
Reactive Animation

David Harel1, Sol Efroni1,2, and Irun R. Cohen2

1 Dept. of Computer Science and Applied Mathematics
2 Dept. of Immunology

Weizmann Institute of Science
76100 Rehovot, Israel

{sol.efroni,dharel,irun.cohen}@weizmann.ac.il

Abstract. Software engineers use system visualization mainly in two
domains: algorithm visualization and system visualization, and both of
these are often animated. In this paper we provide a generic link be-
tween the specification and animation of complex object-oriented reac-
tive systems, which constitute one of the most important and difficult
classes of systems. The link and its methodology form a basis for com-
munication between standard reactive specification tools and standard
animation tools. Reactive Animation can be used in a wide range of ap-
plications: computer games, navigation and traffic systems, interactive
scientific visualization. Reactive Animation helps make the programming
of such applications more reliable, expeditious and natural to observe and
comprehend. We illustrate two examples: a complex biological model of
thymic T-cell behavior and a traffic simulation1.

1 Introduction

We describe a generic link between two kinds of computerized tools. The first
are tools that aid in the development of complex reactive systems [1], such as
aerospace, automotive, communication and medical diagnostic systems. Such
tools make possible to specify and execute complex behavior, and are based on
visual formalisms [2]. The second tools serve for high-quality graphic animation.
We call this combination Reactive Animation. We shall explain the need for a
generic means of linking these two quite different kinds of tools, concentrating on
complex object-oriented (OO) systems, and describe the promise of such a link.
We then describe the link using two particular tools: Rhapsody from I-Logix,
Inc. [3], and Flash from Macromedia [4]. We illustrate Reactive Animation with
two applications: the behavior of T-cells in the thymus gland and a vehicle traffic
system.

1.1 Reactive Systems

One of the central issues in software and system engineering over the last decades
has been to develop languages, methods and tools for the reliable construction of
1 Some technical parts of the work described here are patent pending.

F.S. de Boer et al. (Eds.): FMCO 2002, LNCS 2852, pp. 136–153, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



Reactive Animation 137

reactive systems. This term denotes systems whose complexity stems not neces-
sarily from complicated computation but from complicated reactivity and inter-
action with the environment — users and/or other systems [5]. Reactive Systems
have to handle discrete incoming stimuli, to which they react and with which
they interact over time, and which they may also manipulate. Reactive systems
are often highly concurrent and time-intensive, and exhibit hybrid behavior that
is predominantly discrete in nature but has continuous aspects too. Their struc-
ture consists of many interacting, often distributed, components. Very often the
structure itself is dynamic, with its components being repeatedly created and
destroyed during the system’s life. Thus, we are especially interested in systems
modeled according to the OO paradigm. The heart of the problem is the need
for good approaches to modeling and analyzing the dynamic behavior of reactive
systems.

The most widely used frameworks for developing reactive systems feature
visual formalisms [2], which are both graphically intuitive and mathematically
rigorous, supported by powerful tools that enable full model executability and/or
the automatic generation of final runnable code [6],[7],[8] (see [9] for a review).
This framework enables realistic simulation prior to actual implementation. Such
languages and tools are often based on the OO paradigm, and some are strength-
ened by verification modules, making it possible not only to execute and simu-
late the system models (test and observe) but also to verify dynamic properties
thereof (prove) [10]. The tools are also being linked to other tools to deal with
the system’s continuous aspects in a full hybrid fashion. Most of the available
tools are state-based, encouraging intra-object style specification [11], but there
are also recent scenario-based approaches, which enable executable inter-object
specification [12],[13].

The world is full of well-known types of computerized reactive systems, whose
reliability and time-critical nature make the issue of good support tools crucial.
Interestingly, biology supplies another kind of reactive systems, which exhibit
similar characteristics and problematics (apart from the fact that we don’t have
to design them but, rather, to understand them).

In this paper we use the language of statecharts [14] in its OO version, as
implemented in the Rhapsody tool [3],[11]. Statecharts, together with object
model diagrams, as described in [11] constitute the core executable part of the
UML standard [15],[16]. The specification in Rhapsody, and in other similar
tools, is diagrammatic, with the different diagrams describing different aspects
of the system, and is also amenable to execution. To build a model of a system
in Rhapsody, one usually starts with a description of the relevant classes and
possible relations between them. The end result of this systemic account is a
diagrammatic representation of the structure of the system, in an object model
diagram. However, the main effort is exerted on specifying the system’s behavior,
in this case using statecharts. This is an intricate process, during which we
identify the host of possible states, events and inter-state transitions, that best
describe the system’s conduct, the interactions between objects that compose the



138 D. Harel, S. Efroni, and I.R. Cohen

system, the different attributes that are included in each class and the different
functions classes own.

1.2 Model Execution

Once we have a valid model, a tool like Rhapsody enables us to automatically
generate code, which can be run on a desired operating system, and allows us
to check and play with the model. For example, we can carry out diagrammatic
animation, meaning that during execution we get to see the diagrams changing in
a way that indicates the dynamic behavior that is being executed. To make model
execution useful for a broader spectrum of less-technical people, including end-
users, modelers of reactive systems often use graphical user interfaces (GUIs)
to portray the look and feel of the modeled system during execution. GUI’s
also provide a convenient way of manipulating the model during execution. Such
interfaces are sometimes created using a programming language’s visual “forms”,
or even coded-in while creating the application’s code. Other ways to create such
a visual interface is to use specific tools, such as Altia [17]. Some of these tools
also come with class libraries that enable the integration of such visual interfaces
with the running code. The pressing of buttons, adjustments of knobs, the keying
in of different parameters are therefore conveyed to the running model, where
the proper operations are performed and the results are sent back to be displayed
in the visual interface.

It is important to realize, however, that most GUI tools are limited, and are
mainly useful for obtaining a semi-realistic rendition of the highly discrete user
interface of the system in operation. They are in fact almost static in nature.
For example, if we wanted to build an interface for a cellular phone, we could
use GUI tools to render easy access to buttons, displays, and sounds; a button
would be clickable and a display would receive values, etc. During execution,
such events flow from the user manipulating the GUI to the reactive model of
the cellular phone, where they are handled, and appropriate messages are sent
back to the GUI to be displayed. GUI tools are thus designed to handle a well-
characterized set of element that are found in systems such as watches, phones,
cars, planes, electric appliances, software applications, calculators, etc. They do
not supply a general programming environment that gives us full control over the
different features of the components, or powerful scripting languages to perform
simple manipulations of components. They have no general functional abilities
or animation techniques. In short, the front end of reactive system tools is very
limited, and does not provide us with what we may call animative freedom.

1.3 Animation

In this paper we are interested in true computerized animation, of the type
one finds in computer games and animation movies. True animation holds ex-
traordinary illustrative and explanatory power, due to its typically high-quality
of realism and non-verbal mode of communication. This power is often used



Reactive Animation 139

in technical fields too, appearing in tutorials, presentations, algorithmic anima-
tion, and more. Animation has the ability to detach objects from their specific
implementation while holding on to their defining features.

One of our claims is that many reactive systems can be better represented
using true animation, in which we can capture the defining features of the sys-
tem in a realistic manner. By enhancing the representation with the power of
animation, we can show the system changing locations, sizes, colors and shapes,
switching components, rotating and shifting. And we can also show the system
impact on its own structure, or that of other systems, by eliminating parts or
giving birth to new ones. Running animation serves as an explanatory tool to
the driving simulation. It tells a visual story that comes as close as we want to a
real system, limited only by the graphical manipulative power of the animation
tool itself, and, in the case of multi-agent simulation, it can tell many stories at
once that merge into a comprehensive whole.

How to link up a reactive system “engine” such as Rhapsody, with a true ani-
mation tool, such as Flash — resulting in what we call here Reactive Animation—
is the technical contribution of this paper.

1.4 Related Work

Over the past three decades there has been much work on topics related to
the ideas presented here. The first is algorithm animation. Various researchers
developed this area into a well-formulated and ordered sub-field of computer
science.

Algorithm animation began as a visual abstraction of program operation and
its data and dynamics. The main motivation for the algorithm animation tools
of the early 1990’s was to find different ways of representing and abstracting
the text-based, mathematically rich formulation of the dynamics of algorithms
with a graphically rich, visually dynamic environment that would provide an
intuitive rendition of the logic behind the algorithm. Thus, tools like BALSA
[18], Tango [19] and Polka [20] provide the user with the ability to construct a
front-end and associate it with the behavior of the animated algorithm. Other
tools harnessed the power of a diagrammatic language to animation [21]. Most
approaches shared the view of the algorithm as a sequence of events occurring
in time, and the most interesting events were chosen to be reflected in the ani-
mation. These systems had to confront elementary problems of animation, such
as achieving smooth transitions over a discrete course of events, and developing
viewers for the animation. Much of the effort in building and using such tools
was associated with animation as a teaching tool for computer programming
[22]. The software tool Leonardo [23], for example, is used to learn and teach
through the visualization of software algorithms.

One group [24] makes a distinction between abstract animation - the pro-
cess of changing data or relations - and real shape, which is directly related to
how real objects appear. Thus, if we adopt this terminology, we might say that
these approaches were concerned mainly with animating the abstract properties
of systems. Over the years, the developers of such tools were able to handle



140 D. Harel, S. Efroni, and I.R. Cohen

distributed technologies [25], and three dimensional representation [26], and to
solve problems of compatibility [27]. Other tools, which we will not review here,
dealt with the complexity of software engineering and visualized the connection
between different classes, different files or different behaviors at run-time.

The conceptual thread that runs through these previous efforts, and leads
naturally to our present work, is the process of identifying attention-grabbing
events at one level and showing them dynamically at another. The work pre-
sented here is not merely another, more powerful tool that claims to make the
connection between algorithms and animation quicker or easier. Rather, it pro-
vides a generic methodology and a specific implementation to use state-of-the-art
tools of one kind in order to build a front-end, and, in a separate effort, to use
state-of-the-art tools of a completely different kind to build the specification of
the dynamics.

We believe that our methodology can be easily kept up to date on both kinds
of tools. Tools for the specification of reactive systems are continuously progress-
ing to match the highest criteria of system modeling, design and deployment,
while animation tools have been improving rapidly to satisfy a wide variety of
relentlessly fast-growing applications and needs. By dividing the tasks, and iso-
lating the link between these two worlds, we are able to stay updated as both of
them develop, resulting in the most powerful “inner parts” of the specification
of reactive system dynamics that also “look good” on the outside.

2 Reactive Animation

Most scripting languages that come with animation tools provide a set of in-
structions that make it possible to perform some manipulation of the animated
objects. Such scripting languages, although in principle of universal computing
power, are not built with any intention of matching the strength of program-
ming languages. The underlying difference is that here we have the script, a
set of commands that is run by some other language and not directly by the
computer’s processor (as a compiled program would). Scripting languages are
common in multimedia tools in general and in animation tools in particular.

We would like to use the term Reactive Animation for the working com-
bination between the power of reactive modeling languages and tools, such as
statecharts in Rhapsody, and the power of animation tools like Flash. Reac-
tive Animation provides a vivid representation built on a rigorous, hard core
model of the system under description. Furthermore, we achieve this representa-
tion without the need to carry out difficult and tedious coding in the animation
tool’s scripting language, and without having to build complex and cumbersome
animation capabilities on top of the reactive modeling tool.

2.1 The Two Components

We simulate and represent systems using two separate, detached environments.
The simulation is designed without the need of any animation, and the animated



Reactive Animation 141

components are designed without the need of any code from the model. The
final result, nevertheless, is an attachment of the two — a reactive animation
(something like a sophisticated interactive movie).

We build a model of the system without necessarily taking into account the
fact that we plan to later represent it in animation. The model will therefore be a
regular reactive model of the system, and when building it we do not have to try
to specify it according to the way we think it should ultimately be animated. We
do not specify the system for the sake of animation. We animate the specification.
We design a model by specifying its classes and their interconnections (e.g.,
with object model diagrams), and their behavior (e.g., with statecharts). We
add functions and attributes. We check the model, we run it, we modify it, etc.
Some information on what needs to be prepared in the animation tool is provides
below (2.2).

We integrate the specification and the desired animation by building a few
paths of control to coordinate directions and appearance, and to synchronize
the running simulation with components from the animation. The viewer sees
the result as a running movie, which spontaneously leads to the notion of a
directed sequence of events. However, the movie is in fact generated on the fly
by connecting the two facets of the system: our representation of how the system
works and our representation of what the system looks like.

It is important to stress that we do not merely use statecharts to specify some
intricate behavior of animated scenes or of animated systems, as is suggested
elsewhere [28]. We are also not merely trying to incorporate reactive abilities
into an animation tool.

2.2 How to Link the Two

Figure 1 is a sketch of the different parts of the scheme and their inter rela-
tionships. As the reactive modeling tool (on the left of the figure, in blue) we
use Rhapsody from I-Logix. The first effort in representing the specification as
animation is to identify the changes in the simulated system that would be best
described by animation. We call these changes visual landmarks. Although some
of these landmarks are obvious (for example, the movement of parts of the sys-
tem), some can only be identified by having some pre-knowledge of the system.
For example, when we simulate cells (explained in more detail below), we might
want to show the appearance and disappearance of receptors on the cell’s sur-
face. However, visual landmarks do not include the decision trees incorporated
into the cell’s behavior.

Path (1) in Figure 1 is, therefore, the identification of visual landmarks and
making them, through a communication interface, amenable for the animation
tool. On the other side of the figure we see the animation tool in purple, where we
build components that are able to handle each of these visual landmarks. We do
not build the movie itself, i.e, the way these landmarks are combined. Rather, we
only supply the running simulation with enough tools to build the movie by itself.
We thus design components that would be able to collectively build, during run-
time, a representation of classes from the simulation. Such components need not



142 D. Harel, S. Efroni, and I.R. Cohen

Fig. 1. A diagramtic description of Reactive Animation.

have a stationary non-dynamic representation, even though they are triggered by
immediate changes. Scripting languages help animate these immediate changes
into a smoothly running animative representation.

Path (3) in the figure may be understood as making use of the animation
tool’s projector abilities. Path (4) stands for the dynamic attachments between
components that turn them into a representation of the system, and not merely a
detached representation of components. Path (5) in the figure is the intervention
the user may wish to apply to the simulation while it is running. Such inter-
ventions are mediated by components provided by the animation tool. These
components are, again, linked to matching events in the simulated system.

The setup required for our two-faceted Reactive Animation therefore con-
sists of: (i) visual landmarks identified in the system; (ii) components in the
animation tool that are able to respond to alerts about visual landmarks; (iii) a
medium to transfer messages back and fourth between the two tools. So far, we
have not discussed the third of these, the medium that enables communication



Reactive Animation 143

between the two tools. In principle, this medium may be any applicable form
of communication that allows data transfer in real time: a communication pro-
tocol over real-time systems, Windows DLL files, network protocols, or others.
We currently use TCP/IP as the medium and XML files to transfer the data
between the two tools we work with.

It is not possible to provide optimal tactics on how one should animate
an arbitrary reactive system. Most systems live in a pre-known environment
of people and nomenclature, and come with some history of analysis, with its
terms and relevant behaviors. These should be identified and sought for in the
simulation and should have visual renditions in the animation.

2.3 Conceptual Layout

Reactive animation builds upon the concepts and methods that were introduced
earlier, in the field of algorithm animation, and the work that stemmed from
this field. The conceptual layout is portrayed in Figure 2.

Fig. 2. The conceptual layout of reactive animation. The layout of the concept is similar
to any algorithmic animation. The figure is a re-adaptation of a figure from [24]. AR
- Abstract Representation, AO - Application Operation, AN - Animation, (a) - code
generation. (b) Statecharts animation.

The general procedures in creating reactive animation are similar to algo-
rithm animation: 1. Build the algorithm 2. Identify visual landmarks (or any
other terminology for the interesting event during algorithm execution) 3. Build
a bridge between the two. The novelty and the contribution of the work we
present here is 1. We do not try to represent only the abstract but also real
shape 2. Applicability.



144 D. Harel, S. Efroni, and I.R. Cohen

3 Examples

We illustrate Reactive Animation using two examples: the development of T
cells through the thymus and the simulation of traffic flow. Short videos showing
parts of these are available.

3.1 The Thymus Example

This work started from an effort to understand a biological system — the thymus.
This is an organ in which thymocytes develop to become mature T cells, which
are an important part of the immune system [29],[30]. We have modeled the
behavior of this system, and especially that of thymocytes in their journey within
the thymus. Our specification of the behavior of cells that comprise the thymus
is done using statecharts and object model diagrams in Rhapsody. We analyze
the data about the biological objects (e.g., the cells) as they appear in literature.
In this analysis, we transform current understanding into states, transitions and
parameters.

We then compile the functioning Rhapsody model and run it, thus obtaining
a simulation of the relevant aspects of the thymus. The problem with this Rhap-
sody simulation is that it is very difficult to understand. What we see when
executing the model is a diagrammatic simulation, showing the generation of
instances, the switching between states, the events that have been consumed,
the events that are about to be consumed, and so on. This representation is de-
tailed and rigorous, and it does help in understanding what the thymus is doing,
but not nearly enough. Biologists, for example, find extremely difficult to get a
feeling for the living system from such a simulation.

To alleviate this problem, we built a Flash front-end that visually resembles
the way cells actually appear when viewed through a microscope (or at least
the way diagrams can depict this). This front-end animates the course of events
in the thymus. It shows the viewer of the animation how cells move, change
their receptors, interact with other cells, proliferate, mature, die and secrete
different substances. All the processes occur within the Rhapsody model, and
can, in principle, be viewed in the Rhapsody simulation itself. We could have
viewed the statecharts as they are animated: we could also follow text lines or
watch events being consumed. This might be feasible for a system with a small
number of cells, but when we have myriads of cells — as is the case here — this
is infeasible, and to understand the process, we must have a visual animated
front-end to the simulation.

Figure 3 illustrates a snapshot of a very small part of the diagrammatic an-
imation and the true reactive animation. A more elaborate animation may be
seen in the accompanying movie. The right hand side of part (a) of the figure
shows a small portion of the statechart of a thymocyte. The full statechart is
much larger and much more complicated, and cannot be shown and explained
in full within the scope of this paper. On the left hand side we see the symbolic
presentation. Attached to this spherical-looking rendition of a cell we can see



Reactive Animation 145

Fig. 3. a) The various features that control the appearance of an animated T cell. b)
The procedure for dictating a T cell’s color.

“arms” that represent Part (b) of the figure, following the trail of a single sim-
ulated biological event as it starts with the simulation to be transferred to the
animation.



146 D. Harel, S. Efroni, and I.R. Cohen

Rhapsody continuously assigns a cell phase to each configuration of recep-
tors on a cell’s surface. Every such cell phase is given a matching color in the
animation. When Rhapsody finds that a state of a cell has been changed, it
sends a message to Flash, in which the proper cell is identified, and its phase
is declared. When Flash receives this message, it first locates the appropriate
cell from among the many animated cells, and then changes that cell’s color
according to the predefined color code.

Since the user of our simulation receives a large quantity of data via the
animation, we would like him/her to be able to interact with the simulation
through the animation. To that end, we have also built the animation as an
interactive user interface. The user may then choose his/her current focus, send
orders to the reactive engine, receive data from it, apply statistical tools, and so
on. For example, the user is able to control the different receptors on each of the
cells’ surfaces, find out what are some of the more important cell’s attributes, or
ask for the percentages of cells that are found at different developmental stage.
In short, the user may perform experiments with the data and see the outcome.

It is noteworthy that the T-cell thymus model itself is very detailed and com-
plex, and captures a tremendous amount of information known on the behavior
of the system. In fact, we have incorporated information from around 250 biology
papers.

3.2 The Traffic Example2

Vehicle traffic is another telling example of emerging complexity on both levels.
To simulate the collective behavior of moving cars in a complex context, and
adhering to the need for real-time decision-making, we have again used the lan-
guage of Statecharts in Rhapsody. Statecharts are used to specify the choices the
driver makes while driving, the behavior of scene elements in the environment,
such as traffic lights, the actual movement of the cars, and the overall manage-
ment of the project. On the graphical side, we used Flash to build a library of
animated cars, traffic lights, pedestrians, houses, lanes, and so on, in order to
facilitate a real-time graphical representation of the interacting objects.

The specification of the simulation serves to accomplish two primary goals.
The first is the implementation of the overall management of the project. This
includes such activities as the entry and removal of all the interactive objects in
the environment (e.g., cars, pedestrians and obstacles), along with maintaining
a map of their locations in the scene, and the handling and parsing of incoming
and outgoing messages between the specification and animation sides of the
simulation. The second is the specification of the reactive behavior of the objects.
This includes the cycling of traffic-light states and the movement of pedestrians.
The most complex element of the specification is the implementation of the
logic of driving a car. Each car must be aware of all relevant objects in its
vicinity. Based on the conditions in its immediate neighborhood, a car performs
a complex series of calculations in order to determine its correct behavioral
2 This part of the work was done jointly with Aron Inger.



Reactive Animation 147

Fig. 4. A general view on layering in Reactive Animation.

response. Decisions are made to avoid obstacles, to obey the rules of the road
and to maximize efficiency. In order to accomplish these objectives, cars may
choose to increase or decrease their speed, to turn or to switch lanes.

This “awareness” of the car’s surroundings and the calculation of its reac-
tions are implemented with Statecharts. Nevertheless, the collective interactions
of such a complex multi-agent system cannot be appreciated through the inspec-
tion of the Statecharts alone. Animating of the interactive objects, using the
graphical front-end, simultaneously and in real time, facilitates a much greater
understanding of the simulation. The animation displays a running movie of the
current locations of all the objects, as well as their behavior. Traffic lights can
be seen cycling through their various colors, while cars move, turn, change lanes,
wait in traffic jams, stop for red lights, and even crash into each other. In the
true spirit of reactive animation, the information required for this representa-
tion is received from Rhapsody and not directly calculated by Flash. The user
may also interact with the animation by requesting to display certain kinds of
information. Various details, such as the current speed or age of each car, can



148 D. Harel, S. Efroni, and I.R. Cohen

be displayed, in numeric format or by color-coding the cars in the scene. The
awareness neighborhood of individual cars can also be reflected on the map. This
sort of high-level information aids in understanding the overall behavior of the
simulation in a way that would not be possible without the animation.

An example of the traffic flow simulation can be seen in Figure 5, and a movie
of the animation accompanies this paper. The animation of the simulation may
be seen on the left side, with some of the Statechart logic displayed on the right.

Combining specification and animation is not only helpful for understand-
ing the behavior of the system but also facilitates the coding of the system as
well. Generating the logic behind each car’s decision-making process along with
debugging this logic as it is coded is difficult to perform in an abstract setting.
The animation provides an intuitive demonstration of the resulting behavior
generated by the code. This eases the process of designing and implementing the
simulation itself.

4 The Implementation

This section describes the way we are currently implementing Reactive Anima-
tion in specific hardware and software. In addition to thymus and traffic simula-
tions we are currently working on additional projects with the same implemen-
tation: cell migration and the fine details of choices made by the immunological
repertoire. Somewhat different setups are used for these projects, but in all of
them we use Rhapsody (either in C++ or Java) and Flash MX, but we are in
the process of integrating other tools and are incorporating three dimensional
animation tools.

The connection between the reactive system’s behavior (Rhapsody state-
charts in execution) and Flash’s projector (running animation) is carried out
through TCP/IP. At run-time, the messages we send back and fourth between
the simulation and animation consist of relatively small XML files. Flash pro-
vides built-in tools to handle XML files. We built special-purpose components
into the Rhapsody model to be able to handle outgoing and incoming XML files.

The fact that we are using TCP/IP as the transfer medium makes it easy
to implement the same configuration of a reactive simulation and its animation
over a network. In such a network, one machine can be dedicated to all (hard)
reactive simulation work and another machine is dedicated to animation display.
This structure presents some advantages:

– Strong computer hardware is dedicated to performing hard tasks related to
reactive simulation. CPU power and memory are not busy with tasks related
to graphical display.

– Different machines with different hardware configurations may be used in
optimal conditions for different computing jobs. Hardware configurations
well suited for displaying graphics are not well suited for multi-threading
or other computational tasks. By separating the tasks — simulation on one
machine and animation on the other — we can provide an optimal hardware
environment for each of these missions.



Reactive Animation 149

Fig. 5. Reactive animation exemplified in traffic simulation.



150 D. Harel, S. Efroni, and I.R. Cohen

– We can assume that reactive simulation will usually be more demanding than
animation. We may also assume that very powerful machines will always be
rarer than conventional computing power. To accommodate the limitations
of computer power, we can install the reactive simulation on a powerful
machine and allow people interested in running the simulation, even if they
do not own the necessary computing power, to be able to run the simulation
and view its animated interface.

– There are cases where many users wish to simultaneously access the simu-
lation. Examples are multi-participant games, the simulation of war games,
traffic flow, air traffic, and more. In such cases, the various multimedia play-
ers are available for almost all operating systems, so that a variety of users
can access the simulation run on a host machine. Since we can apply lay-
ering (explained below), every user may use his/hers own relevant view of
the system’s behavior. If we take air traffic control as an example, different
users may view different areas of the country, while air field designers may
wish to look at statistical data generated by some other layer in real-time
or post run. Moreover, since the internet is an easy medium for TCP/IP, all
this may be done over the internet.

To make the connection between the simulation and the animation, we send
the simulation information, in capsules. Currently, only one entity continuously
“listens” for such information. In principle, it is possible to add other “listen-
ers”, not necessarily animation tools, who may make use of this information.
For example, in our thymus simulation, we continuously release large amounts
of data about a large amount of cells. It is difficult to statistically analyze so
much data. Still, special tools are now available to make this kind of real-time
statistical analysis possible. We could have such tools tapping the flowing data
and analyzing it in real-time. Once this analysis is finished, the results may be
sent to the animation tool for display (see figure 4). One can easily think of other
such connections, since any large system may be viewed from many angles, each
of which can be equipped with a listener, providing its own interpretation to the
information that comes in.

4.1 Supporting Movies

The movies that accompany this paper provide brief illustrations of the two
example applications, as they appear in our implementations. The movies are
available at:

http://www.wisdom.weizmann.ac.il/˜sol/reactiveAnimation2003.zip
To view the movies, download the file “reactiveAnimation2003.zip”, extract

it to some folder, and open the “main.htm” file.
The first movie, on the thymus, starts with the simplest example for the

interplay between reactive specification and front-end animation. It shows the
change of receptors on a T cell’s surface, first in the tool we use for specifica-
tion — Rhapsody — and later in the Flash animation. Following this, we see
a population of T cells, which is actually the animated representation of mul-
tiple instances of the T-cell object. All of these are created and manipulated



Reactive Animation 151

by the underlying code that is automatically generated by Rhapsody from the
statechart model in order to drive the simulation.

The second movie, on the traffic example, also shows some of the Statecharts
in Rhapsody and some scenes from the animated front end. This movie does
not include the kind of explanations that the first movie does, only run-time
snapshots. In this movie it is particularly important to realize that in such a
format we can only show very few of the statecharts that drive the simulation.
The statechart portion that is shown in the background dynamically changing
states represents a part of a single instance of a car, while in practice there are
numerous such instances viewable on the animation.

5 Conclusions

We have presented a method for animating reactivity, or, equivalently, for driv-
ing a reactive animation by programming its dynamics using tools developed
specifically for classical reactive systems. Thus, we make it possible to better
understand the function of a reactive system through an animated front-end.
This front-end is not a movie about the reactive system; rather, it is continu-
ously generated by the underlying simulated reactive system. We do not change
the methodology commonly used by tools for reactive systems, but instead in-
troduce the well established explanatory power of animation. Further, to achieve
this, we do not require that the reactive system tools be extended by specially
designed add-ons to enable animation, but show how this can be done by directly
linking them to available animation tools.

Reactive Animation has other benefits too, including better ways to make
use of available hardware; new possibilities for multi-user simulations and games;
and ways to incorporate available tools for statistical analysis on the bridge be-
tween animation and simulation. Reactive Animation also offers substantial help
in handling multi-agent simulations, where dynamic representation is demand-
ing. By using this methodology and its technical benefits, we make use of current
(and probably future) state-of-the-art tools. We take advantage of two different
facets of expertise in software companies: some make excellent tools for specify-
ing reactive behavior, and others make excellent tools for producing interactive
animation. By using Reactive Animation, we separate the efforts of modelers
and animators and equip each with state of the art tools, only to later join the
two.

We are currently in the process of applying Reactive Animation to different
simulations and with different tools than the ones illustrated here. One applica-
tion is the animated representation of models specified with tools for inter-object
description [12], such as the recently developed Play-Engine, based on the lan-
guage of live sequence charts [31] and the play-in/play-out methodology [13].
Other paths we are exploring include a 3-D representation of another biological
environment, using Macromedia’s Director [4].

Reactive Animation promises to bring, with relatively small effort, many
benefits to people developing or working with reactive systems, and to people



152 D. Harel, S. Efroni, and I.R. Cohen

interested in enriching the reactive and interactive capabilities of animation per
se.

Acknowledgments

We wish to thank Aron Inger for his dedicated work on the traffic example, and
Yeda Research and Development, Ltd., the Weizmann Institute’s technology
transfer company, for financial support of that work.

References

1. D. Harel and A. Pnueli, “On the development of reactive systems,” in Logics and
Models of Concurrent Systems (K. R. Apt, ed.), vol. F-13, pp. 477–498, Springer-
Verlag, New York, November 1993.

2. D. Harel, “On visual formalisms,” Comm. Assoc. Comput. Mach., vol. 31, no. 5,
pp. 514–530, 1988.

3. I-Logix Inc. http://www.ilogix.com.
4. Macromedia Inc. http://www.macromedia.com.
5. R. J. Weiringa, Design Methods for Reactive Systems: Yourdon, Statemate, and

the UML. Boston: Morgan Kaufmann, 2002.
6. Honeywell DOME. http://www.htc.honeywell.com/dome/.
7. Aonix. Software Through Pictures. http://www.aonix.com.
8. Rational Software. http://www.rational.com.
9. R. Mili and R. Steiner, “Software engineering - introduction,” LNCS, vol. 2269,

pp. 129–137, 2002.
10. Z. Manna and A. Pnueli, Temporal Verification of Reactive Systems: Safety. New

York: Springer, 1995.
11. D. Harel and E. Gery, “Executable object modeling with statecharts,” IEEE Com-

puter, vol. 30, no. 7, pp. 31–42, 1997.
12. D. Harel and R. Marelly, Come, Let’s Play: A Scenario-Based Approach to Pro-

gramming. In Preperation.
13. D. Harel and R. Marelly, “Specifying and executing behavioral requirements: The

play in/play-out approach,” Software and System Modeling, To Appear 2003.
14. D. Harel, “Statecharts: A visual formalism for complex systems,” Sci. Comput.

Programming, vol. 8, pp. 231–274, 1987.
15. Unified Modeling Language. http://www.uml.org.
16. J. Rumbaugh, I. Jacobson, and G. Booch, The unified modeling language reference

manual. Reading, Mass.: Addison-Wesley, 1999.
17. Altia Inc., Embedded Systems Graphics. http://www.altia.com.
18. M. H. Brown, “Exploring algorithms using balsa-ii,” IEEE Computer, vol. 21,

no. 15, pp. 14–36, 1988.
19. J. T. Stasko, “Tango: a framework and system for algorithm animation,” IEEE

Computer, vol. 23, no. 9, pp. 27–39, 1990.
20. B. Topol and J. T. Stasko, “Integrating visualization support into distributed com-

puting systems,” Tech. Rep. GIT-GVU-92-20, Georgia Institute of Technology,
1994.

21. B. Meyer, “Formalization of visual mathematical notations,” in DR-II: AAAI
Symp. on Diagrammatic Reasoning, (Boston), 1997.



Reactive Animation 153

22. C. D. Hundhausen, S. A. Douglas, and J. T. Stasko, “A mets-study of algorithm
visualization effectiveness,” Journal of Visual Languages and Computing, vol. 13,
no. 3, pp. 259–290, 2002.

23. P. CRESCENZI, C. DEMETRESCU, I. FINOCCHI, and R. PETRESCHI, “Re-
versible execution and visualization of programs with leonardo,” Journal of Visual
Languages and Computing, vol. 11, no. 2, pp. 125–150, 2000.

24. S. Takahashi, K. Miyashita, S. Matsuoka, and A. Yonezawa, “A framework for
constructing animations via declarative mapping rules,” in Proceedings of IEEE
Symposium on Visual Languages, (St. Louis), pp. 314–322, 1994.

25. G. F. Italiano, G. Cattaneo, U. Ferraro, and V. Scarano, “Catai: Concurrent algo-
rithms and data types animation over the internet,” in Proceedings of 15th IFIP
World Computer Congress.

26. J. T. Stasko and J. F. Wehrli, “Three-dimensional computation visualization,”
Tech. Rep. GIT-GVU-92-20, Georgia Institute of Technology, 1992.

27. J. E. Baker, I. F. Cruz, G. Liotta, and R. Tamassia, “Algorithm animation over the
world wide web,” in Proceedings of the 1996 ACM Workshop on Advanced Visual
Interfaces, pp. 203–212, 1996.

28. J. Kaye and D. Castillo, Flash MX for Interactive Simulation: How to Construct
& Use Device Simulations. OnWord Press, 2002.

29. I. R. Cohen, Tending Adam’s Garden: Evolving the Cognitive Immune Self. San
Diego, CA: Academic Press, 2000.

30. R. A. Goldsby, T. J. Kindt, and B. A. Osborne, Kuby Immunology. New York: W.
H. Freeman and Company, 2000.

31. W. Damm and D. Harel, “LSCs: Breathing life into message sequence charts,”
Formal Methods in System Design, vol. 19, no. 1, pp. 45–80, 2001.


	1 Introduction
	1.1 Reactive Systems
	1.2 Model Execution
	1.3 Animation
	1.4 Related Work

	2 Reactive Animation
	2.1 The Two Components
	2.2 How to Link the Two
	2.3 Conceptual Layout

	3 Examples
	3.1 The Thymus Example
	3.2 The Traffic Example 

	4 The Implementation
	4.1 Supporting Movies

	5 Conclusions
	References



