
0018-9162/05/$20.00 © 2005 IEEE38 Computer

C O V E R F E A T U R E

P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y

Reactive Animation:
Realistic Modeling of
Complex Dynamic
Systems

C omplex systems come in many varieties.
Some are transformational, of an input-
process-output type, repeatedly carrying
out their prescribed work for each new set
of inputs. The complexity of these systems

stems from their computations and from data flow,
and is in the range of what existing tools can manage.

A far more problematic class of complex systems
comprises large systems that are heavily control- or
event-driven. Such systems—dubbed reactive1,2

because their role is to react to various kinds of
events, signals, and conditions in intricate ways—
are often concurrent and distributed. Many exhibit
time-critical aspects and hybrid behavior that is pre-
dominantly discrete but also has continuous
aspects. A reactive system’s most distinguishing fea-
ture is that no one asks it to produce some final val-
ues upon terminating; rather, the system maintains
an ongoing interaction with its environment.

Reactive systems can be relatively small, such as
cell phones, PDAs, and digital watches, or far more
complex, such as the systems in automotive and
aerospace applications. Reactive systems can be
control systems, such as telephone and communi-
cation controllers, air traffic systems, and industrial
robots, or large-scale interactive software packages,
such as word processors and mail programs.
Biological systems, such as the brain and immune

system, might be viewed as the epitome of reactive
complexity, yet both systems are accessible.

Whatever their size and function, all reactive sys-
tems must maintain intricate dynamic relationships
with their environment, reacting properly and on
time to mouse clicks, pressed buttons, temperature
changes, receivers being hung up, cursors moving
on a screen, and so on.

Reactivity exacerbates the problems complex sys-
tem developers already see, as “The Challenge of a
Reactive System” sidebar explains. Reactive system
complexity continues to challenge both system
architects and front-end designers. System archi-
tects must understand the computational/behav-
ioral problem and carry out the complex tasks of
modeling (specifying) and analyzing the system’s
reactive behavior and then designing the imple-
mentation. Front-end designers must build intuitive
and appealing visual interfaces for simulation,
analysis, testing, and deployment.

The scientific community within software engi-
neering has equipped system architects with exten-
sive tools—aids for analysis and verification as well
as a variety of visual languages and methodologies
convenient for building visual system models, such
as Petri nets,2 sequence charts, 3 and Statecharts.4

The Unified Modeling Language (UML) has col-
lected many of these languages, often in modified or

Reactive animation combines state-of-the-art reactivity and state-of-the-art
animation by linking advanced tools in the two areas. Architects of
complex reactive systems and front-end designers then have a bridge
between a system’s appearance and what it does.

Sol Efroni
National Cancer
Institute Center for
Bioinformatics

David
Harel
Irun R.
Cohen
Weizmann Institute
of Science

January 2005 39

extended form, which has likely contributed to its
popularity as a multifaceted development frame-
work.

Some of the system architect’s tools are true “reac-
tive engines,” with full executable semantics, in that
the tools can run the models and generate final
implementation code. Some can also link to verifi-
cation tools, allowing hard analysis. These engines
are thus quite helpful, and their usefulness grows as
UML continues to standardize and improve.

Similarly, front-end designers have adequate
tools for their work, which can generate animated
graphical designs with high quality and perfor-
mance at an increasingly lower cost. The Web is
becoming a driving force behind the development
of improved animation tools, and these tools in
turn offer designers what they need to create real-
istic user interfaces.

Although system architects and front-end design-
ers have their respective quality toolsets, their func-
tions remain largely separate. Since reactive systems
are highly dynamic by nature, a crucial question
becomes how to combine precise modeling and
analysis with an animated front end. In more gen-

eral terms, how do you append knowledge to
beauty or an automobile’s engine to its body and
external appearance? How do you accurately rep-
resent the complex reactive immune system with
the realism required to trigger the minds of exper-
imentalists to explore new ideas and move to con-
ducting new experiments? This is the challenge we
elected to explore.

The result of our work is reactive animation, a
patent-pending technology aimed at combining state-
of-the-art reactivity with state-of-the-art animation.
To implement RA, we propose linking advanced
tools for reactive system development with advanced
tools for animation—a strategy we believe applies to
a wide spectrum of applications that call for com-
plex reactivity and a highly dynamic front end.

FOUNDATIONAL PRINCIPLES
RA is not a new way to animate algorithms;5 it

does not attempt to introduce a method for trans-
lating algorithmic complexity into abstract, arbi-
trary animation. Instead, it uses dynamic user
interfaces and animates or dynamically redesigns
them to represent the system and its operational

The structure of a reactive system consists of many inter-
acting, often distributed, objects. Very often the structure itself
is dynamic, with objects being created and destroyed during
the system’s life. Thus, reactivity’s primary challenge is in how
to specify the system’s behavior over time, clearly and correctly,
and in ways that someone can easily and reliably implement,
analyze, and verify.1-3 What will happen and when? Why will
it happen, and what else will it cause to happen in its wake?
Can other things happen in the interim? Are certain things
mandatory but others merely allowed to happen? What are the
time constraints on something happening? What if things don’t
happen as expected? What things are not allowed to happen
under any circumstances?

As these questions imply, reactivity is not an exclusive char-
acteristic of man-made computerized systems. It is present in
biological systems, as well, which despite being much smaller
than humans and their homemade artifacts, can be quite a bit
more complicated. Perhaps the most daunting challenge is not
the precise, yet realistic representation of reactive systems that
humans design using reasoning and logical constructions, but
the precise, testable, and realistic representations of reactive
systems that a meandering evolution “designs.”

The complexity of reactive biological systems such as the
brain and the immune system is amplified manyfold by the
unforeseen and unforeseeable functions and interconnections

of the component parts that constitute the system. The logic
of evolution is not always clear to human minds. For example,
a typical component of a reactive biologic system performs
more than one function (pleiotropism); connections between
components are variable (degeneracy); and any function seems
to be preformed by alternative choices of component parts
(redundancy). The modeler of such a system must represent
the true richness of the evolved system in its pleiotropism,
degeneracy, and redundancy while revealing the properties of
the system that emerge from its complexity.4 The explication
of emergence is the challenge.

References
1. D. Harel and A. Pnueli, “On the Development of Reactive Sys-

tems,” Logics and Models of Concurrent Systems, K.R. Apt, ed.,
NATO Advanced Science Institute Series, vol. F-13, Springer-Ver-
lag, 1985, pp. 477-498.

2. A. Pnueli, “Applications of Temporal Logic to the Specification
and Verification of Reactive Systems: A Survey of Current Trends,”
in Current Trends in Concurrency, J. de Bakker et al., eds., LNCS,
vol. 224, Springer-Verlag, 1986, pp. 510-584.

3. R.J. Wieringa, Design Methods for Reactive Systems: Yourdon,
Statemate, and the UML, Morgan Kaufmann, 2002.

4. I.R. Cohen, Tending Adam’s Garden: Evolving the Cognitive
Immune Self, Academic Press, 2000.

The Challenge of a Reactive System

40 Computer

behavior realistically. RA is also not a methodol-
ogy that uses notions from reactive systems and
visual languages to facilitate the handling of reac-
tivity inside the animation tools themselves.6

Rather, RA is about linking the two efforts—
reactive systems design and front-end design—by
bridging the power of the best tools in the two sep-
arate areas. In essence, RA has two arms: One com-
prises powerful tools and methods for reactive
systems development, the heart of which is a rig-
orous specification of the system’s reactivity. The
other comprises powerful animation tools to rep-
resent that specification as an intuitive, control-
lable, animated front end. And these animation
tools are not simply to provide entertainment; ani-
mation is an essential communication channel in
the cross-cultural discourse between computer sci-
entists and biologists, between living systems and
human understanding.

Technically, RA is based on the view that says a

system is a closely linked combination of what it
does and what it looks like; from this stem two sep-
arate but closely linked paths: reactive behavior
design and front-end design. Initially the two paths
do not overlap, but they do connect later on when
their cooperation becomes essential to under-
standing the model or facilitating some task.

Designers might first prepare a visual system
description and build the visual interface using their
preferred animation tool. When this external view
requires further dynamic enrichment with the
sophistication of a reactive design, the view can link
with a reactive design tool.

Alternatively, the design can start with the con-
struction of all or part of a reactive system model,
which designers can enrich later by incorporating
a high-quality animated front end. The “Graphical
User Interface versus Front-End Animation” side-
bar explains more about the unique capabilities this
kind of front end offers.

Because reactive complexity has driven modelers to
strongly emphasize the visual, most reactive system engines
now use visual diagrammatic languages and then execute
the models in a diagrammatic animation mode. Tools like
Statemate, Magnum, Rose RT, and Rhapsody can animate
statecharts, showing color-coded state changes triggered by
edge transitions, the dynamics of instance creation and
destruction, and more. A graphical user interface commonly
complements such running models with the goal of facili-
tating model manipulation. The GUI structure usually relies
on form-based tools with standard interface elements, such
as switches and bulbs, drop-down menus, buttons, dials,
sliders, and so on.

More realistic interfaces—such as those Altia provides
for virtual prototype construction—can enhance GUI tools.
To describe an air traffic control panel GUI, for example,
architects can easily and intuitively build an interface for
the control board, and the GUI software could enhance that
by offering standard libraries for interface tasks and events.

Adding nonstandard dynamic components to these inter-
faces is another matter. Suppose the architects wanted to
enrich the standard control panel with elements that depict
not only the location, speed, and altitude of various aircraft,
but also an aircraft’s dynamically changing shape and
appearance, and they wanted to do this on the background
of a realistically animated outside world as seen from the
cockpit, and they wanted to do it all in a truly reactive and
interactive fashion. They would be forced to program most
of this separately and tediously in a standard programming

language and in a way that fails to exploit the natural and
easy connection between the GUI and the underlying reac-
tive engine. Moreover, if this richer kind of interface is to be
part of air-traffic simulation, the architects might want to
enhance it by including the reactive behavior involved in
navigating the aircraft and to equip the interface with the
ability to zoom into individual aircraft to see (and perhaps
also modify) the decision-making processes, the individual
cockpit views, and so on. Animation tools typically provide
the underlying components that such animation and inter-
action tasks require, but it is virtually impossible to create a
synergy between these components and standard GUI tools
or to use them to connect to the underlying reactive engine.

Popular animation tools for game and animated movie
creation include Macromedia’s Flash, Director, and Maya
(a recent Academy Award winner). Users of these tools can
create realistic animations in total animative freedom, which
is not possible with either standard GUI tools or form-based
developmental environments. Because of their user-oriented
design, true animation tools also offer myriad ways to facil-
itate interactivity. Designers can easily capture user events
in a context-sensitive manner and manipulate animated
objects using rotation, enlargement, movement, and other
actions. Partially as a result of the gaming industry’s experi-
ence, these tools also offer optimized configurations accord-
ing to platform and graphic needs. Thus, satisfactory
performance comes with relative ease. Animation tools can
yield realistic simulations aimed at a broad audience, and
player software is available for most platforms.

Graphical User Interface versus Front-End Animation

January 2005 41

IMPLEMENTATION STEPS
Figure 1 illustrates the steps in building an RA

implementation. Modelers develop the system’s
appearance (left path) using the animation tool,
which includes the required animation components
and the scripting instructions on how the compo-
nents combine at runtime. Along the mechanism
path (right), which leads to a specification, archi-
tects use reactive system development tools to deal
with the system’s architecture and runtime behav-
ior. Through specification, the designer produces a
full running model of the system.

Once the animation components and the reactive
behavior are operational, the designer can link them
through a specific communication channel. When
the link is complete, the designer can run the reac-
tive model so that it continuously sends the infor-
mation animation needs, while at the same time
attending to information coming from animation.
The user can then view and interact with the run-
ning model through the front-end animation, the
visual language’s diagrammatic animation, or both.

Our initial implementation of reactive anima-
tion involved two state-of-the-art tools: Ilogix’s
Rhapsody (www.ilogix.com/rhapsody/rhapsody.
cfm) and Macromedia’s Flash (www.macromedia.
com/software/flash/). We developed the reactive
model in Rhapsody in the usual way, employing
mainly statecharts and class diagrams in a manner
consistent with the general UML approach.7 We
then analyzed the resulting diagrams using tools
built into Rhapsody and analyzed the model’s
behavior in standard ways.

The next step was to identify specific events and
states that we deemed critical to comprehensively
understanding the system. We built visual repre-
sentations in Flash to portray the specific events,
for example, building a spreading pulse to signify
the biological event of an activated T cell.

We then connected the reactive specification
and the animation using TCP/IP,3 which provides
many degrees of freedom. Because TCP/IP allows
communication over a network, for example, we
could run Rhapsody and Flash on two separate
machines that communicate over a local area net-
work. Thus, we had easily distributed processes
and the freedom to use custom machines in spe-
cific applications.

We are exploring ways to make RA more generic.
A program designed using RA is oblivious to
whether it is being displayed on a desktop moni-
tor, a handheld computing device, or even a cell
phone. If, say, computer game designers create
agents as reactive systems, they can use RA to cus-

tomize the agents’ embodiment in the interface to
fit the carrying platform. A user playing that game
on a desktop could then leave and continue the
game on a network-connected handheld. The same
idea applies to many other day-to-day systems, such
as home appliances.

A classic example is the difficulty many people
have programming their VCRs, a state due in part
to the limited possibilities of the VCR’s interface
(at least in most models). The VCR program itself
is a reactive system, however; as such, a designer
can endow it with RA through an interface that
uses any monitor connectable to a network. Thus,
without changing the VCR’s reactive program—
just allowing it to communicate—any user can
build a custom legible interacting interface and run
it on the display of choice.

IMPLEMENTATION EXAMPLE
We used RA to model and simulate the develop-

ment of T cells in the thymus gland, a highly com-
plex process that involves many cells, chemical
substances, surface molecules, protein consump-
tion, and more.8 To build the model, we analyzed
and incorporated the information in more than 300
scientific papers using mainly Statecharts and
Rhapsody (the reactive engine) linked with Flash
(the front end).9,10 Readers can view several prere-
corded video clips of the simulation, including seg-
ments of the animation and the statecharts in
operation, and some examples of typical interac-
tion at www.wisdom.weizmann.ac.il/~dharel/
ReactiveAnimation/.

In this RA model, we view each cell as a reactive
object and assign it a detailed statechart, which is

Append animatic behavior
to states and transitions

Reach a full working model

Software architecture
Design
Visual languages

Specification

Reactive animation

Build component
Design scripting to respond

Animation

Interactivity

Interactivity

MechanismAppearance

System

Figure 1. An RA
concept diagram.
Appearance and
mechanism
represent two
design paths that
start separately but
eventually connect,
thus bridging the
gap between what
a system looks like
and what it does.

42 Computer

identical within each cell type. Thus, different cell
types correspond to different statecharts. Some of
the molecules have their own reactive behavior,
while others follow a behavior specified through
mathematical equations. In a typical execution, the
model generates thousands of cells, each with its
statechart instance.

The most complex behavior belongs to the class
of developing T cells. Figure 2 shows parts of the
statechart of the T-cell class. The statechart speci-
fies behaviors that correspond to how the cell checks
its surroundings for chemical gradients and neigh-
boring cells, how it internalizes molecular sub-
stances, how it moves, how it interacts with other
entities in the model, and how it makes decisions,
such as cell death and cell proliferation. Other rel-
evant cells perform other tasks, such as growth,
molecular secretion, or molecular consumption.

A small piece of behavior
Over the years, the members of the immunolog-

ical community, our potential clients, have devel-
oped conventions for naming the different cell
development stages and have more or less agreed
on a visual convention for many aspects of cell
description. As an example of how animation can
reflect a small piece of behavior, consider a cell’s
receptors. These molecules, which reside on the
cell’s surface, are involved in various interactions
with other cells.

During development, cells frequently change
their receptors’ state of expression, and the con-
vention is to use different names for the various
receptor profiles. Both the Boolean property of
receptor availability/unavailability on a cell’s sur-
face and the actual act of dynamic change in the
expression of various receptors are of biological
relevance. Figure 3 shows three description types:
state-based, illustration-based, and text.

To signify the event of a receptor becoming
expressed, a small piece of animation depicts the
receptor’s smooth movement from the cell’s inte-
rior to its surface. Different receptors have differ-
ent visual features (color, size, and structure). Flash
dynamically assigns these features a location on the
cell surface according to spatial considerations or
expression level. Figure 3b shows part of this
assignment process.

When a receptor changes its expression status
because of some event, Rhapsody sends an appro-
priate message to the Flash animation. We designed
the setup so that the animation doesn’t simply make
the receptor appear or disappear from the cell sur-
face. Rather, the animated receptors are themselves
simple components that use their own special behav-
ior to portray the dynamics of their expression
changes. A newly expressed receptor will thus move
from inside an animated cell to its surface, using a
path computed ad hoc, according to the expression
level and position of neighboring receptors.

Figure 2. T-cell
statechart. The
dotted lines depict a
zoom into the main
statechart’s various
states.

An entire cell
We made several decisions on both sides of the

RA scheme—reactive model and animated front
end—to produce a dynamic representation of an
entire T cell in operation.

As a cell continuously checks its surroundings for
molecular signals that direct its movement, it might
find an appropriate molecular signal that will tell it
to move one micron to the right. The reactive model
implements this by changing the location attributes
of the cell’s instance. This translates easily to ani-
mation as ratio-based movement (movement pro-
portional to the cell’s physical dimensions).

During this routine check of its surroundings, a
cell might find another cell or molecule to interact
with. If so, the reactive model will switch to an
interacting mode, which the cell’s statechart mod-
els as a state. The running Rhapsody simulation
easily identifies an interacting mode and performs
a series of actions when the model enters that state.

One action is notifying the Flash animation of
the impeding interaction through the communica-
tion channel. When Flash receives the message, it
looks for the appropriate instance from the pool of
active instances and notifies it to display “interac-
tion.” The animated instance handles the message
as its programming dictates. We programmed the
animation in the T-cell development model to dis-
play a pulsating red visual gradient, for example.
This pulsating gradient (or similar animation)
might also prompt the viewer to query the interac-
tion for additional information. The viewer simply
clicks on the pulsating cell and selects certain kinds
of information at various levels from a drop-down
menu.

Once Rhapsody initiates an interaction, it iden-
tifies a specific relevant interaction from the pool
of available interactions. For example, a T cell
might start interacting with an epithelial cell,
another important cell type in the thymus, which
the front end depicts as lengthy diagonal-line-like
forms. Consequently, the engine will select a way to
handle the interaction. It can be the user’s explicit
choice, a computationally random choice, or a
more intelligent internal choice.

After it selects the way it will deal with the inter-
action, the engine instantiates a new instance of the
special class we have built to handle the interaction
and automatically launches its statechart. Rhapsody
now follows this statechart’s behavior as part of the
simulation, leading to whatever biological results it
yields. Once the interaction is complete, the state-
chart terminates its operation, and Rhapsody elim-
inates it.

The full model
Like a real thymus, our full thymus simulation

generates numerous developing T cells. In a typi-
cal run, it generates a few tens of thousands of cells,
each of which is driven by its own highly complex
statechart. When these cells run in tandem, they
interact with each other, express receptors, con-
sume and respond to events, move around, divide,
die, enter and leave specific areas of the thymus,
and so on. The resulting movie is never preknown
or self-repeating. Rather, like the biology itself, the
animation depends on the minute details of the
structure of developing epithelial cells, their mole-
cular expression patterns, and other random and
random-like events, enhanced by their influence on
the large populations of cells.

Figure 4 shows the front-end cell and organ
views. The cell view lets users inspect single cells or
small cell groups in more detail. The organ view is
a zoom-out of the simulated system, incorporating
the running reactive model’s entire activity. The user
switches from one view to the other by clicking on
the magnifying glass.

The wealth of immunological data available to
biologists has resulted in several theories for explain-
ing specific observations relevant to T-cell behavior
in the thymus. We have incorporated these theories
into our model. As part of the reactive simulation,
the user has access to a catalog of proposed theo-
ries and can choose among them (at both the start
of simulation and during it); the chosen theory, in
turn, can influence the animation and its results.

January 2005 43

CD4+

CD4–

SDF+

SDF–

CD25+

CD25–

CD44+

CD44–

CD8+

CD8–

(a)

(b)

(c)

Tcell: CD4 + SDF1a + CD25 + CD44 + CD8–

Figure 3. Three
ways to describe
a phenomenon:
(a) state-based
presentation,
(b) cartoon, and
(c) text-based
molecular notation.

44 Computer

One such example involves the various theories
on the commitment choice that T cells make near
their final stages of maturation to become either
helper or cytotoxic cells. Different theories suggest

different outcomes to the cells’ interactions at their
double-positive stage (a cell-maturity stage with a
host of significant behavioral characteristics). By
switching between theories, we can watch and

Figure 4. Front-end cell and organ views. (a) Still picture taken from continuously generated animation representing the running reactive
simulation. (b) Zoom-out view of the simulated tissue with items that facilitate interactions at various levels.

(a)

(b)

compare—on the fly—the influences of each the-
ory on the resulting lineage repertoire and on the
entire organ’s dynamics.

Interacting with the model
The user might want to interact with the running

simulation through the front end, to query the sim-
ulation or modify it at some point as it runs. The
various mechanisms of alerts and animated changes
that flow between the reactive engine (Rhapsody)
and the front end (Flash) can prompt the user to
query specific areas or specific cells in the simula-
tion. For example, a user might want to follow the
history of a cell’s movements, see a list of a cell’s
molecular details and its interaction partners, and
so on. More statistically complex information is
sometimes required as well, such as collective data
about many cells and molecules. We have organized
the queries according to two types. Simple queries
are those the user makes by questioning the run-
ning simulation. The other type, queries involving
multiple instances, requires a statistical utility.

For simple queries, the user first clicks on a cell,
which opens a menu. Figure 5 shows the available
options. If the user chooses Interaction Details, for
example, Flash sends an appropriate request to
Rhapsody, which identifies the proper instance,
gathers the needed information, and sends it back
to Flash. Flash then displays the information using
a specially devised mechanism. The other options—
Show Trail, Show TCR Sequence, Link to Parent,
and Developmental Stage—work in a similar man-
ner, with more sophisticated means of presentation.
Additional queries are available through other parts
of Flash.

More complex queries, involving multiple
instances, require a more complicated mechanism.
For these, we have constructed a communication
channel between the Rhapsody simulation and
tools, such as Matlab, that are specially designed
to handle data of large proportions. When the user
asks through Flash (or a similar front end) for this
kind of analysis, the communication channel trans-
fers the needed data to Matlab for processing, and
Flash displays the results.

The user can manipulate any of several tools to
change the simulation’s running dynamics. Figure
5 shows some of the choices available at the T-cell
level. In the figure, the user has clicked on Change
Receptors, which opens the box at right listing pos-
sible receptors. The user then clicked on the
Chemokine Receptors option.

By choosing which chemokine receptors to
express or internalize, the user actually sends a mes-

sage to the reactive engine, which performs the
requested action (if it is valid) and the now-changed
simulation resumes. For example, choosing to
express the receptor for TECK would change states
and features in the reactive simulation. The reactive
engine identifies these changes as events that Flash
must be aware of. When Flash receives Rhapsody’s
notification, it allocates movie components to
extract relevant movie clips for the expression
process of the TECK receptor on the cell’s surface
and then applies them. In this way, RA encourages
and supports experimentation in silico.

Some insights
No less important, RA explicates emergence.

Our model needs only basic molecular and cellu-
lar data to generate an anatomically accurate
thymic lobule starting from only a relatively few
stem cells (evident in the long-run and partial-run
movies on our demos Web page). The animation
shows that immature cells proliferate at specific
zones, while mature cells proliferate at anatomi-
cally different locations. This leads to the conclu-
sion that the T-cell repertoire is largely selected
through immature interactions by thymocytes that
proliferate in a specific zone in the thymic lobule.

This conclusion is entirely novel to thymologists,
and we view our ability to convey such a hypothe-
sis to experimentalists as a direct result of RA.
Further, RA’s interactive nature makes it possible
to knock out molecules or cells and observe the
effects. The three main in silico experiments we
have carried out involved knocking out SDF1,
TECK, and MDC. Each such knockout influences
the resulting thymus morphology in a different way,

January 2005 45

•
Kill T cell

•
Link to parent

•
Developmental stage

•
Change receptors

•
Show TCR sequence

•
Show trail

•
Interaction details

•
Chemokine receptors

•
Coreceptors

•
Cytokine receptors

•
Adhesion receptors

MDC ❑ ❑

SDF 1a ❑ ❑

TECK ❑ ❑

MIP_3b ❑ ❑

SLC ❑ ❑

Yes No

Figure 5. Interactive
menu available as
the simulation runs.
The user has clicked
on a T cell and
chosen the Change
Receptors option.
Flash notifies
Rhapsody, which
makes the change
and resumes
simulation.

46 Computer

a phenomenon that RA makes visible quite effec-
tively. Others have already experimentally validated
in vivo two of the three predictions we made after
these simulations. Our prediction regarding the
third knockout claims a developmental arrest at the
later stages of cellular differentiation and reduced
cellularity at specific anatomical locations.

One phenomenon a running RA simulation shows
clearly—even in short movies—is that developing
cells compete with each other in attempting to reach
the arms of epithelial cells and interact with them.
We did not incorporate this competition directly into
the model; rather, it is a behavioral derivative that
emerges from the lower-level data that constitutes
the model. The animated representation clearly
exhibits traffic jams that occur as the cells jostle each
other across molecular gradients.

Cell competition is actually a life-or-death mat-
ter: During development, thymocytes require suit-
able stimulation by interacting with epithelial cells;
otherwise they die (through apoptosis, or death by
neglect). RA shows us how competition might phys-
iologically regulate apoptosis. When we tweaked
the parameters of cell competition by modifying the
kinetic constants, we found that eliminating com-
petition allowed too much survival, and this abol-
ished the normal pattern of apoptosis that was
concentrated in specific anatomical zones. RA has
thus helped clarify the heretofore unappreciated role
of cell competition in thymocyte physiology.

We have made additional predictions about the
effect of cell competition, cell speed, chemokine con-
sumption, and more, on T-cell survival, which we
plan to publish in the near future. The revelation of
emergent properties and the in silico experiments
that RA makes possible thus arm the experimen-
talist for a renewed investigation of the real world.
In effect, representation and experimentation in sil-
ico prompt experimentation in mundo.

R eactive animation offers great promise as a
way to enhance the visualization of system
behavior, especially for reactive systems,

which are a central part of most current comput-
erized technologies. By separating the two facets of
the design problem—animation and reactive behav-
ior—we can equip both with state-of-the-art tools.

Gaming lends itself particularly well to using RA.
The reactive behavior of game characters is driven
by extensive know-how, and gaming can poten-
tially benefit significantly from the experience accu-
mulated in reactive system development. The
behavior of the characters might evolve through
enhancements to their computer vision, emotional

behavior, or playtime capabilities. We believe that
using even more powerful approaches and tools to
design the reactivity engine and front end will make
incorporating such enhancements much easier.

We are currently working on strengthening RA by
using 3D animation and evaluating RA on platforms
other than Rhapsody and Flash. One plan is to con-
nect the Play-Engine for reactivity11 with Maya
(www.alias.com/eng/products-services/maya/) for
animation. We are also aiming to make RA more
generic by designing a plug-in for connecting any
appropriately abstracted reactive engine with any
animation tool. In fact, the separation of interface
from computation that RA supports can significantly
strengthen mobile computing. The inability to mobi-
lize CPU power and peripheral connectivity often
constrains standard kinds of mobile computing.
When programmed with RA, software is not bound
to its CPU, since RA lets the program run on one
CPU while the interface, or the visualization, runs
on another CPU and on a different machine.

We also expect to expand our biological models
over time, adding technologies, algorithms, and
databases. The biological model for the thymus
could, with time, assimilate a detailed model of mol-
ecular events on the cellular level and could even lead
to the realistic RA modeling of a complete animal.12

Such models could have an architecture based on
played scenarios11 or on a combination of scenarios
and state-based behavior. Whatever the case, one
benefit will always be the easily shared front end,
since RA is intended to be first and foremost a cross-
cultural communicator. �

References
1. D. Harel and A. Pnueli, “On the Development of

Reactive Systems,” Logics and Models of Concur-
rent Systems, K.R. Apt, ed., NATO Advanced Sci-
ence Institute Series, vol. F-13, Springer-Verlag, 1985,
pp. 477-498.

2. W. Reisig, Petri Nets: An Introduction, Springer-Ver-
lag, 1985.

3. ITU-TS Recommendation Z.120: Formal Descrip-
tion Techniques (FDT)—Message Sequence Chart
(MSC),” Int’l Telecomm. Union (ITU), Geneva, 1996.

4. D. Harel, “Statecharts: A Visual Formalism for Com-
plex Systems,” Scientific Computing Programming,
vol. 8, 1987, pp. 231-274.

5. J.T. Stasko et al., eds., Software Visualization, MIT
Press, 1998.

6. J. Kaye and D. Castillo, Flash MX for Interactive Sim-
ulation: How to Construct & Use Device Simula-
tions, OnWord Press, 2002.

7. W.R. Stevens, The Protocols, Addison-Wesley, 1994.
8. I.R. Cohen, Tending Adam’s Garden: Evolving the

Cognitive Immune Self, Academic Press, 2000.
9. S. Efroni, D. Harel, and I.R. Cohen, “Toward Rig-

orous Comprehension of Biological Complexity:
Modeling, Execution, and Visualization of Thymic
T-Cell Maturation,” Genome Research, vol. 13,
2003, pp. 2485-2497.

10. I.R. Cohen, “Informal Landscapes in Art, Science,
and Evolution,” to be published in Perspectives in
Biology and Medicine, 2005.

11. D. Harel and R. Marelly, Come, Let’s Play: Scenario-
Based Programming Using LSCs and the Play-
Engine, Springer-Verlag, 2003.

12. D. Harel, “A Grand Challenge for Computing: Full
Reactive Modeling of a Multi-Cellular Animal,” Bull.
European Assoc. Theoretical Computer Science, no.
81, Oct. 2003, pp. 226-235.

Sol Efroni is a postdoctoral fellow at the National
Cancer Institute Center for Bioinformatics, where
his work includes computational analyses of cellu-
lar molecular pathways over high-throughput
experiments. He received a PhD in both immunol-
ogy and computer science from the Weizmann
Institute of Science and developed RA during his
PhD thesis research. Contact him at sol@nih.gov.

David Harel is the William Sussman Professor in
the Department of Computer Science and Applied

Mathematics at the Weizmann Institute of Science.
A cofounder of I-Logix Inc., he has worked in many
computer science areas, including automata and
computability theory, logics of programs, database
theory, software and systems engineering, visual lan-
guages, diagram layout, modeling and analysis of
biological systems, and the synthesis and commu-
nication of smell. Harel invented statecharts, coin-
vented live-sequence charts, and was a member of
the team that designed Statemate and Rhapsody.
Recently, he has codeveloped the play-in/out
approach to scenario-based programming and the
Play-Engine. He is a fellow of the IEEE and the
ACM. Contact him at dharel@weizmann.ac.il.

Irun R. Cohen is the Mauerberger Professor of
Immunology at the Weizmann Institute of Science;
director of the Center for the Study of Emerging
Diseases; a founder and steering committee mem-
ber of the Center for Complexity Science,
Jerusalem; and director of the National Institute
for Biotechnology in the Negev, Beer Sheva. Cohen
does basic research in immunology and has devel-
oped novel immune therapies, such as T-cell vacci-
nation for autoimmune diseases and peptide
therapy for type-1 diabetes mellitus, both now in
clinical trials. Cohen studies and models design
principles of the immune system and has proposed
a cognitive theory for immune system behavior.
Contact him at irun.cohen@weizmann.ac.il.

CERTIFIED SOFTWARE DEVELOPMENT PROFESSIONAL PROGRAM
Apply now for the 1 April—30 June test window.

G E T C E RT I F I E D

Visit the CSDP web site at www.computer.org/certification

or contact certification@computer.org

Doing Software Right

� Demonstrate your level of ability in relation to your peers

� Measure your professional knowledge and competence

Certification through the CSDP Program differentiates between you and other software
developers. Although the field offers many kinds of credentials, the CSDP is the only one
developed in close collaboration with software engineering professionals.

“The exam is valuable to me for two reasons:
One, it validates my knowledge in various areas of expertise within the software field, without regard to specific
knowledge of tools or commercial products...
Two, my participation, along with others, in the exam and in continuing education sends a message that software
development is a professional pursuit requiring advanced education and/or experience, and all the other require-
ments the IEEE Computer Society has established. I also believe in living by the Software Engineering code of
ethics endorsed by the Computer Society. All of this will help to improve the overall quality of the products and
services we provide to our customers...”

— Karen Thurston, Base Two Solutions

