3 cy ; Q, 

and R 3 [a]Qas R 3 (la ; 1Q). 
Constable notes that “(a)P behaves like wp(a, P)” and points out that in PL a 

substitution rule does not exist in general; that is, although it might be that cu = p (i.e. 

( >t a) rue = (@)true), it is not in general true that a; PEP; P (i.e. (a)P = (k)P). [f3] 
does not provide an explicit proof method for formulae of AL. 

6. Conchsion 

We have attempted to bring together many known approaches to proving the 
correctness of simple whil’e programs. In so doing, we were motivated by the desire to 
obtain a uniform description of them, to the extent that that end is possible. In the 
process two important issues emerged: the dual principles of invariance and con- 
vergence in treating, respectively, partial and total correctness, and the dichotomy of 
syntax- versus data-directed methods of proof. 

Studies of this kind, especially in the area of programming logics and program 
verification, seem to be of some importance, as the notation, terminology and 
methods used are becoming more and more diverse and harder and harder to follow. 
Specifically, the topics of Sections 4.2.2 and 5 seem to deserve detailed attention: 
that is, it would be of considerable value to produce, for the topics of these sections, 
comparative studies, unifying the nature, from which the fundamecta! issues will 
emerge. 

Acknowledgment 

We would like to thank N. Dershowitz, 2. Manna, A. R. Meyer, V. R. Pratt and 
A. Shamir for many helpful conversations and comments. 

The constructive remarks of A. Pnueli, especially his observations about syntax- 
directed versus data-directed methods, have contributed significantly to the presen- 
tation. 

References 

[l] E.A. Ashcroft, Intermittent assertions in lucid, Res. Repori CS-76-47, Dept. of Comp, Science, 
University of Waterloo, Canada (1976). 

[2] E.A. Ashcroft and W.W. Wadge, Lucid - a formal system for writing and proving programs, SIAM 
J. Comput. 5(3) (1976). 

[3] K.R. Apt, Ten years of Woare’s logic, a survey. Manuscript, Erasmus University, The Netherlands 
(1979). 

[4] J.W. de Bakker, Flow of control in the proof theory of structured programming, Proc. 16th IEEE 
Symposium on Foundations of Computer Science (I 975). 



80 D. Hare1 

[S] J.W. de Bakker and L.G.L.T. Meertens, On the completeness of the inductive assertion method, 
3. Comput. System Sci. 11 (1975) 323-357. 

[6] L. Banachowski, Extended algorithmic logic and properties of programs, Bull. Acad. Polon. Sci. Se?. 
Sci. Math. Astronom. Phys. 23(3) (1975). 

[7 ] L. Banachowski, Modular properties of programs, Bull. Acad. Polen. Sci. Ser. Sci. Math. Astronom. 
Phys. 23(3) (1975). 

[8) L. Banachowski, A. Kreczmar, G. Mirkowska, H. Rasiowa and A. Salwicki, An introduction to 
algorithmic logic; metamathematical investigations in the theory of programs, in: Mazurkiewitcz and 
Pawlak, Ed., Mathematical Foundations of Computer Science (Banach Center Publications, Warsaw, 
1977). 

[9] SK. Basu and R.T. Yeh, Strong verification of programs, IEEE Trans. Software Eng. l(3) (1975) 
339-345. 

[lo] D.E. Britton, R.B. McLaughlin and R.J. Orgas, A note concerning intermittent assertions, SIGACT 
News (Summer 1977). 

[ 1 l] R.M. Burstall, Program proving as hand simulation with a little induction, in: J.L. Rosenfeld, Ed., 
Information Processing 74 (North-Holland, Amsterdam, 1974). 

[ 12 ] R. Cartwright and J. McCarthy. First order programming logic, Proc. 6th ACM Symposium on 
Principles of Programming Languages, San Antonio, TX (1979). 

[133 R.L. Constable, On the theory of programming logics, Proc. 9th ACM (SZGACT) Symposium on 
Theory of Computing, Boulder, CO (1977). 

(141 S. Cook, Soundness and completeness of an axiom system for program verification, SIAMJ. Comput. 
7(l) (i978). 

115 J E.W. Dijkstra, Guarded commands, nondeterminacy and formal derivation of programs, Comm. 
ACM 18(8) (1975). 

1161 E.W. Dijkstra, A Discipline of Programming (Prentice-Hall, Englewood Cliffs, NJ, 1976). 
[ 173 El. Engeler, Algorithmic properties of structures, Math. Systems Theory l( 1975) 183-195. 
[ 181 R. Floyd, Assigning meaniF to programs, in Schwartz, Ed., Proc. Symposium in Applied Mathe- 

matics 19 (AMS, Providence, RI, 1967). 
[19] S.L.Gerhart, Proof theory of partial correctness verification systems, SIAMJ. Comput. 5(3) (1976) 
1201 H.H. Goldstine and J. Van Neumann, Planning and coding problems for an electronic computer 

department, in: A.H. Traut EC!., Collected Works of John Van Neumann, Vol. 5 (Pergamon Press, 
New York, 1963) 80-235. 

[21] S. Gorn, Common programining language task, Part 1, Section 5, Final Report AD59UR1, U.S. 
Army Signal Corp., Moore %hool of Elec. Eng. (1959). 

1223 D. Hare], P’irst-Order Dyn~imic Logic, Lecture Notes in Computer Science 68 (Springer, Berlin, 
1979). 

123 J D. Hare& And/or programs. a new approach to structured programming, ACM Trans. Programming 
Languages and Systems 2 (4) (1980) 1-17. 

1241 D. Harel, On the total correctness of nondeterministic programs, Theoret. Comput. Sci., to appear. 
[25] D. Hare], A. Pnueli and J. S,tavi, Completeness issues for inductive assertions and Hoare’s methcad, 

TR, Dept. of Math. Sciences, Tel-Aviv University, Israel (1976). 
[261 D. Harel, A. Pnueli and J. Stavi, A complete axiomatic system for proving deductions about 

recursive programs, Proc. P’th Annual ACM Symposium on Theory of Computing, Boulder, CO. 
(1977) 249-260. 

[271 C.A.R. Hoare, An axiomatic basis for computer programming, Comm. ACM 12 (1969) 576-580, 
583. 

C281 CAR. Hoate, Some properties of predicate transformers, J. ACM 25(3) (1978). 
1293 S. Igarishi, R.L. London and DC. Luckham, Automatic program verification 1: a logic basis and its 

implementation, Acta Informat. 4 (1975) 145-182. 
[30] SM. Katz and 2. Manna, A closer look at termination, Acta Informat. 5 (1975) 333-352. 
[3I] SM. Katz and Z. Manna, Logical analysis of programs, Comm. ACM 19(4) (1976) 188-2.06. 
[323 D. Knuth, The Art of Computer Programming, Vol. 1 (Addison-Wesley, Reading, MA, 1968). 
[331 A. Kreczmar, Effectivity problems in algorithmic logic, Proc. 2nd Colloquium on Automata, 

Languages and Programming (1974). 
1341 F. Kroeger, Logical rules of natural reasoning about programs, in: Automata, Languages and 

Programming 3, (Edinburgh Universit!i Press, Edinburgh, 1976) 81-98. 



Correctness of regular deterministic programs 81 

[35] F. Kroeger, A uniform logical basis for the description, specification and verification of programs, 
Proc. IFIP Working LConference on Formal Description of Programming Concepts, St. Andrews, New 
Brunswick (1977). 

[36] 2. Manna, The correctness of programs, J. Comput. System Sci. 3 (1969) 119-127. 
[37] Z. Manna, Mathematical Theory of Computation (McGraw-Hill, New York, 1974). 
[38] Z. Manna and A. Pnueli, Axiomatic approach to total correctness of programs, Acta Infarmat. 3 

(1974) 253-263. 
[39] Z. Manna and R. Waldinger, Is ‘sometime’ sometimes better than ‘always”? Intermitteu. assertions 

in proving program correctness, Comm ACM 21(2) (1978). 
[40] E. Mendelson, Introduction to Mathematical Logic (Van Nostrand, New York, 1974). 
1411 G. Mirkowska, On formalized systems of algorithmic logic, Bull. Acad. Polon. Sci. Ser. Sci. Math. 

Astronom. Phys. 19(16) (1971). 
[42] J.H. Morris Jr. and B. Wegbreit, Subgoal induction, Comm ACM 2Oj4) (1977). 
[43] P. Naur, Proof of algorithms by general snapshots, BIT 6( 1966) 3 1 O-3 16. 
[44] S. Owicki and D. Gries, Verifying properties of parallel programs: an axiomatic approach, Comm. 

ACM 19(S) (1976). 
[45] D. Park, Fixpoint induction and proofs of program properties, in: Machine Intelligence 5 (Edinburgh 

University Press, Edinburgh, 1969). 
[46] A. Pnueli, The temporal logic of programs, Proc. 18th IEEE Symposium on Foundations of Compu ter 

Science, Providence, RI (1977). 
[47] V.R. Pratt, Semantical considerations on Floyd-Hoare logic, Proc. 17th IEEE Symposium on 

Foundations of Computer Science (1976) 109-121. 
[48] A. Salwicki, Formalized algorithmic languages, Bull. Acad. r2olon. Sci. Ser. Sci. Math. Astronone. 

Phys. U(5) (1970). 
[49] J. Schwartz, Event based reasoning - a system for proving correct termination of programs, Proc. of 

Automata, Languages and Programming (1976). 
[SO] S. Sokolowski, Axioms for total correctness, Acta Informat. 9(l) (1977). 
[Sl] A. Turing, Checking a large routine, Report Conference on High Speed Automatic Calculating 

Machines, Institute of Computer Science, McLennan Lab., University of Toronto, Toronto, 
Ontario, Canada (1950). 

[52] A. Wang, an axiomatic basis for proving total correctness of goto programs, BIT 16 (1976). 88-102. 


