&

Recursion in Logics of Programs

David Harel *

Laboratory for Computer Science
Massachusetts Institute of Technology
Cambridge, MA 02139

Abstract

The problem of reasoning about recursive programs is
considered. Utilizing a simple analogy between iterative and
recursive programs viewed as unfinite unions of finite terms,
we carry out an investigation analogous to that carried out
recently for iterative programs. The main results are the
artthmetical completeness of axiom systems for (1)
context-free dynamic logic and (2) 1ts extension for dealing
with infinite computations. Having the power of expression of
these logics in mind, these results can be seen to supply (as
corollaries) complete proof methods for the various kinds of
correctness of recursive programs.

1. Introduction

A majority of the work done to date in reasoning about
computer programs seems to be concerned with regular programs
(e.g. while programs or flowcharts etc.). Some of the better
known examples are [6,7,8,9,10,19,21,25,28]. When reading
this and other relevant literature it becomes apparent that
when these programs are replaced by recursive programs (i.e
context-free programs) the problems become much harder, For
example, the important paper of de Bakker and Meertens [3]
seemed to indicate that Floyd-Hoare-hke methods for proving
the partial correctness of recursive programs using invariant
assertions, required infinitely many such assertions.
Subsequent work by Greibach [13], Gorelick [12], Apt and
Meertens [1], Harel, Pnueh and Stavi {17,181 and Galher
[11], pointed to the fact that this was not quite so. Namely,
by allowing the assertion preceding a recursive call to
"freeze" the values of all the program variables in order to
refer to them upon completion of that call, a natural
extension of the Floyd-Hoare technique to recursive programs
1s possible, using only finitely many assertions. Other work
has been done regarding recursive programs: Hitchcock and
Park [20] have equated the termination of a recursive program
with the well-foundedness of a certain binary relation, and
[173 and [29] contain approaches to the problem of
axiomatizing the total correctness of (deterministic)
recursive programs. Major parts of afi of {1,12,17,18,29] are
devoted to one or both of the tasks of (1) designing
"substitution rules" or "rules of adaptation" for dealing with
parameters or local variables, and (2) presenting the methods
for mutual recursion. Our point 1s that these, and other

t Present address: Mathematical Sciences Department,
IBM T.J. Watson Research Center, Yorktown Heights, NY 10598.

81

apparent complications, tend to obscure whatever basic
concepts and ideas were involved in the essence of the
augmentation from regular to context-free reasoning.

This paper is concerned with the problem of clean reasoning
about recursive programs. We establish a very simple analogy
between iterative and recursive programs and use it to obtain
results, similar in spirit to those known for iterative ones,
but usually somewhat harder to come by.

In order to be able to put this analogy to good use we
choose to carry out our investigation with a simple recursive
program construct which we write ‘C*(f). This is the program,
specified by the program-term T{X), which consists of
executing T with every appearance of the special
"place-holder" symbol X standing for a recursive call to T,
Conventional notations for T*(f) include uXtT(X) [5,20],
motivated by work on the least fixpoints of functionals. The
analogous simple iterative construct is a*, namely the program
consisting of carrying out e any 20 number of times. With
true? and false? standing respectively for the identity (skip)
and empty {abort) programs, we define

<X faise?) = false?,

aO = true?
t”l(false?) = t(tl(false?)) 3

a|+1 - a;al

where a;B 1s the usual composition of programs and T(8) is
the application of programs, i.e, T with all free appearances

of X replaced by 8. The meanings of a* and T*(f) are binary
relations over states, defined respectively (inductively, that

1s assuming knowledge of the semantics of & and T(8) for any
B) as follows:

m(a*) = U;:ém(a’) m(t*(f)) = U‘.(:())m(t‘(false?)).
This then, illustrates the essence of the analogy: the
iterative (recursive) construct 15 an infinite union of terms
consisting of finitary composition { application) of simpler
ones, starting with the skip (abort) program.

In most of the recent work on dynamic logic and its
variants [14,15,16,19,281 emphasis has been placed on working
with a simple but powerful iterative programming language, and
part of the appeal of this work seems to come from the
simplicity which a construct such as a* brings with it. The
work we report upon here makes use of the experience and

Permission to make digital or hard copies of part or all of this work or personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee.
© 1979 ACM 0-12345-678-9…$5.00

knowledge attained in [14,15,19] for the regular operator a*,
in order to investigate the problems encountered when
reasoning about recursive programs via the simple but powerful
context-free analogue, T*(f).

Although we would like to stress that we regard the
approach developed in this paper, and the potential it might
carry for further research, as its most important
contribution, we point to the specific results proved:

Context-free dynamic logic {CFDL) is defined and an
axtomatization R of 1t constructed. R is proved to be
complete for CFDL relative to arithmetical universes
(aritAimetically complete [14,153). This result subsumes those
of [1,3,11,12,13,17,181 much as the completeness of the
axiomatization of DL in [14,15,16] subsumes Cook's [8]
completeness result for Hoare's [21] system for partial
correctness. As an upshot, it also settles the problem
of supplying a complete natural axiomatization of the total
correctness of (deterministic) recursive programs. The result
also seems to answer a question of de Bakker [2] regarding the
weakest precondition [9] of recursive programs. In passing it
1s shown that the main rule of inference for the partial
correctness of recursive programs appearing m [1,11,12,13,181
1s simply an instance of Park's [27] fixpoint induction
principle.

Next, the question of the divergence of a recursive program
is considered, prompting us to extend the binary relation
semantics of the programs to computation-tree semantics. This
gives rise to the definition of the special formula loop
for a program «, being true in a state whenever e, started in
that state, can diverge (enter an infinite loop). This
concept has been shown to be essential for the definition of
the total correctness and weakest precondition of a
nondeterministic program [15,19,22] and, besides a similar
concept defined in [20] for different purposes, has not been
defined yet for recursive programs. We prove, using a result
of Winklmann [31], that loop,, 1s expressible in CFDL.
However, the proof results in an extremely undesirable
formula, justifying the addition of loop,, to CFDL as a
primitive. This addition, we show, gives rise to an
arithmetically complete axiomatization of the resulting logic.

2. Context-free Dynamic Logic (CFDL)

Syntax:

We are given sets of function symbols and predicate
symbols, each symbol with a fixed nonnegative arity. We
assume the inclusion of the special binary predicate symbol
"z" (equality) in the latter set. We denote predicate symbols
by p, q,.. and k-ary function symbols for k>0 by f, g,..
Zeroary function symbols are denoted by z,x,¥,.. and are
called variables., A rerm is some k-ary function symbol
followed by a k-tuple of terms, where we restrict ourselves to
terms resulting from applying this formation rule finitely

82

many times only. For a variable x we abbreviate x() to x,

thus f{g(x),y) 1s a term provided f and g are binary and unary
respectively. An atomic formula 1s a k-ary predicate symbol
followed by a k-tuple of terms. The set of first-order

formulae is defined as the closure, under v, - and Ix (for
variable x), of the set of atomic formulae,

We define the set T of program terms as follows, using
the special "place-holder" symbol X:

(1) For any variable x, term e and first-order formula P,
the assignment x«e, the test P? and the symbol X are
altin T,

(2) For all program terms Ty and Ty, Ty;Ty, THUT,
and T;*(#) are in T. (Remark: £ 1s not a function
symbol, it is merely of mnemonic value and is used to
signify the difference between a* and T*,)

An occurrence of the symbol X in a terin 1] is said to be
bound if it is in a subterm of the form ‘Cg*(f), and free
otherwise. A term with no free occurrences of any program
variable is called closed. The T*(f) clause 1s intended,
intuitively, to represent the program consisting of an
execution of T where the free occurrences of the symbol X in T
represent T calling itself recurstvely, The set CF of
context-free programs is taken to be the set of closed terms
in T. For example, (ycy+1;X U y>0?)*(f) is a legal program
mn CF.

The set of well formule formulae of Context-free DL
(CFDL-wffs) is defined just as DL in [14,15,16], but using CF
instead of the set RG of regular programs:

(1) Any atomic formula 1s a CFDL-wff,

(2) For any CFDL-wffs P and Q, a in CF and
variable x, =P, (PvQ), 3xP and <adP are
CFDL-wffs.

We use A, D, = and Y as abbreviations in the standard way, and
in addition abbreviate ~<a>-P to [«]P. Note that a

first-order formula is a CFDL-wff. Throughout, we denote by
var(e) the tuple consisting, in some fixed order, of all

variables appearing in « to the left of a « symbol

Semantics:

The semantics of CFDL 1s based on the concept of a state.
A state J consists of a non empty domamn D and a mapping from
the sets of function and predicate symbols to the sets of
functions and predicates over D, such that to a k~ary function
symbol f (resp. predicate symbol p) there corresponds a total
k-ary function (resp. predicate) over D denoted by fq (resp.
pJ). In particular, to a variable there corresponds an
element of the domain and to a 0-ary predicate symbol
(propositional letter) a truth value (true or false). The
standard equality predicate over D is that corresponding to

the equality symbol (). We will sometimes refer to the
domain of J as Dj-

The value of a term e = f(el,..,ek) in a state J is
defined inductively following Tarski [30], by

e] = fj(elj,...,ekj).

We now define by simultaneous induction the binary relation
over I'| the set of all states, corresponding to a program
of CF, and those states J in I' which satisfy a CFDL-wff P.
The relation will be denoted by m(e) and for the latter we
write JEP. (J,d) being an element of m(a&) can be thought of
as representing the fact that there exists a computation
sequence (or patk) of a starting in state J and terminating in
J. Thus, JELalP will be seen to be making an assertion about
all terminating computations of a starting in state J; namely
the assertion that the final states of these computations
satisfy P, Similarly, JECaDP asserts the existence of a
terminating computation of & starting in state J and ending in
a state satisfying P.

Notation: For any function G: D » D', arbitrary element e, and
a€¢D, we define [e / alGC to be the function with domain D and
range D'u{e} giving the same values at points in D-{a} as G,
and such that G(a)=e.

(a) For any variable x and term e,

m(x<e) = {(J,9)] J=Ley /x1J},

for any program-free CFDL-wff P,

m(P?) = {(1,7)] JEP},

For any & and § i CF and term T in T,
m(ea;8) = m(a) o m(B), (composition of binary relations)
m{auB) = m{a) Um(B), (union of binary relations)
m(T*(/)) = UZgm(t!(faise?)),

where ‘Co(a)=a, t"*l(a)=t(‘ci(a)) and T(fB) is the CF program
obtained by replacing every free occurrence of X in T by 8.

(d) For an atomic formula p(el,..,ek),

JEp(el,..,ek) whenever pj(elj,...,ekj) is true,

(e) For any CFDL-wffs P and Q, a in CF and variable x,
JE-P ff it 1s not the case that JEP,

JE(PVQ) iff either JFP or JEQ,

JEAXP iff there exists déDJ such that [d /x1] F P,

JECaOP iff there exists J€I" such that (J,J)€ém(a) and JFP.

(b)

(c)

We will be interested in special subsets of I' namely simple
universes. A pseudo-universe U is a set of states all of
which have a common domain D. A function symbol f (resp.
predicate symbol p) is called uninterpreted in U if for every
state J€U and for every function F {resp. predicate P) over D
there exists J€U such that J and § differ at most in the value
of f (resp. p) which in § 1s F (resp. P).

A symbol is called fixed in U if its value 1s the same in
all states of U. Thus, "=" 1s fixed in any universe. A
universe is a pseudo-universe in which every predicate symbol
1s fixed and in which every function symbol is erther fixed or
uninterpreted. A universe is called simple if the only
uninterpreted symbols in 1t are a designated set of variables.

83

In a simple universe the fixed variables will sometimes be
called constants following ordinary usage.

In this paper we will primarily be interested in
mvestigating the truth of CFDL-wffs in a given simple
umverse U. However, one can see that for some J€U and some
assignment x<e the unique state § such that (J,§)€ém(x<e), ie.
the state [eJ / x1J, might not be in U at all. We outlaw this
phenomenon by adopting, from now on, the convention that in
the context of a given universe the only programs we consider
are those in which the variables assigned to (eg. x in x<e)
and the quantified variables (eg. x in IxP) are
uminterpreted. Thus, for J¢U and for any CFDL-wff P the truth
of J in P can be seen to depend only on states in U. We will
often omit the ad jective "simple" when no confusion can arise.

An arithmetical universe A is a universe in which the
domain includes the set of natural numbers, the binary
function symbols + and * are fixed and given their standard
meanings (addition and multiplication respectively) when
applied to the natural numbers in the domain, and 0 and 1 are
fixed zeroary-order function symbols interpreted as the
natural numbers "zero" and "one” respectively. Furthermore
there is a fixed unary predicate symbol nat with the
interpretation "nat](d) is true iff d is a natural number"”,
that is, for every state J, {dGDJI nat](d)} is the set of
natural numbers. Thus, we are able to distinguish the natural
numbers in the domain from the other elements and we do not
care, say, what the value of x+y is in state J when it is not
the case that natg(x]) holds. An additional property we
require of an arithmetical universe is the ability to encode
finite sequences of elements into one element. The formal
definition of this property 1s as follows: There exists a
total predicate R(x,1,y) over the domain of A, such that for
any natural number n it is the case that we have

(Vxpex) (3y) (VxV¥i) ((nat(i) Anzi) 2 (R(x,i,y) = x=x,)).

The intuition is that R(x,i,y) holds iff "x is the i'th
component of y", so that any finite sequence XX, €AN be
encoded as such a y. Note that one particutar arithmetical
universe is the universe N of "pure arithmetic"; that 1s, the
universe in which the domain is precisely the set of natural
numbers, and *, °, 0, = and nat {which in this case is
tdentically true), are the only function and predicate
symbols. Goedel's §-function serves as the finite sequence
encoding function for this universe,

When talking about arithmetical universes we will often
want to use n, m,..to stand for variables ranging only over
the natural numbers. We do this by adopting the following
convention: any L-wff we will use in which we have explicitly
mentioned, say, the variable n as a free variable, is assumed
to be preceded by "nat(n) 5", Thus, for example, JE(P(n)>2Q)
stands for JF(nat(n) 2(P(n)>Q)), asserting that in state J,
(P(n)>Q) is true 1f ng happens to be a natural number.
Furthermore, by convention, YnP(n) stands for ¥n(nrat(n)>P(n)),
and hence AnP(n) abbreviates In(nat(n) AP(n)).

It is important to note that any universe U can be extended
to an arithmetical universe by augmenting it, if necessary,
with the natural numbers and additional apparatus for encoding
finite sequences. Thus, reasoning about any kind of program,
written over any domain, can in principle be carried out with
a suitable arithmetical universe.

A CFDL-wff P is U-valid {written FUP) if it is true in all

states of the universe U, and is valid (FP) if it is U-valid
for every universe U.

Example: Consider the program
a zex; ((22075y€1) U (2#207;262-15 X zeztl;yeyz)) X(f)
which is of the form zex;T*(f). The following is t3(false?)=

((z=07;y«1) U (25%07;2¢2-1;
((2=07;y<1) u (2#07;2¢2-1;
((2=07;y¢1) u (25#£07;z¢2-1;
false?;
zez+l;yeyz));
zeztliyey));
-2+l yeyz)).

In general it can be seen that the meaning m{a) restricted to
the universe N of pure arithmetic is the binary relation
(1,9 §= [(xj)!/y]J }, and thus & is a program

computing factorial over the natural numbers. |

One can see that (J,§)em({T*(f)) iff there exists a
nonnegative integer n such that (J,§)eém(t"(false?)). In
other words the intuition is that "executing” a recursive
program T(X) which "calls itself" in effect at each appearance
of X, is executing, for some n, the program consisting of
allowing calls of at most "depth" n.

{ We remark that in fact this definition is in perfect
agreement with fixpoint semantics of recursive programs, as
defined, say, in [4] or [5]. Using terminology from these
papers our T's are all continuous over the domain of binary
relations, and therefore defining the meaning of T*(f) to be
the least solution of the relational equation X = T(X), in
the sense of [4] and [20], is, by Kieene's [23] theorem,
consistent with our definition of T*(f), which is reaily
pXT(X).)

In the sequel we will need a fundamental notion to aid in
constructing our rules of inference and in conducting our
meta-reasoning. We allow in this reasoning a special kind of
"program", the achieve program P/‘, defined for any
first-order formula P and tuple 7Z consisting of parrwise
disjoint variables. The meaning of P™ is given by the
following additional clause to the definition of m:

m(PZ) = { (I, P1F=UV/71] for some tuple V of
elements from D 4, and [Zj /Z1JEP)

Thus, P is thought of as having free variables 7 and Z', where

7' is a tuple of "primed versions” of the members of Z. For
example, {x,y)" is (x',y'}. Intuitively then, PZ is the

program which assigns (nondeterministically) to Z any value V
such that in state J P is true of the value of Z in J and V.

Thus, P "achieves" between J and J the relation induced by
P(7,7").

Example: With 7=(x) and P(7,7Z') being (x'=x v x'=f{x)}, we
have m(P%) = m(rrue? v xef(x))). B

Now let CF'= CFu {P/‘I P and Z as above}. CIF'DL is
defined exactly as CFDL, but replacing CF with CF'. Our
axioms and rules will take advantage of being able, in
arithmetical universes, to construct an "achieve program" of
the form P¥ to correspond to a given “"real" program (ie. a
first-order formula P which "expresses” the relation induced
by the program).

3. Preliminary Results

The facts established in this section are instrumental in
establishing the main result of Section 4. First we show that
the regular programs are embedded in CF. Recall that a* was
defined in [28] such that m{a*)=(m{a))*, ie. the reflexive
transitive closure of m{a).

Lemma 1: For every atCF,

m(a®) = m((true? v a;X)*()) = m(true? u X;a)*().

Proof: m{a*) = U(;:O m(a') = m(true?) umla) v
mlesa) U.. = mfalse?) U m{true?) u miastrue?) u
mleastrue?) U .. = U(QO m((true? v a;X)i(false?)) =
m{(true? U a;X)*(f)) . Similarly for the second equality. N

T heorem 2: For any arithmetical universe A, the first-order
language is A-expressive for CFDL, re. for any CFDL-wff P
there exists a first-order formula, Q, such that FA(PEQ).

Proof: The Theorem is proved similarly to Theorem 3.2 in
[153 and the reader 15 refered to that reference for details.
However, here a shghtly different treatment for T*(f) is
necessary. It can be shown, by the encoding of finite
sequences of elements of the domain of A that there exists,
for every term T(X), a first-order formula ITRt(n) such that

for every n ITR(n) "expresses" Tt(false?), in the sense

that m(ITR(n)”) = m(T(false?)), where Zzsar(T). As in
Theorem 3.2 of [15], if QL is a first~order equivalent of Q
then an equivalent of <T*(f)>Q 1s InIZ'(nat(n) A
ITR(n) A (Q5). N

In the sequel we will write Z.=7" to abbreviate
’\xGZ(Fx') , and by convention will assume that for programs

of the form P/‘, the tuples Z and 7' appear 1n that order in
the paranthesised hist of free variables of P. Thus for

example, P(7",7') wiil abbreviate P with members of Z" Lemma 5: For every umverse U, ag, al,...GCF', and term
replacing free corresponding members of 7. We now show howto T(X), if mU(a0)=d and if furthermore for all i20 we have
express the fact that P’ is an upper or lower bound on the mU(a“l)gmU(‘t(ai)), then for all i20, my;(e;) EmU(t*(f)).
refation represented by a program e, using notions from CFDL.
Proof: By induction on i. For i=0 we have
Theorem 3: For any universe U and a€CF", let myj(a) be m(a) mU(al)gmU(t(aO))::mU(t(fal“?))g (UO(:]:O mU(‘L'n(false?)))=

restricted to elements of U. If Z=var(a) then my(TX(). Assume myy(a) Emy(TH(f), so that by
(1) Fy(Z=7. > LadP(7',7)) iff mU(a) = mU(PZ), monotinicity mU(t(al))gmU(t’(t*(f))). Thus we have
(2) Fy(P(Z,7) 2 <dZ'=7) iff mU(PZ) < my(a). my(a,,) smy(tla))emy(t(t*())). However, one can
show by induction on the structure of T that
Proof: (1): Assume Fyj(7'=Z. = LadP(7!,7)) and assume mU(‘C(U(;LOtn(false?))) = U??:O mU(t(tn(false?))).
(3,9)¢myy(a). We have to show that §=LV /7] for some tuple (This follows from the continuity of T over the domain of
V of elements of DJ, and that [Z4 / Z71JEP(Z,Z7'). The first binary relations; cf. [51) And so we have mU(ai+1) c

is trivial by the fact that Z=var{a). Now, by the definition

of my(a), and since & does not change Z', if (3,9 empy(a)

then also (J',§') émy;(a), where J'=[ZJ /713 and §' = [z /Z'1§
=074 /7'37.4/71]. However, by the assumption, since we 4. Axiomatization of CFDL
have constructed J' such that J'B(7Z=7'), we must have
JEP(Z',7), or (74 /Z'][Zg /Z1JEP(Z7',7), which is the same Consider the following axiom system R for CFDL:
as saying [7‘5 /71 1IEP(Z., 7).

U"?:l mU(‘Cn(false?))=my(TX(f)).]

Axioms:
Conversely, assume mU(a)EmU(PZ), and assume that for (A) Al tautologies of propositional calculus.
some J€U we have]I’-‘(Z‘:Z), and that (]’g)(mu(a)_ We must (B) [x«elP = P:, for a first-order formula P.
(C) [Q7?IP = (Q=P).
(D) [eo;BIP = LallBIP.
(E) [apﬂ]P‘ ¢ ([adP A [8IP). o
(F) [P%IQ = (VZ)(P(ZZ") > Q)
for first-order formulae P and Q.
(G) (P =2 LT*(£)1Q) o ((PAR) > [T*(f))(QAR))
where var(R)Nvar(T)=4.

show that JEP(7',7). By assumption, (J,ﬂ)(mU(PZ), 50 that
(7.4 / 71JEP(7,7"), which by JE(Z'=Z) 1s equivalent to

[7,3 / 71JEP(7!,7). However, by (J,§)¢mj(a) we know that
g=['/.g /711, so that JEP(Z',7).

(2): Assume By (P(Z,7) > <a>7'=7)), and assume
(J,g)GmU(PZ). We prove (1,§)€a. By the second assumption,

7q / 73JEP(Z,7!), so that by the first we have ([Zg,Z']J , Inference rules:
(7 / 717.q / 7:30)€ém(@). Thus, we can conclude that (1 , (H) p psg
[Zg,ZJJ)(mU(a). Finally, from =LV / Z1J for some V we ——
conclude that 3=[Zg,Z]J, and hence that (J,d)em;(a). Q

Conversely, assume mU(PZ)QmU(a), and that for some J€U, (0 PoQ P>Q
JEP(7,7'). We show the exsstence of €U such that _— and —
(j,j)ému(a) and Z'f?,g. Take ¢ to be (74 /711. [adP > [a]Q AxP o 3xQ

Certamly 7' q=7.4q. Furthermore, by the definition of PZ,

R iy 4 o
since [7,'] /73] 1s simply] itself, and since we assumed () 7= 2 te(PIR(Z7) Z=var(t)
. . where Z=var{ T},
that JEP{7,7'}, we conclude that (J,g)GmU(P/‘), and =7, 5 O IP(7,7)
hence (J,g)fmu(a)- i

(K) P(n+l,Z,7) o <(P(m)EDz=zr , -P(0,2,Z")

It is straightforward to show that our T's are monotonic in
the sense that 1if m(a)Sm(B) then m(t(a))em(T(F)). We
restate Park's fixpoint induction principle:

P(n,Z,2) 2 <CX()71
for a first-order formula P with Zzvar(T), nf var(T).

Lemma 4 (Park [271): For any universe U, a¢CF and term T(X),

F ithmetical univ A denote by R(A) the axiom
ifmU(‘C(a))SmU(a) then mU(‘C*(f))SmU(a). or any arithmetical universe note by

system obtained by augmenting R with the set of all A -valid

85

first-order formulae as additional axioms. Provability in
R(A) is defined as usual. The intuition behind axiom {G) is
that 1t aliows "carrymg” R across a program when that program
cannot affect the truth of R. The intuition in rule (J) is

that if upon "freezing" the values of Z in Z' execution of T,
with the relation P "plugged in" whenever a recursive call was
to be performed, results in P holding between the initial

values and the current ones, then P holds when the recursive
calls are indeed honestly carried out.

We now prove the soundness of R.

Lemma 6: For any first-order formulas T and P(Z,Z'),
CF'DL-wffs Q, R and S, term t(X) the following are valid
(1) TPAT = (VZ)(P(Z,7) = 15),
(2) (S >IT*(HIQ) = ((SAR) = [t*(f)](Q/\R)),
where var{R)Nvar(T)=4

Proof: Straightforward from the definitions. B

Lemma 7: For any universe U, first-order formula P(Z,Z')
and term T, where Z=var(T), 1f Fy(Z'=7. > [t(PZ)]P(Z’,Z))
then F(Z'=7 2 [T NHIP(Z',7)).

Proof: By Theorem 3(1) the hypothesis is simply mU(t(PZ))
gmU(PZ). By Park's principle (Lemma 4) we obtain

mU(t*(f))QmU(PZ), which, again by Theorem 3(1}, is
precisely the conclusion. |

Lemma 8: For any first-order formula P(n,7,Z') and term T,
where nf var(T) and Z=var(T), if FAwP(O,Z,Z') and

E, (P(n+1,7,7') 3 <T(P(n)")>7=7), then
E,(P(n,Z,7)) o CONPTT).

Proof: One can show that FAﬂP(O,Z,Z') is in fact

equivalent to saying that mA(P(O)]‘)'d Furthermore, by
Theorem 3(2) the second a<sumptxon amounts to asserting that

mA(P(n+1))Cm (‘C(P(n) ‘}). By Lemma 5 we conclude that

m, (P(n))SmA(‘C"‘(f)) for ali n. Thus, again by Theorem
3(2), we have the conclusion. | |

T heorem 9 (A-soundness of R): For any CF'DL-wff P,
if “R(A) P then ‘:AP.

Proof: Follows from the soundness of our axiomatization of
regutar DL (cf. Thm. 3.6 of [151} and Lemmas 6,7,8. B

We will apply Theorem 11 of [14] {(which is Theorem 3.1 of
£151) to prove the arithmetical completeness of K, but we
are required first to prove the appropriate completeness
theorems for formulae with one box or one diamond. These will
be established with the aid of:

Lemma 11 {Invariance Lemma for CF'DL):

Lemma 10: The following are derived rules of R where Z
and n are as in {J) and (K):

(1) 27 s [e(PPIP(77,7) , RoLPAIQ

RolT*(£)1Q

P(n+,7,7) <c(P(n)/)>/ 7, -P(0,2,7)
R23n<P{n))Q

(K")

Ra<T*(£)>Q

Proof: (J): Assume b 4 (257 3 te(P2)IP(7:,7)).
We apply (J) to obtain FR(A)(Z':Z o [T*(f)IP(Z,2)).

Using axiom (G) we get Fp(0y ((Z'=7 A (VZ")(P(Z',Z)DQ'/Z")) =)
['C*(f)](P(Z','/,) A (VZ--)(p(Z',Z")DQZ/“")))), from which we
deduce i'R(A)((VZ")(P(7n7'"):’Q"]/‘:) 2 [T()IQ). Thus, by

axiom {K) and the second assumption the conclusion follows.

{K'): Similar to (J'). B

We now show that rule {J') can indeed always be applied
when its conclusion is A-valid.

For every term T(X)

and CF'DL-wffs R and Q, if |=A(R3[‘C*(f)]Q) then there exists

a first-order formula P(7,7') with Z=var(T), such that
EA(ROIPIQ) and k(727 > Lx(PP)IP(7,2)).

Proof: Implied by the way Theorem 2 is proved is the fact
that there exists a first order formula of arithmetic P(Z,7")
which “expresses” the program T*(f) in the sense that

mA(PZ)=mA(t*(f)). Certainly then, by the assumption, we
have FA(RD[PY‘]Q). Also, as noted in the proof of Lemma 5,

mA(‘C(t*(f)))zmA(‘t*(f)), and so we have mA(t(PZ))QmA(PZ),

which by Theorem 3(1) 1s k5 (7'Z > [t(P)IP(Z',7)). B

T heorem 12 (Box-completeness Theorem for CF'DL): For every
a¢CF' and first-order formulas R and Q, 1f FA(RD[a]Q)

then I-R(A)(RD[a]Q)

Proof: Straightforward proof by induction on the structure
of a. The connectives €, 7, ; and U are treated precisely
as 1n [14,15]. The case T*(f) is treated using derived rule
(J') and Lemma 11.]

Similarly to Lemma 11, rule (K') can be applied when needed:
Lemma I3 (Convergence Lemma for CF'DL): For every term T(X)

and CF'DL-wffs R and Q, if FA(RD(t*(fDQ) then there exists
a first~order formula P(n,7Z,7') such that FA(P(ml,Z,Z') =

<T(P(?)57:7)), E\PO,2,7), and E, (RoIn<P(n)7>Q).

86

Proof: Again, by the method used in the proof of Theorem 2,
there exists a first-order formula P(n,Z,7') representing

T"(false?) in the sense that for every n we have
mA(‘P(n)/')=mA('C"(false?)). It is easy to see that all
three A-~valdities hold for P. |

Theorem 14 (Diamond -completeness Theorem for CF'DL):
For every a¢CF' and first-order formulas R and Q, if
FA(RD(a)Q) then }'R(A) (R3(0>Q).

Proof: Precisely as Theorem 12, but using Lemma 13 and
rule (K') instead of Lemma {1 and rule (J'). | |

We conclude that for CF'DL-wffs, A-validity and provability
in R(A) are equivalent concepts:

T heorem 15 (Arithmetical Soundness and Completeness for
CF'DL): For every arithmetical umiverse A and CF'DL-wff P,

Proof: One direction is Theorem 9, and the other follows
from the general Theorem 11 of [141 (which is Thm. 3.1 of
[153) and the present Theorems 2, 12 and 14. il

The results in this section indicate that, as far as CFDL
is concerned, reasoning about "pure" recursion is analogous to
(albeit more complicated than) that of reasoning about "pure"
iteration. Here we are using the integers to count how "deep”
we are in the recursion (using P(n)% in rute (K)), whereas
for a® we counted how "far" we are in the iteration.

it 1s interesting to note that the proof method for
formulae of the form RoLalQ which is incorporated into R
boils down to Floyd's [10] inductive assertion method and to
Morris and Wegbreit's 1263 subgoal induction method
respectively, when regular programs are translated into
recursive ones via the two methods appearing in Lemma 1. Thus
the duality holding between these two methods, which was
described in length in [26]; shows up concisely as stemming
from the two dual ways of viewmg a*. The reader familiar
with £26] can convince himself of this fact quite easily by
deriving formulae (3.1-3.3) and (3.4-3.6) of [26] from our
rule {J) by using the two equalities of Lemma 1.

In Section 4.4 of [15] we extend this system to the general
mutual recursion operator pixl...Xn(tl,....,‘Cn).
Appendices of [15] contain examples of proofs in R

and R* of Section 6.

5. Divergence of Recursive programs

In this section we define the operational notion of the
diverging of a-recursive program, Le. it entering an infinite
loop. This 1s done by introducing, for any state J, the
J-computation tree of a program a, denoted by ct(a,]). We
show that computation trees are in fact an extension of the
semantics of CF. The trees however, in addition to the

87

input-output information, contain information regarding the
presence or absence of divergences. The concept of diverging
has been shown in [15,19,22] to be essential for describing
the total correctness of nondeterministic programs, and hence
the importance of investigating it for recursive programs as
well as iterative ones. The main result in this section,

based on a result of K. Winklmann, is the fact that diverging
is expressible in CFDL.

Each node of ct{a,]) will be labeled with a state in T or
with the special symbol F, and will be of outdegree at most 2.
The root is labeled with J and nodes labeled with F will
always be leaves. The intuition is that a path from the root
represents a legal computation of a starting in state J.
Accordingly, a leaf represents a termination state if it is
labeled with a state in I', or reaching a false test if it is
labeled with F. Any node with descendants represents an
intermediate state of a. If a node has two descendants then
there 1s, so to speak, a choice as to how to “continue
execution".

A node will be represented by a pair (t,1), where t is a
finite string over {0,1} describing the location of the node
in the tree by 0 denoting "go left" and 1 “go right”, and |
{the label of the node) 1s either a state in I' or the symbol
F. Thus, for example, the tree

ONEO
® @

15 represented as {(X,3),(0,4),(1,4),(10,F),(11,d") }. As
can be seen, \, the empty string, marks the root of the

tree. By convention, a single descendant is marked as “going
left”, 1e. by 0.

Formally, for any J¢I' and a€RC, ct(«,]) is defined, by
induction on the structure of a, to be a subset of {0,1}* x
(T u {F}) as follows, where we use | to range over (' u
{F}), and s, t,.. to range over {0,1}*:

(1) ct{xee,]) = {().,J),(O,[ej/x]J)},

{ADY i JEP
(2) c(P?,]) =
{O\B)Y it JE-P,
(3) c(auB,d) = {(NDYu {(0D] (t,Déct(a,N}u
{(1t,|)l (hl)(ct(ﬂ,:’)};
(4) Let E={(t,J)¢ct(a,]}]| J¢T A

(Vbe{0,11) (VIE(Tu{F}) ((tb,DF ct(ea,d)) },
and let G = ct{a,J)-E. Then
ctle;8,3) = Cu {{ts,DI (ANULIIEE A (s,Deect(8,3))),

(5) ct(T*(N,T) = ctlfalse? v T(TX(A)),I)

Informaily, to construct cz(T*(f),J) one starts constructing
ct(false? U T(X)), and whenever, so to speak, "ct{X,§)" was to
be attached to a node labeled §, ct(T*(f),d) is attached
instead. Of course, this process might lead to an infinite

tree. The additional union with false? is introduced so that

the process of calling recursively would itself “cost” an edge

in the tree, so that eg. the program (X)*(f) will diverge

(see below).

Example: Let J be some state in N for which yJ=0, and in the

diagram we let i stand for [i/y1J. Take & to be the program
{(y=07;yey+l) U (y#07;yey-1;X;vey+1) Y¥(5).
"Then ct{e,[1/y1]) is

(1)
® (D)
B (D
(0)
® ()
() ()
()
@ |
We omit the proof of the following fact, which serves to

show that computation trees are consistent with the binary
relation semantics defined above:

Lemma 16 For every a¢CF, (J,)ém(a) 1ff ct{a,]) has
a leaf labeled J.

Define now, for any a€CF a Boolean constant loop,, by:

JFloop,, iff ct{a,]) is infinite,

Note that, ct(a,]) being of finite outdegree, we can apply
Koenig's lemma (see [243) te conclude that in fact JFloop,,
iff there exists an infinite path from the root; ie. there

is an infinite sequence of nodes in ct{a,J), of the form
(0D, (b1,0)), (byby,Jg), vy (byb,00),

We would like to supply a syntactic characterization of
loopt*m. Recall that in [19] it was proved that a
divergence 1n the tterative a*® 1s due either to a local
divergence, i.e. a divergence in some reachable execution of
o, or to a global one, i.e. being able to execute a's for
ever. The former possibility was captured by (a*)loopa which

can be written Inloop,n, and the latter is ¥n<a™>true. So
we can write

88

Elloopax = (Inloop,n v Vn<atrue)).

Characterizing loopt*m 1s similar; here a local

divergence 1s a divergence "inside" some application of a
reachable T, and can be expressed by 3"l°0f’r"(_false7)'

' Global diverging, on the other hand, is more subtle, Here we

want to express the possibility of being able to "apply T for
ever", which amounts to being able to "proceed infinitely deep
into the recursion”,

In order to do this we apply, in the sequel, the following
mild restriction on the universes we consider. The domain is
to have at least two distinct elements and the set of symbols
1s to include two fixed variables having these two elements as
values. We will therefore use the symbols a and b freely as
two fixed-valued variables with distinct values. Now, for any
term T, define the term T' which, intuitively, allows
"skipping" tests, recursive calls to T, and other recursive
constructs, but forces any such skip to be recorded in a new
"flag" variable x. given T(X), let x,yf var(T) be two
variables, and let T(X) be T(X) with every (free in the case
of X) appearance of a subterm a of one of the forms X, P? or
T"¥(f) replaced by (& U x¢<b). Also define

a: (y#a? v (y=a?;x=a?;y<b)).

For any n20 denote the program x«a;y<a;T"(a) by T
We can now present our characterization of loopt*mt

T heorem I7: For any a¢CF,
F(loop,c*m = m"“’"f"c"([alse‘?) v Vn(‘Cn>y=b)).

Proof: Assume we have]F]nlooptn(falser,). It is quite
easy to see that cz(T*(f),J) has at least as many nodes as

ct{T"(false?),J), and hence we aiso have JHoopt*m.

For the rest of the proof we will be needing some
additional notation. For any i20 and J€I' we would like to
define the set S(1,T,J) consisting of those states which occur
immediately before an application of T at "depth i". Define

$(0,t,7) = {7},
S(i+l, T,J) = UgévS(l,t,g),

where V is the set of states § such that the process of
constructing ct{ T{xex;T*(f)),J) for xf var(T) requires
constructing ct(x¢x,d). In other words, V is the set of

states which execution of ‘C*(f) can reach just prior to

calling T recurstvely at level 1. Certainly if for some i we

have J€5(i,T,J), then J labels some node 1n ct(T*(f),J), and
furthermore the path from the root of ct(t*(f),J) to that node
1s of length at least 1. (Note that this would not be the

case if we were to define ct{T*(f),J) to be a(T(T*(),]).)

Assume now that JFVn(tn)y=b. We show that for any i20
we have S(i,T,J)#¢ , and thus ct(T*(f),J) has paths of

arbitrary length and is therefore, by Koenig's Lemma,
mfinite. (Note that the assumption 30?1<‘Cn>y=b is

sufficient, where 3% reads "there exist infinitely many n",
so that ¥n can be replaced by 3% in the statement of the
Theorem.) Indeed, for any such i, by assumption, we have
JF(ti>y=b, or JF(x*—a;y‘-a;t'i(a))y=b, so that there exists
a finite path p 1n ct(ti,J), starting from the root, which
terminates in a node labeled by a state 1n which the value of

y is b. The labels of the successive nodes of p can be
denoted by

(J,0a/x1],0a/yNa/x1], 0, .., §k)

where ygk=b. Let i be the least integer such that yjfb'

By the construction of T'(o) 1t is evident that in order for

y to have changed value from a to b, it must be the case that
the value of x was a all along. More precisely, for all

12j'20 we have x4 =a, so that tests P? and subprograms of
the form T"™*(f) were indeed "carried out” and not avoided by
executing x<b instead. In other words, the initial segment of
the path p ending in) can be thought of as being a
simulation, in T''(¢), of a path from the root to the

false? in ct(T'(false?),J). Consequently, we have
35€5(1,T,J). This compietes the proof of one direction of the
theorem.

Conversely, assume now that]#loopt*m holds and
that for ail nz0 we have J':"l""/’t"([alse?)'
Consider the infinite sequence s of successive labels of the
nodes of an infinite path from the root in ct(T*(f),J). It
1s easy to see that by the second hypothesis, there must exist
a subsequence of s, say (J0,J1, ...), such that for every i
we have Ji€S(1,T,J) and such that J1 corresponds to the first
time 1n s that "depth i" of recursion was reached. We show
that Jk(t‘>y=b holds for every i by giving an algorithm for
executing ‘t.'i mn such a way as to terminate i a state in
which the value of y 1s b. Given 1, simulate the path
corresponding to the initial segment of the sequence s ending
in Ji, i.e. assign x<a and y«a, and then proceed in T'"(¢)
exactly as s proceeded 1n ‘C*(f), executing tests and recursive
constructs and not the x<b parts. By the definition of Ji,
reaching Ji in s corresponds to reaching o for the first
tme in T'(a). Thus, we have reached o with yg;7a and

X 7,52 and therefore y ts assigned b. Execution in T'(o)

15 then to be continued by choosing the x«b parts instead of
tests, appearances of X and recursive constructs. Certainly
this execution will terminate (no tests to fail; no recursive
constructs or recursive calls to diverge). Moreover, by the
constructton of ¢ any subsequent arrival at ¢ will not

change the value of y, and since yf var(T), this value is not
changed by any other part of the rest of the execution. Thus,
y=b upon termination. |

An obvious question arising now is whether Ioo;ba is
expressible in CFDL, r.e. whether for any a¢CF there exists a

CFDL-wff P, such that F(P_ = loop,). We have to be able
to deal with both disjuncts of Theorem 17.

We state the following two results and prove the second. The
proof of the first, due to XK. Winklmann, is omitted here.

Theorem 18 (Winkimann £311): For every term t(X), a¢CF and
first-order formula P there exists a CFDL-wff Q such that
E(Q = 3%«<t"(a)>P).

Theorem 19: For every term T(X) there exists a CFDL-wff Q
such that "—'(Q g Hnlooptn(false?)).

And hence from Theorems 17, 18 and 19, and the remark in the
proof of Thm. 17,which justifies replacing ¥n in its statement
by El(rr'], we obtain:

Corollary 20 loop,, is expressible in CFDL.

Proof of Theorem 19: Consider the set Ef = UT:)OS(i,t,J)
which, intuitively, is the set of states labeling those nodes

in ct(T*(f),J) corresponding to points just prior to a

recursive call to T. Assume we have defined, for any CFDL-wff
Q and term T(X), a formula along(€,Q) such that

Jkalong(T,Q) iff (IJ€ZF)(JFQ),

re. JEalong(T,Q) holds iff Q 1s true immediately prior to
some reachable recurstve call to T in an execution of T*(f)
starting 1n state J. Assume also that we have defined, for
every program a¢CF and term T(X), a formula lﬁ‘c,a such
that, intuitively, Jhlpt’a holds Iff there is a divergence

in ct(Tt(a),J) which is due to the T part and not to the & part
(1e. the divergence came from some recursive construct
appearing in T(X)}). It is quite clear that

JE3nloopen faise7) holds iff at some state 4 in the

execution of T*(f) just prior to a recursive call to T, it is

the case that there 1s a divergence m ct(T{T*(f)),§) which is
due to the first T and not to the mner T*(f). In other words
JEalong(T, lpt,t*Lf)). Now we proceed to define |

these concepts, and then observe that they give rise to
CFDL-wffs.

For any a,B,8'¢€CF and terms TL{X) and T2(X) define

lf’X,a 4t false,

lpﬂ,a =g loapﬂ,

g, Zar P

IibX;ﬂ,a 2ar Seloopg,

Ibg;xX;0,a “ar (org v Bty g o))
lbeiuea,e “ar UPrie Vv lPea,e)-

Now for defining along(T,Q) we use tricks similar to those
used in constructing T' and o for Theorem 17, Given T(X),
let x,yf var(T) be two variables, let Zzvar(T) and let Z' be a
tuple of disjoint primed versions of the variables in var(T).

Define €"(X) to be T(X) with every appearance of a subprogram
a of the form P? or T"*(f) replaced by (& U x¢b), and every
appearance of the program variable X replaced by

((x=a%;y=a?;y<b;Z'«Z) U x<b U X)

where 7'«7 abbreviates the composition of the assignments z'«z
for all z€Z. Now, define along{t,Q) to be

<xeasyea; T >(y=b A <Z¢ZDQ).

The 1ntuition is that in x«<a;y«a;T"*(f} one has the option of,
whenever X 1s reached, storing the current values of the
variables 7 in 7', as long as the computation until that point
has been an honest simulation of a computation in T*(f). Once
such a store has been carried out it cannot be carried out
again because of the y=a? guard. Furthermore, as in the proof
of Theorem 17, execution can always choose to "surface”
quickly to the end of T*(f) by executing x<b whenever
possible. Then, when the execution finally terminates, we
assert that Q 1s true for the values of 7 which we stored in

7' just before the recursive call. It should now be clear that

F(Inloopen parsery = alonglt, I ox(n))-

The reason the theorem now follows 1s that, when using
induction on the structure of T and assuming the theorem holds
for the subterms of T, we can deduce that our inductive
hypothesis 1s in fact that loop,, is expressible in CFDL for &
which appears in €. This follows from Theorems 17 and 18.
Thus, the defimtion of Ip, which uses loopa for such «a,

gives rise to a CFDL-wff.]

6. Augmented CFDL

In this section we augment CFDL with the abihty to reason
about divergences directly without having to go through the
translation of loop,, into its equivalent CFDL-wff. The
resultng language will be called CFDL*. The reason for doing
so0, even though by the previous section CFDL and CFDL* are
equivalent in expressive power, is rooted in the fact that the
CFDL equivalent of loop, supplied above (including the part
coming from the omitted construction in the proof of Thm. 18)
has the unpleasant property of being strongly dependent on the
structure of a and on the variables appearing in a. Calling
that equivalent P_ , one can see that P cannot be obtained
from Pa by substituting a' for a throughout. Gonsequently,
proving a formula with an appearance of loopa will mevitably
involve carrying out the transformation of loopa to Pa , and
then reasoning in CFDL. The point is that the intuition one
might have about loopcl is, in a strong sense, lost in the
process.

CFDL* is defined to be CFDL u {loopa| a¢CF}, with the

semantics of the CFDL part being as in CFDL and the semantics
of loop,, as defined in Section 5.

90

Cur axiomatization here too will be of an extension CF'DL*
which 1s deftned as CFDL* but with the programs coming from
the set CF'. As in Section 4, we will be using the fact that
in an arithmetical universe A there exists, for any atCF, a
first-order formula P such that p/ expresses a. The problem
that arises 1s that of defining looﬁ(PZ). We would like

it to be the case that for any PZ, Pwloop(PZ) holds.

However, for a given J€I' it is possible that the set J(PZ)

= {4| (J,g)ém(P/’)} 1s infinite. One solution to this
problem 1s to define ct(a,J) to be a tree of possibly infinite
outdegree, with the location of the node given by a list of
natural numbers (as opposed to a list, or string, of 0's and

I's) ; for P/ the tree would be defined (roughly) as
(P40 = (Do {(,d)] (3,9 em(PD)}.

Then, we would define JFloop, to hold iff ct(a,J) has an

infintte path (which in this case 15 not necessarily
equivalent to ct(a,]) being infinite).

Another, equivalent method 1s to associate with any a€¢CF’

and J€I' a set of computation trees CT(a,J). For P we
would define

cT(PA 1) = {{0ND 0,9} (3,9)em(PP) 1.

The rest of the definition is carried out analogously to the
defition of ct{e,J) above. For example, CT(a;8,J) is the
set of trees obtained by following the construction of
ct{a;0,1) for every tree m CT (e,), attaching any tree in
CT{8,d) to a node labeled § whenever ct{8,§) was to be
attached to that node in constructing ct(e;8,J).

Example: Let a: xex+l, P: x<x' and 7=(x). For any J¢N such

that xJ=0 we have:
cT (e,) = { {(N,9),(0,11/xIN} },
cT(PAL/x10) = {{OL/x3D),(0,)) | xg1),
and thus

cT(a;P™0) = {{(\D),00,01 /%13,00,9)} | xg1). B

Now define]k/oopa to hold iff there is an tnfinite tree in
CT(a,]). We remark that either way loopa 1s uniquely defined
for a€CF', and that for a¢CF, CT(a,J) = {ct(a,3) }.

Now consider the axiom system R* for CFDL* defined as R
of Section 4 augmented with the following axioms and rules:
(In the following, P and Q are first-order, R 1s a CF'DL*-wf¥,
T(X) 15 a term, x and y are variables x,yf var(T), Z=var(t),
V 1s the tuple of variables obtained by augmenting Z with x
and y, and ¢, T' and T" are as defined in the proofs of
Theorems 17 and 19 respectively.)

Axioms:
(L) loop, = false,
(M) looppg = false,
(N) loop.g = (loop,, v (a)loopﬂ),
(0) loopy g = (loop v loopﬂ),
(P) looppZy = false.

Rules of Inference:
(o))
R'> (<xeazyea; T*(f)>(y=b A <Z<—Z'>loopc(QZ)) v
Vn(xé-a;y(-a;P(n)v>y=b),
P(O,V,V)o<adV=V' |, QUZ7Y) o <TH()Z=T
P(n+1,V,V") o <'(P(n)V)>v=v'

R> loopt*m
(R)
R 2 (Dx«ajyea;T*(f)(y#b v [Z«—Z‘]wloopt(QZ)) A

3n[x<—a;y<—a;P(n)V]y¢b) ,
V=V'slaIP(0,V',V) , 727 o [eXNIQUZ,Z) ,
V=V o [e(P(n) V) IP(n+1,V', V)

R o -'loop,c*m

Let A be any arithmetical universe, R*Y(A) is defined
analogously to R(A). Provability in R*(A) is defined as
usual.

T heorem 21 (A~soundness of R*):
if "R+(A) P then FAP.

For any CF'DL-wff P,

Proof: The proof of the A-validity of (L)-(P} is left to
the reader. We show that rule (Q) is sound, noting that the
soundness of the dual rule (R) follows immediately.

Consider rule (Q). We argue that the A-vahdity of the first
premise of this rule, under the assumption that the other
three are A-valid, asserts that

Fp(R 2 (Inloopen(farsery v Yn<T Dy=b),

which, by Theorem 17, implies that l’A(RDloopt*m).

(Recall that T_ is an abbreviation of (xca;yea;T"(0)).)
And indeed, by Theorem 3 in Section 3 the premises, other than
the first, assert, respectively, mA(P(O)V)QmA(a),

mA(QZ)SmA(t*(j)), and Vn(mA(P(ml)V)QmA(‘C'(P(n)V))).

One can then show, by induction on n using monotonicity, that
Vn(mA(P(n)V)QmA(t'"(a))). Consequently, since QL is
“smaller" as a relation than T*(f) but is divergence-free, one
can see that loop,. ~Zy 1imphes lp. —x(f, and

hence also that atl:o(an(%,loopt(QZf)’ﬁm(Qles
alang(t,lpt’.c*m). However, by the proof of Theorem

19 the latter is 3"""’/’{"({(11:(3’?)' Moreover, since

91

for any n, P(n)v is "smaller” than T'"(), one can see
that Vn(xf—a;yea;P(n)v>y=b implies ¥n<T_>y=b. |

In order to prove the arithmetical completeness of R we
need to show that A-valid CF'DL*-wffs of one of the forms
RDloopa or Ro-loop,,, where R is first-order, are provable in
R*(A). Then the general theorem (11 in [143, 3.1 in [15])
is used to obtain the final result. More details can be found
in [151.

Theorem 22: For every a€CF' and first-order formuia R,
if F5(Raloop,) then Fp+(4 (R2loop,,).

Proof: By induction on the structure of &. The only
nontrivial case is when a 15 of the form T*(f) for some term T.
Assuming FA(Rbloopa), we show the existence of first-order
formulas Q and P(n) such that the premises of rule {(Q) are
A-valid. Since these premises involve only CF'DL-wffs and the
formula loopt(QZ), in which the program is of complexity
lower than T*(f), the result will follow. Indeed, by Theorem 2
we can take Q and P(n) to be first-order formulae involving,
respectively, only variables in Z and V, and such that FA(Q =

T*(f)) and for alin FA(P(n) = t©"(¢)). All the premises
are easily seen to be A-valid for this choice. R

Similarly we have:

T heorem 23: For every a€CF' and first-order formula R,
if FA(RDﬂloopa) then PR+(A)(R31loopa).

And thus, as remarked, we conclude:
T heorem 24 (Arithmetical Soundness and Completeness for

CF'DL*): For every CF'DL*-wff P,
'=AP iff "R+(A) P.

Acknowleclgments

We wish to thank A. Pnuel for suggesting a first version
of rule (K), and N. Dershowitz, A. Shamir and V.R. Pratt for
helpful discussions. The research was supported by the
Yad-Avi Foundation in Israel and by NSF Grant no. MCS76-18461.

References

{13 Apt, K.R. and LG.L.T. Meertens. Completeness with
Finite Systems of Intermedtate Assertions for Recursive
Program Schemes. 1W 84/ 77, Math. Cent. Amsterdam. Sept.
1971,

[21 deBakker, LW. Recursive Programs as Predicate
Transformers. Proc. IFIP conf. on Formal Specifications of
Programming Constructs. St. Andrews, Canada. Aug. 1971

(3] de Bakker, J.W. and L.G.L.T. Meertens. On the
Completeness of the Inductive Assertion Method. J. of
Computer and System Sciences, 11, 323-357. 1975.

[4] de Bakker, .W. and W.P. deRoever. A Calculus for
Recursive Program Schemes. in ’

Automata, Languages and Programming (ed. Nivat), 167-196.
North Holtand. 1972

[53 de Bakker, J.W., and D. Scott. An outline of a
theory of programs. Unpublished manuscript, 1969,

6] Banachowski, L., A. Kreczmar, G. Mirkowska, H. Rasiowa
and A. Salwicki. An Introduction to Algorithmic Logic;
Metamathematical Investigations in the Theory of Programs. In
Mazurkiewitcz and Pawlak {editors) Math. Found. of Comp. Sc.
Banach Center Publications. Warsaw, 1977.

[73 Burstall, RM. Program Proving as Hand Simulation
with a Little Induction. IFIP 1974, Stockholm.

[8 Cook, S.A. Soundness and Completeness of an Axiom
System for Program Verification. SIAM J. Comp. Vol. 7, no.
1. Feb. 1978. (A revision of: Axiomatic and Interpretive
Semantics for an Algol Fragment. TR-T9. Dept. of Computer
Science, U. of Toronto. 1975.)

[93 Digkstra, E. W. Guarded Commands, Nondeterminacy and
Formal Derivation of Programs. Comm. of the ACM. vol 18,
no.8. 1975

[10] Floyd, R.W. Assigning Meaning to Programs. In LT.
Schwartz (ed.) Mathematical Aspects of Computer Science.
Proc. Symp. in Apphed Math. 19. Providence, Rl American
Math. Soc. 19-32. 1967,

[113 Gallier, J. Semantics and Correctness of
Nondeterministic Flowcharts with Recursive Procedures. In 5th
Automata, Languages and Programming. Springer-Verlag. July
1978.

[12]1 Gorelck, G.A. A Complete Axiomatic System for
Proving Assertions about Recursive and Nonrecursive Programs.
TR-75. Dept. of Computer Science, U. of Toronto. 1975.

{133 CGrewbach, S.A. Theory of Program Structures. Lecture
Notes in Computer Science, 36. Springer-Verlag, 1975.

[141 Harel, D. Arithmetical Compieteness in Logics of
Programs. In Sth Automata, Languages and Programming.
Springer-Verlag. July 1978.

[151 Harel, D. Logics of Programs: Axiomatics and
Descriptive Power. Ph.D. Thesis. MIT. Available as
MIT/ LCS/ TR-200. May 1978.

92

[163 Harel, D., A.R. Meyer and V.R. Pratt. Computability
and Completeness in Logics of Programs. Proc. 9th Ann, ACM
Symp. on Theory of Computing, Boulder, Col., May 1977.

C173 Harel, D., A.Pnuel and J. Stavi. Completeness
Issues for Inductive Assertions and Hoare's Method. Tech.
Rep., Dept. of Applied Math, Tel-Aviv U. Israel. Aug. 1976,

(181 Harel, D., A.Pnueh and J. Stavi. A Complete
Axiomatic System for Proving Deductions about Recursive

Programs. Proc. 9th Ann. ACM Symp. on Theory of Computing,
Boulder, Col., May 1971.

{191 Harel, D. and V.R. Pratt. Nondeterminism in Logics of
Programs. Proc. 5th ACM Symp. on Principles of Programming
Languages. Tucson, Ariz. Jan. 1978.

[201 Hitchcock, P. and D. Park. Induction Rules and
Ternunation Proofs. In Automata, Languages a-.{ Programming
(ed. Nivat, M.), IRIA. North-Holland, 1973.

[211 Hoare, C.A.R. An Axiomatic Basis for Computer
Programming. Comm. of the ACM, vol. 12, 576-580, 1969.

[221 Hoare, C.AR. Some Properties of Predicate
Transformers. JACM, vol.25, no3. July 1978,

L2313 Kleene, S.C. Introduction to Metamathematics. D. Van
Nostrand. 1952.

[241 Koenig, D. Theorie der endlichen und unendlichen
Grapen. Leipzig. 1936. Reprinted by Chelsea, New York.
1950.

[251 Manna, 7. and R. Waldinger. Is "Sometime" Sometimes
Better than "Always"? Intermittent Assertions in Proving
Program Correctness. Proc. 2nd Int. Conf. on Software
Engineering, Oct. 1976.

£26] Morris, J.H. Jr. and B. Wegbreit. Subgoal Induction.
Comm. of the ACM. vol. 20. no. 4. Apnl 1977.

£273 Park, D. Fixpoint Induction and Proofs of Program
Properties. In Machine Intelligence 5. Edinburgh Unsversity
Press. 1969.

(281 Pratt, V.R. Semantical Considerations on Floyd-Hoare
Logic. Proc. 17th IEEE Symp. on Foundations of Computer
Science. 109-121. Oct. 1976.

[293 Sokolowski, S. Total Correctness for Procedures.
Manuscript. Umiv. of Gdansk, Poland. 1977,

£30] Tarski, A. The semantic conception of truth and the
foundations of semantics. Philos. and Phenom. Res, 4,

341-376. 1944.

[311 Winkimann, K. private communication.

