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Abstract. The simple set WL of deterministic while programs is defined and a number of known
methods for proving the correctness of these programs are surveyed. Emphasis is placed on the
tradeoff existing between data-directed and syntax-directed methods, and on providing, especially
for the latter, a uniform description enabling comparison and assessment. Among the works
considered are the Floyd/Hoare invariant assertion method for partial correctness, Floyd's
well-founded sets method for termination, Dijkstra’s notion of weakest precondition, the
Burstall/Manna and Waldinger intermittent assertion method and more. Also, a brief comparison

is carried out between three logics of programs: dynamic logic, algorithmic logic and programming
logic. :

1. Introduction

In this paper we provide a uniform description of some of the central works in
proving the correctness of programs. The task becomes manageable by adopting an
ultra-simple programming language, namely, that of deterministic while programs.
In this way, problems appearing in the presence of recursive, nondeterministic or
concurrent programs are avoided (cf. [5, 15, 22, 24, 44]).

A central, but somewhat hidden issue in the literature on program proving is the
dichotomy of data-directed versus syntax-dirccted methods of proof. T.: the majority
of cases, a proof of correctness which employs some sort of reasoning (say induction)
directly on the data manipulated by the program is quite natural and in some cases
reasonably easy to come by. The generic name used for many of these methods is
structural induction. There are, however, many advantages in tying up the reasonir:g
to the syntax of the program, even though the proofs are sometimes quite unnatural
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and difficult tc find. The reasons for preferring the latter are not unlike those given by
the proponents of structured programmin,; a small number of constructs to deal
with, rigor and preciseness in descripiion, discipline in style, program and proof
developed simultareously etc. To these we might add that syntax-directed methods
lend themselves in a straightforward manner to investigations in meta-theory, suci
as soundness and completeness, comparative power of expression etc. Compu-
tativnal induction is sometimes used as a name for these methods, since the structure
of the computation is invariably tied up with the structure of the program.

A:s it turns out, it is sometimes possible to describe a syntax-directed method as
a specialized version of a data-directed one obtained by some restrictions, includ-
ing the adoption of a simple, structuied programming language. Consequently,
most of the methods we wiil be ahie to talk about in a reasonably precise
manner will be either syntax-directed or syntax-directed versions of data-
directed methods. However, the distinction between methods of these two kinds is
often quite v.gue.

Considering the diversity in language, n~tation and rigor which one finds in the
relevant literature we are forced into adopting, besides a simple programming
language, an equally simple ianguage for describing the types of correctness consi-
dered and the proof methods themselves. We have chosen to use standard concepts
from ma:hematical logic such as formula. axiom and inference rule (see e.g. [40]),
augmenied with concepts froim the recently proposed logic of programs, dynamic
logic [47. 22]. We hope that the ability to compare otherwise incomparable methods
by transiating them into a uniform language will partly compensate for the fact that
an author’s motivation and the naturalness and appeal of his particular presentation
are occasionally lost when his method is quite violently reduced to a mere rule of
inference. This is particularly true in the data-directed methods, and to the authors to
whom we do such violence, we apologize in advance.

Our main thesis is that, for the simple programs we consider, the syntax-directed
methods appearing in the literature fali into two main categories: those which use
invariance to prove the partial correctness of programs and those which use
convergence to prove their total correctness.

We certainly do not mention all published methods, nor do we exhaust all the ideas
in those we do mention; the goal is to illustrate the way in which a formal frainework
for reasoning about programs can be put to good use in order to compare and
evaluate proof methods originally expressed in a variety of other frameworks. The
paper is aimed at the reader with some knowledge, both of mathematical logic and of
program proving techniques, and is not on a description-by-example basis. Examples
of proofs of programs using the methods we mention can be found €.g. in [16, 22, 30,
37, 39].

Section 2 contains preli:ninary notions and results, and Sectiors 3 and 4 treat
partial and total correctness. Section 5, aithough short, is somewhat broader in
character, comparing three Jogics in which many properties of programs, besides
correctness, can be expressed and proved.
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2. Preliminaries

In this section, we define the syntax and semantics of the programming language
WL and the reasoning language RL, and state some properties of them which will be
referred to in the sequel.

We are given a set of function symbols and a set of predicate symbols, each symbol
with a fixed nonnegative integer arity. We assume the inclusion of the special binary
predicate symbol ‘ =’ (equality) in the latter set. Predicate symbols are denoted by
Ps q, . . . and k-ary function symbols for k >0by f, g, . . . . Zero-ary function symbols
are denoted by z, x, y, ... and are called variables. A term is some k-ary function
symbol followed by a k-tuple of terms, where we restrict ourselves to terms resulting
from applying this formation rule finitely many times only. For a v.riable x, we
abbreviate x( ) to x, thus f(g(x), y) is a term provided f and g are binary and unary
respectively. An atomic formula is a k-ary predicate symbol followed by a k-tuple of
terms.

The set L of first-order formulae is defined inductively in the standard way: an
atomic formula is in L, and for any variable x and formulae P and Q of L, = P, 3xP
and (P v Q) are in L. The set of programs WL is defined as follows:

(1) for eny variable x and term ¢, x < ¢ is in WL,

(2) fcr any first-order formula § of L and for any « and 8 in WL, the following are
programs in WL:

(a3 B), if S then o else B, while S do a.

When there is no chance of confusion, we will abbreviate the last two constructs
simply to if and while respectively. We use Vx, A,  and = as abbreviations in the
standard way. The co’;;:Struct x « e in (1) is called a (simple) assignment. The program
constructs in (2) car. be expressed as regular expressions over assignments and tests
(see, e.g., [5, 47)), hence the adjective ‘regular’ in the title of this paper.

The semantics of a program in WL is based on the concept of a state. A
state I consicts of a nonempty domain D and a mapping from the sets
of function giid predicate symbols to the sets of functions and predicates over D,
such that to a k-ary function symbol f (resp. predicate symbol p) there corre-
sponds a total k-ary function (resp. predicate) over D denoted by f; (resp. p;). In
particular, to a variable there corresponds an element of the domain and to a 0-ary
predicate symbol (propositional letter) a truth value (frue or false). The
stap-dard equality predicate over D should always correspond to the equality

o Syinbol (=). ‘ .
We are interested in special sets of states, namely, the (simple) universes. A

universe U is a set of states with a common domain, in which all function and
predicate symbols have a fixed value, except possibly for a designated set of
variables. These are to be uninterpreted in U. (See [22] for detailed definitions ) The
variables which are fixed are called constants.

The vilue of a term e = f(el,.. ., ek) in a state I is defined inductively by

e1=f1(e1,,. . .,ek,)
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and the following standard clauses are adopted for defining the truth of fi-st-order
formulae::
I=plel,...,eky iff prlely...,eks)is true,

I=—P iff itis not the case that I = P,

I'=3xP iff Jk= P for some state J differing from
at most in the value of x,

I=(PvQ), iff eitherI=PorIFQ.

I'=Pisread ‘Pistruein I’, and we use = /P to abbreviate ‘I =P forall I € U’. Given
a universe U, the meaning of a program a € WL is the partial function M(a): U -» U,

defined inductively as follows: (Recall that if and while abbreviate if S then a else 8
and while S do a respectively.)

M(x «<e)(I)=J, where J is the state which differs from I at mcst in the
value of x, and x; = ¢;

M(a; B)I) = M (B)M (a)(])),

M(a)I), iflIES,

M) = {M(B)(I), if [=—S.

Let M°(a)(I) stand for I and M (a)(I) for M(a)(M (a)(I)). Then,

M*(a)(I), if k=0issuchthat M* (a)(I)isdefined, S is f;llse in
M (whiley(I') = M*(a)(I), but true in M’(a)(I) for any j <k,
Undefined, if no such k exists.

We shall say that a program a, when started in state I, terminates in state J if and only if
M(a)(I) is defined and is equal to J.

Our reasoning language RL is now defined as follows:

(1) LcRL,

(2) for any formula Pe L, program a € WL and formulae E and F in RL, the

following are formulae of RL:
—E, EF, (a)P.

The last construct is read ‘diamond-a P’. The truth of a formulae of RL in a state I is
defined standardly, with the addition of the clause

I'=(a)P iff Mi{a)(I)isdefined and (M (a)(I))=P.

We abbreviate —{a)—P to [a]P (‘box-a P’). Thus, one can see that given a uuiverse
U, Fu (R >[a]Q) asserts that under the assumption R, if @ terminates, then it
terminates in a state satisfying Q, and =y (R ©(a)Q) asserts that under the
assumption R, « indeed terminates and does so in a state satisfying Q. In this paper,
we will be mainly interested in formulae of RL of the forms (R =[«]Q) and
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(R 2 (a)Q) for first-order R and Q, but have defined RL in order to provide a formal
framework for stating axioms and rules of inferciice.

Definition 1. Given a universe U, a program a € WL is said to be partially (respec-
tively totally) correct with respect to first-order formulae R and Q if we have
Eu (R 2[a]Q) (respectively =(R 2 {a)@)). In both cases, R and Q are ..lled the
precondition and postcondition of a respectively. We say that a terminates under
condition R if « is totally correct with respect to R and true.

Manna [36] makes essentially first mention of the : .ct that total correctness is
‘dual’ to partial correctness (i.e. that by [« ]P we mean —1(a) 1 P) by expressing, in
[36, Theorem 2], the formula R 2 {a)” as - (R A[a]—10).

RL is a sublanguage of the deterministic dynamic logic (DDL) of [22]. The
following lemma summarizes some properties of RL, and proofs of the various parts
of it can be found in [47, 22]. In the following, for first-order Q, let Q% stand for Q
with all free occurrences of the variable x replaced by the term e where no free
variable in ¢ becomes bounded by the replacement (otherwise rename bounded
variables appropriately).

Lemma 1. Forany a, B € WL and first-order formulae P and Q, the following are true
in all states:

(@) (a@)P>[a]P,

(b) (a)P=([a]P r{a)true),

(©) ()P AQ)=({a)P r(a)Q), .

(d) [@)(P A Q)=(a]PA[x]Q),

(&) (x«<e)Q=0Q5,

() (a;B)Q=(a)P, where P=(B)Q,

(8 (HQ=((Sr(a)Q)v (1S A{BQ)).

Lemma 1(a) confirms that total correctness is stronger than partial correctness,
and by Lemma 1(b) total correctness can be seen to be equivalent to partial
correctness plus, so to speak, termination. Lemma 1(c) ana 1(d) allow in effect
splitting a proof of correctness into two parts by splitting the required postcondition.

Central to this paper are the syntax-directed proof methods. These involve the
idea of proving the partial or total correctness of a complex program by proving
similar statements about the immediate components of that program (e.g. « and 8 in
if S then a else B), and then combining these subresults to obtain the required one
using some kind of rule. The rules are to be, in our case, formally expressible in the
language RL and when the program is simply an assigiiment, i.e., has no program
components, there should be a rule for composing an ‘initial’ correctness assertic
about it simply from formulae of the first-order language L. All the methods we
consider in this papsr use, for an assignment x < e, a composition «; 8 and a
conditional if, Letnma 1 (e, f, g) for total correctness and, for partial correctness, the
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easily derived duals:
[x<e]l@=Q5,
[a; B]lQ=[a]P, where P=[B]Q,
(iflQ =S >[«]Q) A (mS 2 [B]Q)).

The case for composition requires somie clarification. Lemma 1(f) gives rise to a rule
which states that, for any P, from =y (a)P and = (P ={8)Q) one can conclude
Ey{a; B)Q. This can be written, having U in mind,

(@)P, F~>(B)Q
(@; 8)Q

Thus, the proof of a claim of the form (a; 8)Q involves finding an intermediate
formula P satisfying the premises of the rule.

The main issue which we shall address when describing various proof methods is
the approaches adopted for tackling the problem of loops; in our case the while
construct. Here, straightforward equivalences such as Lemma 1(e, f, g) which would
reduce the problem to one involving only components of the while construct are not
available. However, we have the following results, the significance of which will
become apparent in the sequel.

Lemma 2: Given a universe U, if Ey (PAS)>[alP), then &=y (P>
[while)(F A S)).

In other words, if, whenever P holds and the body of the loop is guaranteed to be
executed {i.e. S holds too), we know that P will hold upon termination, then if
the while ioop as a whole is started in a state where P holds, then it (as well as S) will
be true upon termination.

Now let A be an arithmetical universe (cf. [22]). Intuitively, the domain of A
includes the natural numbers, and variables n, m etc. range over these. Also,
standard symbols, such as +, X, 0, 1 etc., receive their standard interpretations.

Lemma 3. Assume n does not appear in a. If =5 (P(n+1)>(S A{a)P(n))) and
Ea (P(0)>8), then =4 (P(n) 2 (while) P(0)).

Here the intuition is as follows: if, whenever some property is irue of n + 1, it is the
case that the body of the loop will be executed (S holds) and wiil indeed terminate
properly in a state in which that property is true of n (i.e. we are guaranteed a
‘decrease’ of sorts), and if furthermore, we are assured that when the property
‘reaches’ being true of 0 the body of the loop will no longer be executed (—S will
hold), we can conclude that whenever the while loop as a whole is started in a state in
which the property holds of some arbitrary natural number, then it will indeed
terminate in 2 state in which the property will be true of 0.

More information on the subject matter of this section cau be found in the survey
paper [3].
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Lemmas 2 and 3 illustrate the fundamental ideas of invariance and convergence,
and will be seen to be the essence of aimost ail the methods we consider in the
following sections. These two concepts are shown in [22] to be based, rather
straightforwardly, on the principle of mathematical induction.

3. Partial correctness

Naur [43] and Floyd {18] can be regarded as the first substantial contributizns to
the art of proving the correctness of programs, and in them, independently, the
invariant assertion method for proving the partial correciness of a deterministic
program is described. The invention of the metliod is attributed by Floyd to Gorr.
[21] and Perlis and appears implicitly in the early work of Goldstine and Von
Neuman [20] and Turing [S1]. According to this method, a proof of the partial
correctness of a program given in flowgraph form, is carried out by attaching
assertions to some points in the program (the set of points including at least one on
every cycle of the flowgraph), and verifying local implication between pairs of them,
assuming that the path connecting them is indeed taken. This establishes the truth of
the postcondition, whenever the precondition is true and the program terminates.
This method, usually referred to as ‘Floyd’s method’, can be viewed as being
data-directed since the pariicular points to which assertions are attached are left
unspecified and depending upon how they are chosen, the proof can take the form of
an induction over a natural part of the data manipulated by th= program (cf. [31]).
However, specizlized versions of Floyd’s method, obtained by restricting the pro-
grainming language to be rigidly structured become syntax-directed, as the points
chosen in eacl: cycle (loop) are fixed. The first and main such special version was
introduced by Hoaie [27] who adopted the programming language WL and
described Floyd’s method as an axiom system, writing R{a}Q for =y (R 2[«]Q).
(““... the treatment given below is essentially due to Floyd but is applied to texts
rather than to flowcharts...” [27].) In fact, the idea of syntax-directed proofs in
itself, substantiated by designing rules of inference which allow for proving the
correctness of a program by ‘breaking it up’ and thus reducing its complexity, is due
to Hoare.

The while loop is dealt with in [27] by observing that Lemma 2 gives rise to the
following rule of inference

(PAS)>[alP

— 3.1)
P 2| while](P A-1S)
from which, in turn, one can deiive
R>P, (PAS)>[alP, (Pl\‘lS)DQ- (3.2)

R >[whilelQ

According to rule (3.2), in order to prove the partial correciness of a while loop
with respect to R and Q one must find a first-order formula P which is implied by R,
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which, together with 1S, implies Q, and which remains invariant under execution of
the body a of the wkhile loop. Such a formula must be found for every loop in the
program to be proved and these are the invariant assertions. (Naur [43] calls them
general snapshots). Thus, the points in every loop are fixed to be those irnmediately
preceding the body a.

Notice that in the process of proving the partial correctness of a program using the
Floyd/Hoare method, new first-order formula< are constructed (e.g. R © P of (3.2)).
These are the verification conditions of [18). A proof, then, consists of appropriately
choosing a set of invariant assertions and with them, using Hoare’s axiom system or
the algorithm described by Floyd, translating the R ©[a]Q formula into a set of
first-order (i.e. program-free) verification conditions. These are to be checked,
manually or otherwise (e.g. using a theorem prover), to be true in all states of a given
universe U. Another specialized version of Floyd’s method is obtained by consider-
ing the programming language of and/or subgoal trees in which the points in loops
are similarly fixed, cf. [23].

Katz and Manna [31] and others d:scribe heuristics for constructing invariant
assertions, but it is known that there is no general algorithm for producing ones which
are sufficient for proving partial correctness. Some issues related to Hoare’s system
are discussed in [29] and a detailed implementation-oriented version of it is
presented. The precise sense in which Hoare’s axiom system is a specialized version
of Floyd’s method is described in [19, 25, 7].

Cook [14] introduces the impor:ant concept of the relative completeness of
Hoare-like axiom systems for partial correctness, and proves that for some specific
universes invariant assertions always exist, i.e. a proof as described above can always
be carried out.

The work of Manna [36] serves to formalize the notion of P >[a]Q (and also
P>{a)Q, see Section 4.2.3) in terms of satisfiability of logical formulae. Manna
constructs, for a program « and first-order R and Q, a formula W,[R, Q] which is
basically the conjunction of Floyd's verification conditions where uninter-
preted predicate symbols replace the invariant assertions. The result in [36] is that
R >[a]Q is true (in all states of a universe U) iff W,[R, Q] is satisfiable (in U);
put another way, a proof using Floyd’s method exists iff one can find suitable
invariant assertions.

A method for proving partial correctness which is similar, and in a way dual to
Floyd's is the subgoal inductin: method of [36,42). We refer the reader to
{42, 39, 22] for more information on the analogy.

All the aforementioned methods are based on the concept of invariance, whicn
itself is an offspring of the method of computational induction for a more general
class of programs (cf. [37, 45]). In fact, natural extensions of WL in which programs
can be nondeterministic, recursive or concurrent, cf. [5, 22, 23, 26, 44}, all give rise to
similar invariance-based methods of proof.
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4. Total correctness

Here too, the basic method for proving asseriions of the form =, (P > (a)Q) was
introduced by Floyd [18], and was described for flowgraphs. In [18], however, only
terminaticn, i.e. taking Q to be true, was considered. The method, termed the
well-founded sets method, calls for attaching an expression over the program
variables to points in the flowgraph (similarly also a point in every cycle) and
showing that, whenever, these points are reached, the attached expressions will take
values in some well-founded set W. Furthermore, one must show that whenever
control moves from ore such point to another, the value of the second expression is
smaller in W than the value of the first. Thus, since the set is well-founded, this
process cannot go on forever and the program musi ¢ventualiy terminate.

As in Floyd’s method for partial correctness, this method can be viewed as being
data directed. However, here describing a specialized, syntax-directed version seems
to require that the well-founded set used, and the way in which decreasing values are
obtained be made explicit. ’

In Section 4.1 some suggestions for solving this problem are described, while
Section 4.2 describes some data-directed variants of the well-founded sets method.

4.1. Syntax-directed n:ethods

One way of providing a syntax-directed version of Floyd’s well-founded sets
method [18] tailored to the language WL, is given by Lemma 3, from which the
following rule, interpreted in arithmetical universes, can be derived:

P(n+1)>(S A{a)P(n)), P(0)>—S

P(n) > {while)P(0) ’ 4.1)
which in turn gives rise to
R>3nP(n), P(n+1)>(Sa(a)P(n)), P0)>(QA—S) 4.2)

R > (while)Q

(Note: in ilicse and other rules we mention, the integer variables n, m, k etc. are
assumed not to appear in a.)

In order to see why this rule represents Floyd’s method, note that P(n) can be
taken to be n = E for some expression E, and the well-founded set to be the set of
natural numbers. (Here we have immediately generalized the method by having
arbitrary Q as a post condition instead of simply true, thus providing for the ability to
prove total correctness.) As mentioned in Section 2, assignments, composition and
conditional statements are taken care of via Lemma 1 (e, f, g).

The notion of arithmetical completeness [22] has been used, analogously tc the
relative completeness of Cook [14], to show that in arithmetical universes rule (4.2) is
sufficient for proving total correctness. In other words, an adequate formula P(n)
(termed convergent in [22], analogously to invariant for partial correctness) always
exists.
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Manna and Pnueli [38] were the first to suggest a syntax-directed analogue of the
well-founded se's method. Also, they generalized it, as above, 0 prove total
correctness. =y (R 2 (a)Q) is written in [38] as (R|a|Q). The notation of Manna
and Pnueli is somewkat complicated by allowing Q to refer to the values of the
variables as they were in the state before o was executed. This seems to be needed in
order to compare the values of the ‘“convergence function u(x) mapping the
program variable’s domain X into [a well-founded set] W [38], before and after a.
However, here too we can, for simplicity, take W to be the set of natural numbers
and ‘freeze’ the value of the decreasing function in a variable n, thus capturing the
basic idea in their while rules as follows:

(PASAux)=n)2(a)PA(CSvulx)<n))
P> {while)(P A—S) ’

4.3)

where x is the vector of variables assigned to in «. This rule can be modified to

(Pm)an>k)>2(Sa{a)(Pm)an>m=k)), Pk)>—S
(P(n)An=k)>(while)P(k) )

The differences between (4.1) and (4.4) are:

(a) some fixed integer k (not necessarily 0) is the ‘lower bound’ on P, and

(b) the decrease when a is executed need not necessarily be by 1.

This renders (4.4) more helpful in practice.

The work of Wang [52] is very similar to that of [38]. VWang’s notation for
Fu (R>{(a)Q)is[in: R{a}out: Q]and he does not treat loops directly, but derives a
treatment of them from ar axiomatization of goto programs. Wang’s derived rule for
while (rule TG of [52]) is identical to (4.3) and his iuie TF is identizal to (4.1). The
presentation of (4.1) is justified in [52] by: “It often happens that the induction used
. . . is based directly on the number of executions of the controlled statement a.” This
remark serves to illustrate the delicate borderline between data-directed and
syntax-directed methods.

Sokolowski [50] describes an axiom system for proving total correctness, which is
similar to [38], but in which the while rule is based on ‘bounding loop counters’, a
method used by Knuth [32] and described in [30]. In [50], =y (R 2 (a)Q) is written
{R}a{Q} and the rule (rule K4’ in [50]) can te written:

RoT@©), (Tn)AS)2(a)T(n+1), (T(n)a—8)>Q, Vx3Ik(T(k)>~S)
R > {(while)Q ’

4.4)

4.5)

where x is as in (4.3). The first three premises indicate that, starting from R being
true, the body a of the while can be repeatedly executed keeping T true for
increasing values; the fourth makes sure that for every value of the input variables
there is a bound on the number of times a can be executed. This rule, however, is
derived from rule (4.2) by defining P(n) in state I to be T'(k-n) where k is the least
integer in I such that Vx(T'(k) > —S), and to be false if such a k does not exist. Thus
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the loop counter method of [30] and [50] is derived from Floyd’s [ 18] well-founded
sets method applied to the integers.

Sokolowski also proves arithmetical completeness of his system (““it ic assumed
that . .. the language incorporates the calculus of the non-negative integers”), using
essentially the convergents approach appearing later in [22].

We turn to Dijkstra [15, 16]. The notion of weakest precondition of a program o
with respect to a predicate Q, written wp.a, Q), was introduced by Dijkstra for
dealing with nondeterministic programs, where wp(a, Q) is to be true precisely in
those states which have the property that when started in them « is guaranteed to
terminate in a state satisfying Q. In [28, 22, 24] it has been shown that wp is, for
nondeterministic programs, a nontrivial notion depending on methods of execution.
However, for the special case of deterministic programs, in particular for WL,
wp(a, Q) turns ont to be simply (a)Q. That is, (a)Q is the weakest condition one can
impose on the starting state such that a, when started in that state, is guaranteed to
terminate in a state satisfying Q. Now, since it was Basu and Yeh [9] who applied wp
to while programs, we summarize the parts of [9] which are relevant to this paper.
Fu (P2{a)Q) is denoted in [$] by P[a]Q, and (a)Q, as noted, by wp(a, Q).
Although not presenting explicit inference rules for while, Basu and Yeh describe
(while)Q [9, formulae (6), (7) and (8)] as

(while S do a 0d)Q = An{(if S then a else loop)")(—S A Q),

where (8)", for scme program 3, abbreviates 3; 8; . . . ; 8 with n appearances of 3,
and loop stands for some nonterminating program. Interestingly, they show that
P(n), in a rule such as (4.2), can be taken to be ((if S then a else loop)" )(—S A Q), and
thus are essentially using convergents as in [22]. The examples in [9] involve
computing this P(n) as a function of n, and then (in order to prove R > (while)Q)
proving R ©3n P(n) “from properties of the integers”. This again sketches the
basics of the well-founded sets method of Floyd [18]; i.e. the program-free formulae
resulting from carrying out the transformation from RL to the first-order language L
are to be separately verified.

Here too, we see that these syntax-directed methcds are all variations of the
generic notion of convergence captured, for the well-founded set of the natural
numbers, by Lemma 3.

4.2. Data-directed methods

This section is aimed at describing three different directions taken in the literature,
each of which can be considered as providing a data-directed, but very general recipe
for proving the total correctness of deterministic programs. Here it is more difficult to
unify the presentation; in fact, the approach mentioned in Section 4.2.2 would
require the development of so rauch additional technical machinery that a complete
description would be well out of the scope of this paper. However, although
somewhat artificially, we do attempt to describe one of the approaches, in Section
4.2.1, by presenting a syntax-directed analogue.
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4.2.1. Intermittent assertions

A method for proving the total correctness of deterministic goto programs was
suggested by Burstall [11], and was described in detail, using a variety of examples, in
[39]. The rnethod, termed the intermittent assertion method in [39], consists of
proving Ey; (R 2 (a)Q), written

“if sometime R at start, then sometime Q at finish”,

by attaching assertions to points in « (as in [18]) and by proving that execution will
eventually reach the points, satisfying the assertions. This is to be contrasted with
Floyd's whenever a point is reached the asszartion will be satisfied. For the non-while
parts of a, the method coincides with Lemma 1(e, f, g).

In order to focus on the treatment of a loop, and so to see how while’s are dealt
with, we introduce, for a program a, the notation a* to stand for the nondeter-
ministic program ‘“execute a@ any number of times” (including possibly 0). The
notation of RL is temporarily extended with (a*)Q thus being equivalent to
Jr(a")Q, or in other words “‘there is a way of executing @ some number of times
such that the execution will terminate in a state satisfying Q. Rule (4.1) for (while)
can be derived from the following rule appearing in [47, 22]:

P(r-+1)2(a)P(n)
P(n)>{a*)P(0)
Both the fact that this rule imposes the use of the natural numbers as the well-
founded set, and the fact that ore has to show decrease by 1, can be eliminated by
rewriting it as
Pix)2{a)(P(y)ry <x)
x=z2(P(x)=(a*)P(y)rz=y))

(4.6)

4.7)

where x, y, z donot appear in & and are always to be elements of some set W with the
well-founded order <. Rule (4.7) then, provides a general syntax-directed descrip-
tion of Floyd’s method:

Attach a function to a cutpoint of each loop in @ and show that its
value is in some well-founded set W, and also show that the value
decreases each time around the loop. (4.8)

Note now, that if (a) in the premise of (4.7) is replaced by (¢*) the rule remains
sound. (If you can eventually get a decrease by doing a’s, then you can eventually get
as far down in W as you wish.} However, as it stands this modifized version of (4.7) is
no longer helpful since we have not reduced the complexity of the program involved;
proving a (a*) claim requires proving a different (a*) claim. The point of using this
rule though, is that one might be able to prove its premise by applying induction on

some other quantity that the program manipulates. Hence, we can repiace (4.7) by
both the rule

P(x)> (P Ay<x)
x=z=(Plx)>(a”)P(y)rz=Yy))

4.9)
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(differing from (4.7) only in the additional * in the premise), and an induction axiom
scheme of the general form

(Q)AVz((Vx<2)Q(x)2Q(2))) 2 (Vx =y)Q!x) (4.10)

with the appropriate restrictions on x, y, z € W, and these for any relevant well-
founded set W. Of course lacking here is a rigorous definition of Q(y), for in (4.10)
we are providing for the proof of an arbitrary formula Q of RL, one wh.:h might
involve a program. However, for the sake of this discussion the above should suffice.

What we have done is basically to describe a method for proving (a*; formulae
based on a generalized well-founded set method. While (4.7) serves to prove (a™)
using (4.8), the combination of (4.9) and (4.10) requires that one

Attach a function to a cutpoint of each loop in @, and show that its
value is in some well-founded set W, and also show that the value
eventually decreases after some times around the locp. 4.11)

Whereas proving the last part of (4.8) is easy since the loop has been ‘cut open’
({a*) has been reduced to {a) in (4.7)), proving the last part of (4.11) is of the same
degree of difiiculty as the whole of (4.11) ((a*) stays (a*) in (4.9)). To our help comes
(4.10).

This is the essence of the intermittent assertion method of Burstall[11] and Manna
and Waldinger [39]. The property they express is =y (R 2{(a)Q), and the method
they use to prove it is that of (4 9) and (4.10). The main idea is the transition from
(4.8) to (4.11). We mention [10, Scction 4], where a similar explanation of this
method is apparent from their example.

Of course, what makes the intermi:tent assertion method data-directed is the fact
that in [11, 39] it is not described as (4.9) and (4.10) but rather as (4.11), and for a
general programming language in which goto’s replace while’s. The present section
can, therefore, be viewed as an attempt to present almost a syntax-directed analogue.
It is obvious to anyone who has seen the examples in [11, 39] that the power
of the method lies in the fact that proofs are obtained in a natural manner. It is
perhaps the intermittent assertion method which best exposes the naturalness of
aata-directed methods versus the rigidity of syntax-directed ones when it comes
to manual proofs of programs. [12] also contains an exposition of this method,
showing that in luction on some quantity in the program is its basic feature (see also
Section 4.2.3). '

For the reader familiar with [11, 39], it is worth noting that the only examples
appearing in these papers, the proofs of which make essential use of the subtle
difference between (4.8) and (4.11), are two programs which are iterative versions of
naturally described recursive ones, and which can be proved totaily correct quite
easily in their natural versions. These 21e the tips-of-the-tree program ([11, Section
5] and [39, Section 2.1]) and Ackerman’s function ([39, Section 2.2]). It would be
interesting to find a naturally constructed example for which (4.11) gives a natural
proof whereas (4.8) does not.
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4.2.2. Temporal-like logics ,

The papers of Schwarz [49], Ashcroft [1, 2], Kroeger [34, 35] and Pnueli [46] all
describe temporal logics for reasoning about one given program. (A logic with the
property that the one program it can discuss is implicit and does not appear in the
formulae, is termed endogerous in [46]. In its original form, the intermittent
assertion method [11, 39] is essentizily endogenous too.) An implicit time scale,
measuring the time passing as more of the program is executed, is assumed in all
cases. With the aid of such a scale, one might state that P will eventually become true
at some future time. In [49] these explicit time phenomena are somewhat less
transparent (and for this reason we caose to include [49] in the works discussed in
Section 4.2.3 too). The aforementioned notion of eventuality, for example, is
expressed, in [2, 34, 46] as ““eventually P, “som P> and “FP”, respectively.

All four approaches regard their systems as kinds of modal logics, and they al!
claim to be formalizing the intermittent assertion method of [11, 39]. However, the
precise relationships between these and other non-endcgenous logics of programs
(cf. Section 7) is still to be worked out. Restricting our attention to proof methods for
deterministic programs, these works do not seem to go beyond the general notions of
invariance and convergence, occasionally (as in [46]) in a forin which captures the
additional power of the intermittent assertion method, i.e. (4.11).

4.2.3. Transliterating total correctness

We now turn to three papers, Manna [36], Harel, Pnueli and Stavi [26] and
Schwarz [49], which at first sight seein unconnected but which all describe the same
process. The process is that of translating a formula of the form R > {(a)Q into a
first-order formula V with free predicate symbols, having the property that =, V iff
Fy (R2(a)Q); ie. a is totally correct w.r.t R and Q iff every assignment of
predicates to the free predicate symbols of V satisfies V. How =y, V is to be proved
(establishing the total correctness) is left unspecified, although all three papers give
examples in which V is proved by induction on the integers. Of interest is the fact that
V is essentially the same in all three cases, and is of the form —(R A Y), where Y is
the conjunction of the verification conditions generated when Floyd’s method is
applied to frue »[a]Q, with uninterpreted predicate symbols replacing the
concrete invariant assertions. In this way, (by [36, Theorem 1]) [« ] Q holds iff there
exists an assignment of predicates satisfying Y. Consequently, (R A (3 predi-
cates)Y') or really (V predicates) (R A Y), is the same as =y (R A[a] Q) which
in turn is equivalent to = (R 2{(a)Q).

Manna’s W, [R, Q] (without the 3)is our (R A Y), and his Theorem 2 is essentially
“a is [totally] correct w.r.t R and Q iff (R A Y) is unsatisfiable [in states of U] (or
equivalently =y —1(R A Y) hoids). Y is constructed by supplying a new predicate
symbol for every label (essentially before every statement, if we translate Manna’s
programming language into ours). In [36] an example is presented, in which a
program is proved totally correct by showing R A Y to be unsatisfiable ‘“‘using the
induction prirciple [for the integers]”.
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Although the relatively complete axiom syster of Harel, Pnueli and Stavi [26] was
designed for nondeterministic recursive programs, we shall ignore these features
here and consider the parts relevant to this study. The system is an extension of
Hoare’s system and provides for proofs of sequents of the form s: A,,..., A,F A,
where A and the A; are either first-order or of the form R o[a]Q. Here, s means
that if =y A; holds for all 1=<i=<n, then so does =y A. Using this ..>tation,
Fu (R 2{(a)Q) can be written as the sequent

R(c), c=x>[a]QFfalse, (4.12)

where ¢is a constant tuple, and x is the tuple of all variables in . This is the technique
of [26] for relating the world in which R is assumed to hold to the world in which
[@]—1Q does. Focusing on the while statement, a [while]formula appearing in this
fashion (i.e. on the left of the = symbol) is derived essentially by the rule (D15 in [26],
termed the rule of Inverse Iteration)

F. RoP, (PaS)>[alF, (PA1S)DQEA
F, Ro[while]Q=A ’

4.13)

where P is a new predicate symbol and F is any set consisting of first-order formulae
or formulae of the form R >[a]Q. Another way of stating this rule is
R o [while]Q
3P(R>P, (PAS)>[alP, (PA—S)MQ)

(4.14)

A proof of (4.12) is carried out in the system of [26] by adding new predicate
symbols for each ‘;” and while. The final program-free formulae will involve these
new symbols, and careful analysis of this system shows that the conjunction of these
formulae is precisely (R A Y).

Schwarz [49] has described a proof system whic’: he states “is based directly on
Burstall” [11], but which seems to fit into the present framework too. The real
connection with [11] seems to be that the same property is proved, namely,
Fu (R 2(a)Q). The method in [49] is based on an analysis of the computation
sequence of a program. An ‘event’ is the fact that a label is reached with specific
values for the variables. =y, (R 2 (a)Q) then, is writtenasin[11] /: R o [’: Q, where
I and I’ are the labels attached to both sides of « respectively. [49] too supplies a
predicate symbol for each label of the program precisely as in [36], and a method for
deriving theorems to be proved about them. The truth of these theorems implies the
truth of the original claim. For (while), the method in [49] reduces to rule (4.14), and
the R o {a)Q assertion is to be proved ‘‘from the axioms gencrated by [the program]
together with what we know about the data structures involved”. In the examples in
[49]. . . normal mathematical inductior. [is used] but any other form of induction
can...”. This remark conveys the essence of this approach which is perhaps the
‘most’ data-directed of all. The assertion of total correctness is translated into a large
formula to be proved by induction and one is left with the problem of finding an
appropriate part of the manipulated data on which ‘o carry out thst induction.
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Cartwright and McCarthy [12] have ata-iempted to put the intermittent assertions
method [11, 39] into the framework of the present section, by pointing out that for
programs such as ours, taking a to be a function symbol results in R > (x)Q being a
first-order formula (see Section 4.3). Then, they claim, [11, 39] tells one to prove the
validity of that very formula by induction. We feel that, as expressed in Section 4.2.1,
the intermittent assertion method is somewhat more substantial.

4.3. Notations for total correctness

An unfortunate phenomenon observed when reading the papers described above
is the variation of notation introduced in them. For partial correctness, Hoare’s
R{a}Q and its variant {R}a{Q} have been quite widely accepted, but for total
correctness we can almost state

|notations| = |authors|.

We summarize this ~emark by tabulating authors . ‘th their notations of Fy (R >
(a)Q) for deterministic programs. In each case, a fixed universe U is implicit, and
whenever labels are required we take start and finish to be the entrance and exit
labels respectively:

Reference Notations for ¢y (R 2{a)Q)

De Bakker [4, 5] Rca°Q,

Basu and Yeh [9] R[a]0Q,

Burstall [11] Sometime (At(start) and R), implies

Sometime (At(finish) and Q)

Cartwright and (Vxe D)(R(x) 2 (a(x)e D A Q(a(x)))),
McCarthy [12]

Constable [13] Roa;Q,

Dijkstra[15, 16] R > wp(a, Q),

Harel, Pnueli and R(¢), c=x{a} QF false,
Stavi [26]

Kroeger [35] sem(start A R) 2 som(finish A Q),

Manna [36] - W,[R, Q],

Manna and Pnueli [38] (R|a|Q),

Manna and if sometime R at start, then
Waldinger [39] sometime Q at finish,

Pnueli [46] [7 =start A R] = [1r = finish A Q],

Salwicki [48] R >aQ,

Schwarz [49] start: R > finish : Q,

Sokolowski [50] {R}a{Q},
and Manna [37]

Wang [52] [start: R{a} finish: Q).

In this paper, we do not attempt to justify our use of yet another notation.
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S. Logics of programs

In this section, we briefly describe three logics which are all extensions of
first-order predicate calculus oriented towards reasoning about programs The main
concern will he to compare notation and power of expression, enabling free
translation between them. We shall also indicate the approaches each takes towards
supplying a proof theory. A common denominator is the fact that a formula can
contain many programs and thus the power of expression of the logic is not limited to
one or more kinds of correctness.

5.1. Dynamic Logic (Pratt et al.)

The ideas incorporated into first-order dyr.amic logic (DL) were suggested by Pratt
[47] and the logic was further investigated ir. a variety of papers. Since our reasoning
language in the present paper, RL, is derived from DL, we will only briefly indicate
ihe general spirit here referring the reader to the literature for more detaiis.

DL consists of predicate caiculus augmented with an additional formation rule
stating, inductively, that for aformula P and a program « € PROG, (a )P is aformula,
where PROG is sy predetermined class of programs. In most of the work on DL the
set RG of regular (nondeterministic) programs over assignments and tests was
adopted. This class is defined as the least set of programs including assignments and
tests (P?, for first-order or quantifier-free P) and closed under the binary operations
‘ and ‘U’, and the unary operation “*’. The semantics of a program is given as a
binary relation over a universe of states, with the meaning of x « e being given as
m(x «e)={(I, M(x « e)(I))}, that of P? as m(P?)={(I, I)|I = P}, and the meanings
of a; B, a U B and a* being the composition, union and reflexive transitive closure of
those of their cornponents, respectively. The semantics of formulae are similar to
those of RL in Section 2, with

I=(@)P iff 3AJ((I,J)em(a)AJEP).

One can see that in DL, formulae such as [a](R A{B)[y]Q)>{(a)R are legal.
Deterministic DL (DDL) is defined in [22], writing if S then a else B for the program
(S?; a)u (1 8?; B) and while S do a for (S?; a)*; 1S8?.

A proof theory is supplied in [22] by providing arithmetically complete axioma-
tizations in the spirit of rules (3.1), (4.1) and (4.6). A bibliography of relevant papers,
including work on the propositional version of DL, PDL, can be found in [22].

5.2. Algorithmic logic (Salwicki et al.)

Algorithmic logic (AL) was iritrodvced by Salwicki [48], whose worl: touched off
many subsequent papers. A bibliography can be found in [8]. The general ideas
incorporated into AL are based on early work of Engeler [17] and the structure of
AL and DL (which was developed later) are remarkably similar. Most of the work on
AL is concerned with a deterministic programming language and the proof methods
considered are embodied in infinitary axiom systems.
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Salwicki [48] uses essentially [x/e] for x « e (terming assignments substitutions),
oJ[aB] for a; B, v [SaB] for if S then a else 3, and *[SaB] for (while —S do a); B.
Banachowski [6] later modifies the latter and writes *[Sa ] for while S do a. Thus, the
programming language of AL is precisely WL.. Formulae are defined in {48]similarly
to DL, but with the following three formatica rules, for a formula P and program a,
replacing the (a)P formation rule of DL:

aP, UaP, and (aP,

which mean, respectively,
{a)P, An(a”)P ard Yn(a")P.

And we immediately adopt here Kreczmar’s [33] extension, in which VxP is added to
the list of formation rules.

Atfirst glance the [ JaP =Vr(a")P construct does not seem to be of use (notice, on
the other hand, that 3n{a" )P is the same as (a*)P of dynamic logic). The interesting
thing is that although in AL [ )aP is defindble in terms of other constructs its
importance lies in its application to nondeterministic programs where [ | can be used
to succinctly express the absence or presence of infinite loops [22].

Mirkowska [41] is concerned with providing a complete axiomatization of AL
using infinitary axiom systems. Loops are treated by transforming whi’e into | via
the equivalence *[Sa]P=_v[Sa[ J}(—S A P) and then using the axiom

(a*)=Pv{a*¥a)P (5.1)
and the infinitary rule

[a"]P foralln
[a*]P '

(5.2)

If one attempts to prove the infinite set of premises of (5.2) by induction on #, then in
formulating the right inductive hypothesis he will in fact be coming very close to
finding the invariant assertion of Floyd [18]. (See also the example in [34].) Fcr
applications of AL to proving correctness of programs see [6, 7].

5.3. Programming logic (Constable)

Programming Logic (PL) introduced by Constable [13]is very similar to the AL of
Salwicki [48] in that (a )P is taken as a primitive and the programs are deterministic.
No provision, however, is made for top level iteration such as |_Ja of [48]. We will
refer here only to the first order logic of [13] (‘polyadic’) and not to either the
propdsitional case (‘monadic quantifier-free’) or the version which ' ws
quantification over states (‘monadic’).

The programming language of [13] is, again, precisely WL; assignments, a; 8, if
{written (S - a, B)) and while (written (§*a}). Formulae are built up inductively from
first-order formulae, and the constructs @ and « ; P for a program ¢ and formula P,
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standing respectively for (a)true and {a)P. R > {a)Q then, is written as R 2 «; Q,
and R o [a]Qas R > (ma; Q).

Constable notes that ‘“(a)P behaves like wp(a, P)” and points out that in PL a
substitution rule does not exist in general; that is, although it might be that « =3 (i.e.
(a)true =(B)true), it is not in general true that a; P=g3; P (i.e. (a)P={(.)P). [13]
does not provide an explicit proof method for formulae of AL.

6. Conclusion

We have attempted to bring together many known approaches to proving the
correctness of simple while programs. In so doing, we were motivated by the desire to
obtain a uniform description of them, to the extent that that end is possible. In the
process two important issues emerged: the dual principles of invariance and con-
vergence in treating, respectively, partial and total correctness, and the dichotomy of
syntax- versus data—directed methods of proof.

Studies of this kind, especially in the area of programming logics and program
verification, seem to be of some importance, as the notation, terminology and
methods used are becoming more and more diverse and harder and harder to follow.
Specifically, the topics of Sections 4.2.2 and S seem to deserve detailed attention:
that is, it would be of considerable value to produce, for the topics of these sections,
comparative studies, unifying the nature, from which the fundamer:tal issues will
emerge.
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