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Abstract

The problem of reasoning about recursive programs is

considered. Utlbzing a simple analogy between iterative and

recursive programs viewed as unfimte unions of finite terms,

we carry out an investigation analogous to that carried out

recently for iterative programs. The main results are the

arlthmet!cal completeness of axiom systems for (1)

context-free dynamic logic and (2) Its extension for dealing

with infinite comflutatiorzs. Having the power of expression of

these Iogics in mind, these results can be seen to supply (as

corollaries) complete proof methods for the various kinds of

correctness of recursive programs.

A majority of the work done to date in reasoning about

computer programs seems to be concerned with re.@ar programs

(e.g. Wlziie programs or flowcharts etc.). Some of the better

known examples are [6,7,8,9,10,19,21,25,281. When reading

this and other relevant hterature it becomes apparent that

when these programs are replaced by recur5ive programs ( i.e

context-free programs) the problems become much harder. For

example, the Important paper of de Bakker and Meertens [3]

seemed to indicate that Floyd -Hoare-hke methods for proving

the partial correctness of recursive programs using invariant

assertions, required infinitely many such assertions.

Subsequent work by Crelbach [131, Goreiick [12], Apt and

Meertens [11, Harel, Pnueh and Stavi [17,181 and Calher

[111, pointed to the fact that thn was not quite so. Namely,

by aliowlng the assertion preceding a recursive call to

“freeze” the values of all the program variables in order to

refer to them upon completion of that call, a natural

extension of the Floyd -Hoare technique to recursive programs

IS possible, using only fmItely many assertions. C)ther work

has been done regarding recursive programs: Hitchcock and

Park [201 have equated the termination of a recursive program

with the well -foundedness of a certain binary relation, and

[173 and [291 contain approaches to the problem of

ax Ionlatlzing the total correctness of (deterministic)

recursive programs. Major parts of all of [1,12,17,18,291 are

devoted to one or both of the tasks of (1) designing

“substitution rules” or “rules of adaptation” for dealing with

parameters or local variables, and (2) presenting the methods

for mutual recursion. our point IS that these, and other
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apparent complications, tend to obscure whatever basic

concepts and ideas were involved in the essence of the

augmentation from regular to context-free reasoning.

This paper is concerned with the problem of clean reasoning

about recursive programs. We establish a very simple analogy

between iterative and recursive programs and use it to obtain

results, similar in spirit to those known for iterative ones,

but usually somewhat harder to come by.

In order to be able to put this analogy to good use we

choose to carry out our investigation with a simple recursive

program construct which we write c*(j), This is the program,

specified by the program-term C(X), which consists of

executing ~ with every appearance of the special

“place-holder” symb,ol X standing for a recursive call to C

Conventional notations for ~*(j) include pXC( X) [5,203,

motivated by work on the least fixpomts of functional. The

analogous simple iterative construct is a*, namely the program

consisting of carrying out a any ZO number of times. With

true? and false? standing respectively for the identity (skip)

and empty ( abort) programs, we define

a“ = true? ‘C”(false?) = false?,
ai+l

= a;a’ Ci+l(fa/se?) = T( Ci(falw?) ),

where a;@ IS the usual composition of programs and ~(~) is

the application of programs, i.e. ~ with all free appearances

of X replaced by (1 The meanmgs of a* and C*(f) are binary

relations over states, defined respectively (inductively, that

IS assummg knowledge of the semantics of a and t(~) for any

/9) as follows:

m(a*) = Ui~om(ai) m( C*(Y)) = Ui~om( ti(~alse?) ).

‘rhis then, illustrates the essence of the analogy the

Iterative ( recursive) construct IS an infinite union of terms

consisting of fmttary composition ( apphcation) of simpler

ones, starting with the skip (abort) program.

In most of the recent work on dynamic /ogic and its

variants [14,15,16,19$281 emphasis has been placed on working

with a simple but powerful iterative programming language, and

part of the appeal of this work seems to come from the

slrnphcny which a corzstruct such as a* brings -with it. The

work we report upon here makes use of the experience and
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knowledge attained in [14,1 S,19] for the regular operator u*,

in order to investigate the problems encountered when

reasoning about recursive programs via the simple but powerful

context-free analogue, ~*(~).

Although we would hke to stress that we regard the

a#@ach developed in this paper, and the potential it might

carry for further research, as its most important

contribution, we point to the specific results proved:

Context-free dynamic logic (CFDL) is defined and an

axlomatlzatlon R of It constructed. R is proved to be

complete for CFDL relative to arithmetical universes

(arithmetically complete [14,1S]). This result subsumes those

of [1,3,11,12,13,17,181 much as the completeness of the

axiomatlzatlon of DL in [14,1 S,161 subsumes Cook’s [81

completeness result for Hoare’s [211 system for partial

correctness. As an upshot, it also settles the problem

of supplying a complete natural axiomatlzation of the total

correctness of (deterministic) recursive programs. The result

also seems to answer a question of de Bakker [2] regarding the

weakest precondition [9] of recursive programs. In passing it

IS shown that the main rule of inference for the partial

correctness of recursive programs appearing m [1,11,12,13,181

M simply an instance of Park’s [271 fixpoint induction

principle.

Next, the question of the divergence of a recursive program

is considered, prompting us to extend the binary relation

semantics of the programs to computation-tree semantics. This

gives rise to the definition of the special formula /oo,ba

for a program CY,being true in a state whenever u, started in

that state, can diverge (enter an infinite loop). This

concept has been shown to be essential for the definition of

the total correctness and weakest precondition of a

nondeterministic program [1 S,19,221 and, besides a similar

concept defined in [20] for different purposes, has not been

defined yet for recursive programs. We prove, using a result

of Wlnklmann [311, that /ooPa IS expressible in CFDL.

However, the proof results in an extremely undesirable

formula, Justifying the addition of &ooPa to CFDL as a

primitive. This addition, we show, gives rise to an

arithmetically complete axiomatization of the resulting logic.

2. Context-free Dynamic Logic (CFDL)

Svntax:

we are given sets of function symbols and $redicate

symbo/s, each symbol with a fixed nonnegative arity. We

assume the inclusion of the special binary predicate symbol

“=” (equality) in the latter set. We denote predicate symbols

by p, q,... and k-ary function symbols for k>O by f, g,...

Zeroary function symbols are denoted by Z,X ,Y,... and are

called variables, A term is some k-ary function symbol

followed by a k-tuple of terms, where we restrict ourselves to

terms resulting from applying this formation rule finitely

many times only. For a varlabie x we abbreviate x( ) to x,

thus f(g( x) ,Y) IS a term provided f and g are binary and unary

respectively. An atomic formula IS a k-ary predicate symbol

followed by a k -tuple of terms. The set of first-order

formulae is defined as the closure, under V, ~ and 3X (for

variable x), of the set of atomic formulae.

We define the set T of program terms as follows, using

the special “place-holder” symbol X:

(1)

(2)

For any variable x, term e and first-order formula P,

the assignment x+-e, the test P? and the symbol X are

ali in T,

For all program terms cl and T2, T1 ;c2, ~1U~2

and T1*(~) are m T. ( Remark:~ IS not a function

symbol, it is merely of mnemonic value and is used to

signify the difference between rx* and T*,)

An occurrence of the symbol X in a term cl is said to be

bound if it is in a subterm of the form ~2*(~), and free

otherwise. A term with no free occurrences of any program

variable is called closed. The C*(f) clause IS intended,

intultlvely, to represent the program consisting of an

execution of c where the free occurrences of the symbol X in C

represent t calling itself recursively. The set CF of

context-free programs IS taken to be the set of closed terms

m T. For example, ( y+y+l ;X “u Y>O?)*(f) is a legal program

In CF.

The set of wett formuie formulae of Context-free DL

(CFDL-wffs) is defined just as DL in [14,15,161, but using CF

instead of the set KG of regular programs:

(1) Any atomic formula IS a CFDL-wff,

(2) For any CFDL-wffs P and Q, a in CF and

variable x, .P, (PvQ), 3xP and <tY>P are

CFDL-wffs.

We use A, D, ~ and V as abbrevlat]ons m the standard way, and

m addltlon abbreviate =<a>.P to [a]P. Note that a

fwst-order formula is a CFDL-wff. Throughout, we denote by

var(rx) the tuple conslstmg, in some fixed order, of all

variables appearing in a to the left of a + symbol

Semantics:

The semantics of CFDL IS based on the concept of a state.

A $tate ~ consists of a non empty domain D and a mapping from

the sets of function and predicate symbols to the sets of

functions and predicates over D, such that to a k-ary function

symbol f ( resp. predicate symbol p) there corresponds a total

k-ary function ( resp. predicate) over D denoted by f~ ( resp.

Pj). In particular, to a variable there corresponds an

element of the domain and to a O-ary predicate symbol

( propositional letter) a truth value (true or fal,e). The

standard equality predicate over D is that corresponding to

the equality symbol ( ❑). We will sometimes ~efer to the

domain of .j as Dj.
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The value of a term e = f(el,...,ek) in a state ~ is

defined inductively following Tarski [30], by

el = ft(elj,...,ekj).

We now define by simultaneous induction the binary relation

over r, the set of ail states, corresponding to a program a

of CF, and those states ~ in I’ which satisfy a CFDL-wff P.

The relation will be denoted by m(a) and for the latter we

write .lEP. ( ~,$) being an element of m(a) can be thought of

as representing the fact that there exists a cwn/rutatiors

sequence (or @sth) of sx starting in state ~ and terminating in

$. Thus, JI%sYIP will be seen to be making an assertion about

all terminating computations of a starting in state J; namely

the assertion that the final states of these computations

satisfy P. Similarly, &<a>P asserts the existence of a

terminahng computation of a starting in state ~ and ending in

a state satisfying P.

Notation: For any function C: D + fY, arbitrary element e, and

afD, we define [e / a]C to be the function with domain D and

range D’u{eJ giving the same values at points in D-{a} as G,

and such that C(a)=e.

(a) For any variable x and term e,

m(xf-e) = {(~,j)l $[ej /xl~},

(b) for any program-free CFDL-wff P,

m(P?) = {( f,J)l JFP},

(c) For any a and d In CF and term c in T,

m(a ;@) = m(a) o m(fl), (composition of binary relations)

n3(aL@) = m(a) u m(p), (union of binary relations)

m( T*(j)) = u,~~m(~i(fa[$e?) ),

where t“(a)=a, d+l(a)=C(Ci(a)) and ~(19) is the CF program

obtained by replacing every free occurrence of X in c by I%

(d) For an atormc formula p(el,...,ek),

$kp(el,...,ek) whenever pj(elj,...,ekj) is true,

(e) For any CFDL-wffs P and Q, a in CF and variable x,

.lk~P lff it N not the case that &P,

~k( PvQ) iff either JFP or .WQ,

.jF3xP iff there exists d6Dj such that [d / xlj b P,

~F<ss>P iff there exists $<1’ such that ( $,$) tin(a) and #FP.

V/e will be interested in special subsets of r namely simple

universes. A pseudo-universe U is a set of states all of

which have a common domain D. A function symbol f ( resp.

predicate symbol p) is called uninter#veted in U if for every

state .lf U and for every function F ( resp. predicate P) over D

there exists $(U such that ~ and $ differ at most in the value

of f (resp. p) which in $ 1s F (resp. P).

A symbol is called fixed in U if its value 1s the same in

all states of U. Thus, “=” N fixed in any universe. A

universe is a pseudo-universe in which every predicate symbol

IS fixed and in which every function symbol is either fixed or

uninterpreted, A universe is called simfite if the only

uninterpreted symbols in it are a designated set of variables.

In a simple universe the fixed variables will sometimes be

called constants following ordinary usage.

In this paper we will primarily be interested in

mvestigatmg the truth of CFDL-wffs in a given simple

universe U. However, one can see that for some ~cU and some

assignment x+e the unique state ~ such that ( ~,$)fm(x+e), i.e.

the state [ej / xI.1, might not be in U at all. We outlaw this

phenomenon by adopting, from now on, the convention that in

the context of a given universe the only programs we consider

are those in which the variables assigned to (e.g. x in x-e)

and the quantified variables (e.g. x in 3xP) are

uninterpreted. Thus, for .lfU and for any CFDL-wff P the truth

of ~ in P can be seen to depend only on states in U. We will

often omit the adjective “simple” when no confusion can arise.

An arithmetical universe A is a universe in which the

domain includes the set of natural numbers, the binary

function symbols + and “ are fixed and given their standard

meanings ( addition and multiplication respectively) when

apphed to the natural numbers in the domain, and O and 1 are
fixed zeroary-order function symbols interpreted as the

natural numbers “zero” and “one” respectively, Furthermore

there is a fixed unary predicate symbol mzt with the

Interpretation “nutj[d) is true iff d is a natural number”,

that is, for every state ~, {dfDJl natj(d) ~ is the set of

natural numbers. Tlhus, we are able to distinguish the natural

numbers in the domam from the other elements and we do not

care, say, what the value of x+y is in state j when it is not

the case that nat ~( x ~) holds. An additional property we

require of an arlthmlettcai universe is the ability to encode

finite sequences of ellements into one element. The formal

definition of this property 1s as follows There exists a

total predicate R( x ,i,y) over the domain of A, such that for

any natural number n it is the case that we have

(k’xl ....xn)(21y) (Vi)((nadi)mzi)zi) ~ (R(x,i,y) E X=xi)).

“rhe Intuition is that R( x,i,y) holds iff “x is the i’th

component of y“, so that any finite sequence X1....Xn can be

encoded as such a y, Note that one particular arithmetical

universe is the univmse N of “pure arithmetic”; that m, the

universe in which the domain is precisely the set of natural

numbers, and ‘, “, O, = and nat (which in this case is

Identically true), are the only function and predicate

symbols. Coedel’s #-.functlon serves as the finite sequence

encoding function for this universe.

When talking about arithmetical universes we will often

want to use n, m,...to stand for variables ranging only over

the natural numbers. We do this by adopting the following

convention: any L-wff we will use in which we have explicitly

mentioned, say, the variable n as a free variable, is assumed

to be preceded by “nat( n) ~“. Thus, for example, ~K( P( n) ~Q)

stands for .j’F(mzt(n)l =( P(n) ~Q) ), asserting that in state ~,

(P(n) ~Q) is true [f nj happens to be a natural number.

Furthermore, by convention, VnP(n) stands for Vn(nat(n) =@(n)),

and hence 3nP(n) abbreviates ~n(nct(n)Ap(n)).
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]t is important to note that any universe U can be extended

to an arithmetical universe by augmenting it, if necessary,

with the natural numbers and additional apparatus for encoding

finite sequences. Thus, reasoning about any kmd of program,

written over any domain, can m principle be carried out with

a suitable arithmetical universe.

A CFDL-wff P is U-valid (written PUP) if it is true in all

states of the universe 1-1,and is valid ( PP) if it is U-valid

for every universe U.

Example: Consider the program

a: Zex ; ( ( Z=()?; y+l) IJ ( z#()? ;2+-2-1 ; x ;Z+z+l ; yey”z) ) *())

which is of the form z-x ;Cx(f), The following is ~3(jzk?):

( ( Z=o?;y+l) u ( z#o?;z+-z-l ;

( ( Z=o?;y+l) u (z#o?;z+z-1 ;

( (Z=o?;yel) u (z#o?;z+z-1 ;

false?;

2+2+1 ;y+y”z) ) ;

Z+z+l ; y*y”z) ) ;

Z+z+l ; y+y’z) ) .

In general it can be seen that the meaning m(a) restricted

the universe N of pure arithmetic is the binary relation

{(~,$)1 $ = [(xj)!/YIJ ), and thus a is a program

computing factoriat over the natural numbers. m

One can see that ( ~,$)~m(~*(f) ) iff there exists a

to

nonnegative integer n such that ( $,$) cm(~n(~alse?) ). h’t

other words the intuition is that “executing” a recursive

program T(X) which “calls itself” in effect at each appearance

of X, is executing, for some n, the program consisting of

allowing calls of at most “depth” n.

(We remark that in fact this defmltion is in perfect

agreement with j7xpoint semantics of recursive programs, as

defined, say, in [41 or [51. Using terminology from these

papers our l?s are all continuous over the domain of binary

relatlons, and therefore defining the meanmg of C*(\) to be

the least solution of the relational equation X = C( X), in

the sense of [41 and [201, is, by Kieene’s [231 theorem,

consistent with our definition of ~x(~), which is really

Jlxr(x). )

In the sequel we will need a fundamental notion to aid in

constructing our rules of inference and in conducting our

meta -reasoning. We allow in this reasoning a special kind of

“program”, the achieve program PZ, defined for any

first-order formula P and tuple Z consisting of pawwise

disjoint variables. The meaning of PZ is given by the

following additional clause to the definition of m:

m(PZ) = { (~,$)1 # = [V/Zl~ for some tuple V of

etements from Dj, and [Z~ / Z’1~ ~ P }.

Thus, P is thought of as having free variables Z and Z’, where

Z’ is a tuple of “primed versions” of the members of Z. For
7example, ( x,y)’ is (x’,y’). Intuitwely then, P ‘ is the

program which assigns ( nondeterministically) to Z any value V

such that in state j P is true of the value of Z in j and V.

Thus, PZ “achieves” between ~ and $ the relatlon induced by

P(Z,Z’).

Examfile: With Z=(x) and P(Z,Z’) being ( X’=X V x’=f(x) ), we

have m(PZ) = m(true? U xf-f(x))), ~

Now let CF’ = CF u {PZI P and Z as above). CF’DL is

defined exactly as CFDL, but replacing CF with CF’. Our

axioms and rules will take advantage of being able, in

arithmetical universes, to construct an “achieve program” of

the form PZ to correspond to a given “real” program (i.e. a

first-order formula P which “expresses” the relation induced

by the program).

3. Preliminary Results

The facts estabhshed in this section are instrumental in

estabhshmg the main result of Section 4. First we show that

the regular programs are embedded in CF. Recall that U* was

defined in [281 such that m(a*)=(m(a) )*, i.e. the reflexive

transitive closure of m(a).

Lemma 1: For every rYfCF,

m(a*) = m((trrfe? u a; X)*(~)) = m((true? u X;u)*(~)).

P=: m(a*) = U(~~o m(al) = m(trrze?) U m(a) U

m(a; a) u ... = m(~alse?) u m(frue?) u m(a ;true?) u

m(a; a;true?) u ... = U’~o m( (true? u a ;X)i(~alse?) ) ❑

m((trwe? u a; X)*(j)) . Similarly for the second equality. ~

Theorem 2: For any arvthmet!cal universe A, the first-order

language is A-expressive for CFDL, I.e. for any CFDL-wff P

there exists a first-order formula, Q, such that PA ( PsQ).

~: The Theorem is proved similarly to Theorem 3.2 in

[151 and the reader 1s refered to that reference for details.

However, here a shg.htly different treatment for ~x(~) is

necessary. It can be shown, by the encoding of finite

sequences of elements of the domain of A that there exists,

for every term C( X), a ftrst-order formula lTR=(n) such that

for every n lTR=( n) “expresses” @(jalse?), in the sense

that m(lTR=(n)Z) = m(tn(~alse?)), where Z=vur(c). AS in

Theorem 3.2 of [151, if QL is a first-order equivalent of Q

then an equivalent of <c*(~)>Q Is 3n3Z’(nat(n) A

lTR=(n) A (QL)~). z

In the sequel we will write Z=Z’ to abbreviate

AxeZ(x=x’), and by convention will assume that for Programs

z
of the form P , the tuples Z and Z’ appear m that order in

the paranthesised hst of free variables of P. Thus for
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example, P(Z’’,Z’) will abbreviate P with members of Z“

replacing free corresponding members of Z. We now show how to

express the fact that PZ is an upper or lower bound on the

relation represented by a program a, using notions from CFDL.

T/reorern 3: For any universe U and afCF’, let mu(~) be m(a)

restricted to elements of U. If Z=zmr( a) then

(1) I=U(Z’=Z 2 [alP(Z’,Z)) iff mu(a) ~ mlf(pZ),

(2) I=U(P(Z,Z’) =1 <a>Z’=Z) iff mJPz) ~ mu(a).

~: (l): Assume ku(Z’=Z ~ [alP(Z’,Z)) and assume

(~,$)6mU(a). We have to show that j=[V/ZIJ for some tuple

V of elements of DJ, and that [Z / Z’I~FP(Z,Z’). The first

1is trivial by the fact that Z=rmr(a . NOW, by the definition

of mU(cc), and since a does not change z’, if (~,$)~mu(u)

then also ( Y,$)fmu(a), where j’=[Z ~ / Z’IJ and $ = [Zj / Z’1$

= [Zj / Z’l[Z~ / Zl~. However, by the assumption, since we

have constructed ~’ such that ~’b(il=z’), we must have

$’bP(Z’,Z), or [Zj / Z’IIZ$ /ZIJbP(Z’,Z), which is the same

as saying [Z~ / Z’l&P(Z,%’).

Conversely, assume mu(a)~mu( Pz), and assume that for

some J(U we have JF(Z’=Z), and that (~,$)~mu(u). We must

show that $=P(Z’, Z). By assumption, ( ~,~)~mu(pz) ~ so that

[Z~ / Z’IJFP(Z,Z’), which by ~k(Z’=Z) is equivalent to

[zj/zlJPP(z’,z). However, by ( $,$) CmU(a) we know that

$=CZj /Zl~, so that &P(Z’,Z).

(2): Assume ku(P(Z,Z’) ~ <a>Z’=Z)), and assume

( ~,$) ~mu( pZ). We prove ( J,j)fa. BY the second assumption,

[Zf / Z’l&P(Z,Z’), so that by the first we have ([Z~,z’1~ ,

[Zj /Zl[Z~ /Z’lJ)fmU(u). Thus, we can conclude that (~ ,

EZ4,Zl~)fmll(d). Finally, from $f=[V / Zlj for some V we

co~clude that-$ =[Z~,Z]~, and hence that ( ~,$)fmu(u).

conversely, assume mu( PZ) ~mu(a), and that for some

.jl=P( Z,Z’). We show the existence of $6U such that

(~,~)cmu(a) and Z’ ‘Z~- ~. Take $ to be [Z’j / Z]~.

Certainly 77 =Z .
$

f

Furthermore, by the definition of Pz,

since [Z’j / Z’] ]s simply ~ itself, and since we assumed

that jl=P(Z,Z’), we conclude that (~,$)fmu(px), and

hence (J,.$)fmu(a). m

It is straightforward to show that our T’S are monotonic in

the sense that If m(a)~m(d) then m(c(a))~m(c(fi)). We

restate Park’s flxpomt induction principle:

Lemma 5: For every umverse 1-1, @ al,...fc,’, and term

C(X), if mu(txO)=4 and if furthermore for all i~o we have

mu(ui+l) ~mu(~(ai))j then for all i~o) mU(ui)~mU(~*(J))”

~: By induction on i. For i=O we have

mu(fxl)~mU( ~(qJ)’m U(Wa~$e?))~ (Umnzo mU(Cn(Yalse?)))=

mu(~*(f)). Assume mu(a,)~mu(~*(~)), so that by

monotinicity mu(~(all )Gmu(T(~*(t) ) ). Thus we have

mu(txl+l) ~mu(~(ui) )~mu(~(~*(j))). However> one can

show by induction on the structure of c that

m ~n(~ahe?l ) ) =mu(c(w n=o U~=o mu(t(tn(~alse?) ) ).

(This follows from the continuity of c over the domain of

binary relations; c .f [s].) And so we have mu(ai+l) ~

u ~=1mU(d(fde?) )=mu(T*(j) ). S

4. Axiomatization of CFDL

Consider the following axiom system R for CFDL:

Axioms:

(A)

(B)

(c)
(D)
(E)

(F)

(c)

AH tautologies of propositional calculus.

[~+e]p = p;, for a first-order formula P.

[Q?]p . (Q=p).

[a ;ISIP = Eal[~lP.

[aublP : (EalP A U31P).

[PZIQ = (VZ’’)(P(Z,Z”) = &;)

for first-order formulae P and Q.

(P 2 [c*(j)lQ) ~ ((PAR) =1[c*(j) l(QAR))

where wr( R) fhsr(’K)=*.

Inference rules:

(H) P , P3Q

Q

EalP ~ [alQ

(1) Z’=z ~ [l:(P~)lP(Z’,z)

where Z=var( C),

Z’=z = [c*(f) lP(Z’,z)

(K) P(n+l,Z,Z’) ~ <~(P(n)Z)>Z=Z’ , ~P(O,Z,~)

1?(n, Z,Z’) ~ <~*(j) >Z=Z’

for a f !rst-order formula P with Z=var( C), n~ rxzr( t).

Lernrrm 4 ( Park [273): For any universe U, afCF and term c(X),
For any arithmetical universe A denote by R(A) the axiom

if mu(~(a))~mu(a) then mu(T*(f))Gmu(a). system obtained by augmenting R with the set of all A -valid
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first-order formulae as additional axioms. Provability in

F/( A) is defined as usual. The intuition behind axiom (C) is

that 1[ allows “carry!ng’” R across a program when that program

cannot affect the truth of R. The inttsltion in rule (J) is

that if upon “freezing” the values of Z in ~ execution of t,

with the relatlon P “plugged in” whenever a recursive call was

to be performed, results in P holding between the initial

values and the current ones, then P holds when the recursive

calls are indeed honestly carried out.

We now prove the soundness of R.

Lemma 6: For any first-order formulas T and P(Z,Z’),

CF’DL-wffs Q, R and S, term C( X), the following are valid

(1) EPZJT z (’fZ’)(P(Z,Z’) o 1:),

(2) (S s [c*(~)lQ) =1 ((SAR) =J [r*(Y) l(QAR)),

where var( R) flvar(c)=gf

&: Straightforward from the definitions. H

Lemma 7: For any universe U, first-order formula P(Z,Z’)

and term ~, where Z=var(~), If bu(Z’=Z ~ [~(Pz)lP(Z’,Z))

then &u(Z’=Z o [T-*(~) lP(Z’,Z)).

~: By Iheorem 3(1) the hypothesis is simply mu(C(Pz) )

~mU( P7’), By Park’s prlnclple ( Lemma 4) we obtain

mu(~*(~))~m U(PZ), which, again by Theorem 3(1), is

precisely the conclusion. n

Lemma 8: For any first-order formula P( n, Z, Z’) and term C,

where n$ zw(~) and Z=uur(C), If FA~P(O,Z,Z’) and

kA(P(n+l,Z,Z’) ~ <T(P(n)Z)>Z=Z’), then

l=A(P(n,Z,Z’) =s <T*(J) >Z=Z’).

~: ‘ne can ‘how ‘hat ‘A”p(O>Z?Z’)’s ‘n ‘act
.-

equivalent to saying that mA(p(0)”)=~. Furthermore, by

Theorem 3(2) the second assumption amounts to asserting that

mA(p(n+l)Z) SmA(c(p(n)Z)). BY Lemma 5 we conclude that

mA(p(n)Z) ~mA(C*(~)) for ali n. Thus, again by Theorem

3(2),, we have the conclusion. B

TAeorern 9 ( A-soundness of R): For any CF’DL-wff P,

if l_R(Aj P then bAP.

.12@ FOllOWS from the soundness of our axlomatlzation of
regular DL (cf. Thrn. 3.6 of [151) and Lemmas 6,7,8. 1

We will apply Theorem 11 of [141 (which is Theorem 3.1 of

[15]) to prove the arithmetical completeness of R, but we

are required fwst to prove the appropriate completeness

theorems for formulae with one box or one diamond. These will

be established with the a[d OC

Lemma 10: The followlng are derived rules of R where Z

and n are as in (J) and (K):

(J’) Z’=Z ~ MPZ)IP(Z’,Z) , WIPZIQ

R=[c*(f)]Q

(K’) P(n+l,Z,Z’) ~ <d P(n)z)>Z=Z’ , ~P(O,Z,Z’) ,

R~~n<p(n)Z>Q

..
~: (J’): Assume kR(A)(Z’=Z ~ [T(PL)IP(Z’,Z)).

We apply (J) to obtain F~(A)(Z’=Z ~ E’c*(~)lP(Z’,Z)).

Using axiom (C) we get F~(A)((Z’=Z A (VZ’’)(P(Z’,Z) ~@”)) ~

[T*(~) l(P(Z’,Z) A (VZ’’)(P(Z’,Z’’) )))),), from which we..

deduce ~R(A)( (VZ’’)(P(Z,Z’’) ~&)’) ~ [T*(~)lQ). Thus, by
.

ax lom (K) and the second assumption the conclusion follows.

(K’): Similar to (J’). m

We now show that rule (J’) can indeed always be applied

when its conclusion is A-valid.

Lemma 11 ( invariance Lemma for CF’DL): For every term T(X)

and CF’DL-wffs R and Q, If PA( R2[T*(j)lQ) then there exists

a first-order formula P(Z,Z’) with Zwar(T), such that

PA(R~[PZIQ) and I=A(Z’=Z n [C(PZ)IP(Z’,Z)I.

~: lmphed by the way Theorem 2 is proved is the fact

that there exists a fwst order formula of arithmetic P(Z,Z’)

which “expresses” the program Cx(f) in the sense that

z
mA( P )=m A( T*(f) ). Certainly then, by the assumption, we

. .
have PA( R=I[P7’IQ). Also, as noted in the proof of Lemma 5,

mA(r(C*(j) ))=mA(c*(~) ), and so we have mA(r(pZ) )CmA(Pz),

which by Theorem 3(1) N kA(Z’=Z ~ [C(PZ)IP(Z’,Z)). ~

T/~eorem 12 ( Box -completeness Theorem for CF’DL): For every

c&CP and first-order formulas R and Q, If ~A(Rda]Q)

then kR( A) (R~[a3Q).

J2LQLK Strwhrforward proof by induction on the structure ‘

of a. The Connectlves +, ?, ; and u are treated precisely

as In [14,1 S]. The case ‘c*(Y) is treated using derived rule

(J’) and Lemma 11. 5

Similarly to Lemma 11, rule ( K’) can be apphed when needed:

Lemma 15’ (Convergence Lemma for CF’DL): For every term C(X)

and CF’DL-wffs R and Q, If kA( R=I<~*(j) >Q) then there exists

a first-order formula p(n,Z,i’,’) such that bA(p(fl+l$Z,Z’) ~
. .

<T(P(n)z)>Z=Z’), b,. P(O,Z,Z’), and l=, (R~3n<P(n)z>Q).
n,. . n
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&: Again, by the method used in the proof of Theorem 2,

there exists a fwst-order formula P( n, Z,Z’) representing

Cn(yahe?) in the sense that for every n we have

mA(’P(fl)Z) =mA(@(~d$@?)). It is easy to see that all

three A -vahdities hold for P, S

T/reorem 14 ( Diamond-completeness Theorem for CF’DL):

For every afCF’ and first-order formulas R and Q, if

kA(Ro<tx>Q) then kR(A)(R~<cx>Q).

2G?$?L’precIselY‘S ‘f’heoIwI W but usingLemma 1; and
rule (K’ ) instead of Lemma 11 and rule (J’).

We conclude that for CF’DL-wffs, A-validity and provability

in I?(A) are equivalent conceptw

Theorem 15 ( Arithmetical Soundness and Completeness for

CF’DL): For every arithmetical universe A and CF’DL-wff P,

~A p iff ‘R(A) ‘“

M: One direction IS Theorem 9) and the other follows
from the general Theorem 11 of [14] (which is Thin. 3.1 of

[151) and the present Theorems 2, 12 and 14. fl

The results in thn section mdlcate that, as far as CFDL

is concerned, reasoning about “pure” recursion is analogous to

(albeit more complicated than) that of reasoning about “pure”

iteration. Here we are using the integers to count how “deep”

we are in the recursion ( using P(n)Z in rule ( K)), whereas

for a* we counted how “far” we are in the iteration.

It Is Interesting to note that the proof method for

formulae of the form R 3[alQ which is incorporated into R

boils down to Floyd’s C1OI inductive a$sertion method and to

Morrm and Wegbrelt’s [261 subgoal induction method

respectively, when regular programs are translated into

recursive ones vla the two methods appearing in Lemma 1. Thus

the duahty holding between these two methods, which was

described in length in [263, shows up concisely as stemming

from the two dual ways of viewing a*. The reader familiar

with [261 can convince himself of this fact quite easily by

deriving formulae (3.1-3.3) and (3.4-3.6) of [261 from our

rule (J) by using the two equalities of Lemma 1.

[n Section 4.4 of [1S1 we extend this system to the generai

mutual recur3iorr operator #iX1...Xn( Cl, .....Cn).

Appendices of [1S1 contain examples of proofs in R

and l?+ of Section 6.

5. Divergence of Recursive programs

In this section we define the operational notion of the

diverging of %recurslve program, I.e. It entering an infinite

loop. ‘rhis is done by introducing, for any state ~, the

J--computation tret of a program a, denoted by ct(u,l). We

show that computation trees are in fact an extension of the

semantics of CF. The trees however, in addition to the

input-output information, contain information regarding the

presence or absence of divergences. The concept of diverging

has been shown inl [15,19,223 to be essential for describing

the total correctness of nondeterministic programs, and hence

the importance of investigating it for recursive programs as

well as iterative ones, The main result in this section,

based on a result of K, Winklmann, is the fact that diverging

is expressible in CIFDL.

Each node of ct( a,j) will be labeled with a state in r or

with the special symbol F, and will be of outdegree at most 2.

The root is labeled with ~ and nodes labeled with F will

always be leaves. The inttrltion is that a path from the root

represents a iegal computation of a starting in state ~.

Accordingly, a leaf represents a termination state if it is

labeled with a state in r, or reaching a false test if it is

labeled with F. Any node with descendants represents an

intermediate state of a. If a node has two descendants then

there Is, so to speak, a choice as to how to “continue

execution”.

A node will be represented by a pair ( t,l), where t is a

finite string over {0,1) describing the location of the node

m the tree by O denoting “go ieft” and 1 “go right”, and [

( the label of the node) IS either a state in r or the symbol

F. “1’bus, for example, the tree

Q
~

dAJ $’

F “

M represented as {( A,~), (0,~), (l,$),(lO,F) ~(ll,$’)}. AS

can be seen, A, the empty string, marks the root of the

tree. By convention, a single descendant is marked as “going

left”, I.e. by O.

Formally, for any jfr and a6RC, ct(a,j) is defined, by

reduction on the structure of a, to be a subset of {0,1}* x

(r u {F}) as follows, where we use I to range over (1’ u

{F}), and s, t,... to range over {0,1}*:

(1) ct(x+e,~) = {(A,~),(Wj/xl~)},

(
‘{( A, J)} if 3t=P

(2) ct(P?,J) =

,{(A,F)} if Jk.P,

(3) ct(aub,~) = {( A,~)} u {(%1)1 (t,l)~ct(%~)} u

{(141)1 (Ll)fc~(l%~)J>

(4) Let E = {(t,$)fct(a,J)l $fr A

(Vb~(O,l)) (Vlf(ru{F})) ((tb,l)$ct(@)},

and let C = ct(a, $) -E. Then

ct(a;fi,j) = C U {(ts,l)t (3c0((t,$fE A (%l)~ct(~,$))},

(s) ct(r*(f) ,~) = Ct(fahe? u dc*(f)),n
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Informally, to construct ct( T*(~), ~ ) one starts constructing

ct(~alse? u T(X)), and whenever, so to speak, “ct( X,j)” was to

be attached to a node labeled ~, ct( c*(~) ,$) is attached

instead. C)f course, this process might lead to an infinite

tree. The additional union with fatse? is introduced so that

the process of calhng recursively would itself “cost” an edge

in the tree, so that e.g. the program (X)x(j) will diverge

(see below).

L?xam@le: Let j be some state m N for which Yj=O, and in the

diagram we let i stand for [i/ yl~. Take a to be the program

( (Y=o?;y+-y+l) u (y#o?;Y+Y-l ;X;Y+Y+l))*(f).
‘Then ct(a,[l / yl~) is

%2
1

F1

F1

4?3
o

FO

OF

($12

H

We omit the proof of the following fact, which serves to

show that computation trees are consistent with the binary

relation semantics defined above:

Lemma 16: For every a6CF, ( J,$)6m(a) Iff ct(a,l) has

a leaf labeled $.

Define now, for any u(CF a Boolean constant Loo)a by:

Jkloopa iff ct(a, j’) is infinite,

Note that, ct(a,~) being of fmlte outdegree, we can apply

Koenig’s lemma ( see [241) tc. conclude that in fact ~~toopa

iff there exists an injlrrile path from the root; i.e. there

is an infinite sequence of nodes in ct(a, f), of the form

(~,~) , (bl,~l), (blb2,~2), .... . (bl...b,,~i), .....

We would like to supply a syntactic characterization of

/oo#=*~ . Recall that in [191 it was proved that a

divergence m the iterative a* M due either to a local

divergence, i.e. a divergence in some reachable execution of

tY, or to a global one, i.e. being able to execute a’s for

ever. The former posslblhty was captured by <a*>/oopa which

can be written llnloopan, and the latter is Vn<an>true, So

we can wsxte

1=(loops* = (3nloo~an v Vn<an>true) ).

Characterizing loo~T*W M similar; here a local

divergence IS a divergence “lnslde” some application of a

reachable C, and can be expressed by ~nloop=n~a~$e?).

Global diverging, on the other hand, is more subtle. Here we

want to express the possibility of being able to “apply C for

ever”, which amounts to being able to “proceed infinitely deep

Into the recursion”.

[n order to do this we apply, m the sequel, the following

mild restriction on the universes we consider. The domain is

to have at least two dlstmct elements and the set of symbols

]s to Include two fixed variables having these two elements as

values. We will therefore use the symbols a and b freely as

two fixed-valued variables with dlstmct values. Now, for any

term T, define the term C’ which, intuitively, allows

“sklpplng” tests, recursive calls to T, and other recursive

constructs, but forces any such skip to be recorded in a new

“flag” variable x. given T( X), let x,y~ cxzr(t) be two

variables, and let c’(X) be C(X) with every (free in the case

of X) appearance of a subterm a of one of the forms X, P? or

C“*(~) replaced by ( a u x+ b). Also define

a: (y#a? u (y=a?;x=a?;y+-b)).

For any n>O denote the program x+-a; y+a;l?n(u) by ~n.

We can now present our characterization of loofl=*W:

Theorem 17: For any afCF,

*( loop=*~ = (3nloop=nwa1$e?) v Vn<Cn>y’b) ).

~: Assume we have &3nlooPTnUal$e?l. lt is quite

easy to see that ct(T*(~) ,1) has at least as many nodes as

ct( K“ (fde?),~ ), and hence we also have &loo~C*W.

For the rest of the proof we wIII be needing some

additional notation. For any i20 and jfr we would like to

define the set S( 1,~,~) conslstmg of those states which occur

Immediately before an application of c at “depth i“. Define

where V is the set of states $ such that the process of

constructing ct( ‘C(X+X ;C*(f) ) ,J) for xi var(~) requires

constructing ct( x+x,.$). In other words, V is the set of

states which execut}on of c*(~) can reach just prior to

calling ~ recursively at level 1. Certainly if for some i we

have ~6S( i,~,~), then $ labels some node m ct(~*(f) ,~), and

furthermore the path from the root of ct(~*(~) ,~) to that node

M of length at least 1. ( Note that this would not be the

case If we were to deftne ct(C*(f) ,~) tobe ct(C(’T*(f) ) ,~).)

Assume now that ~~Vn<Tn>y=b. We show that for any i>O

we have S(i,’C, f)#A , and thus ct(T*(f),.f) has paths of
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arbitrary length and is therefore, by Koenig’s Lemma,

lnfmlte. ( Note that the assumption 31’%<Cn>y=b is

sufficient, where 3(~1 reads “there exist infinitely many n“,

so that Vn can be replaced by 2mn in the statement of the

Theorem.) Indeed, for any such i, by assumption, we have

~k<~i>y=b, or ~b<x+a;y+a;l?i( u)>y=b, so that there exists

a finite path p m ct(~i, ~), starting from the root, which

termmates in a node labeled by a statem which thevahreof

y is b. The Iabeisof thesuccesslve nodes ofp can be

denoted by

(~, [a/xIJ, [a/yl[a/xlJ, $0, .....jk)

where ygk=b. Let i be the least integer such that y~i=b.

By the construction of c’(u) tt is evident that in order for

y to have changed value from a to b, it must be the case that

the value of x was a all along. More precisely, for all

J>j’>(1 we have x ,=al so that tests P? and subprograms of
$J

the form C“x(y) were indeed “cartved out” and not avoided by

executing x-b instead. In other words, the initial segment of

the path p ending m ~j can be thought of as being a

simulation, In @i( u), of a path from the root to the

~a~se? In ct( ~l(.@se?) ,~). Consequently, we have
$J$S( ,,~,~). This completes the proof of one direction of the

theorem.

Conversely, assume now that ~Fhm~=*w holds and

that for all n~(l we have ~F-kw~Tn~a~Jt?).

Consider the Infinite sequence s of successive labels of the

nodes of an infinite path from the root in ct( ‘c*(j), $). It

IS easy to see that by the second hypothesis, there must exist

a subsequence of s, say ( ~0,$1, ....). such that for every i

we have ~iCS(I,~,$) and such that ~1 corresponds to the first

tmne m s that “depth i“ of recursion was reached. We show

that ~P<t,>y=b holds for every i by glvmg an algorithm for

executing Ci m such a way as to termmate m a state in

which the value of y 1s b. (liven 1, simulate the path

corresponding to the initial segment of the sequence s ending

in ~i, i.e. assign x+-a and y~a, and then proceed in C’i(u)

exactly as s proceeded In ~*(y), executing tests and recursive

constructs and nor the x-b parts. By the defmitlon of ~i,

reaching ~i in s corresponds to reaching u for the first

time m C’i(U). Thus, we have reached u with yji=a and

x ~,=a and therefore y IS assigned b. Execution in l?i(u)

M then to be continued by choosing the x+b parts instead of

tests, appearances of X and recursive constructs. Certainly

this execution will terminate (no tests to fail; no recursive

constructs or recursive calls to diverge). Moreover, by the

construction of u any subsequent arrival at u will not

change the value of y, and since yi rw(~), this value is not

changed by any other part of the rest of the execution. Thus,

y=b upon termination. 9

An obvious quest]on arising now is whether 100pa is

expres.slble m CFDL, I.e. whether for any aCCF there exists a

CFDL-wff Pd such that H Pa s 100pa). We have to be able

to deal with both dlsjuncts of Theorem 1’?.

We state the following two results and prove the second. The

proof of the f!rst, due to K. Winklmann, is omitted here.

Theorem 19 ( Wmklmann [311): For every term C(X), u~CF and

first-order formula P there exists a CFDL-wff Q such that

E(Q ~:3’%<cn(u)>P).

Theorem 1% For every term C(X) there exists a CFDL-wff Q

such that 1=(Q z 3n100P=n~alse?) )“

And hence from Theorems 17, 18 and 19, and the remark in the

proof of Thin. 17, which justifies replacing Vn in its statement

by 3mn, we obtain: .

Corot’lury 20: 100pa is expressible in CFDL.

Proof of Theorem l!~: Consider the set Z; s W~oS( i,c,~)

which, intuitively, is the set of states labeling those nodes

In ct( c*(Y), ~ ) corresponding to points just prior to a

recursive call to C. Assume we have defined, for any CFDL-wff

Q and term T( X), a formula a20ng(~,Q) such that

I.e. ~kalorrg( T,Q) holds iff Q n true immediately prior to

some reachable recursive call to T in an execution of C*(~)

starting In state j. Assume also that we have defined, for

every program cr6CF and term C(X), a formula /p=,a such

that, intumveiy, jbfp= * holds lff there is a divergence

Ill ct(~(u) ,~) whiclh is’due to the ~ part and not to the a Part

( I.e. the divergence came from some recursive construct

appearing in C(X) ). lt is quite clear that

Jk~n@f@(fa[se?) holds Iff at some state $ in the

execution of r*(~) ]ust prior to a recurswe call to ~, it is

the case that there N a divergence m ct( T(T*(~) ) ,$) which is

due to the first c and not to the inner C*(Y). in other words

&a/orzg( c, /p=,c*~fl ). Now we proceed to define

these concepts, and then observe that they give rise to

CFDL-wffs.

For any a,B,~~CF and terms ~1( X) and K2( X) define

Now for defmmg alorzg( T,Q) we use tricks similar to those

used In conswuctmg 1:’ and u for Theorem 17’. Given C(X),

let x ,y$ zx-m(~) be two variables, let Z=zwr( T) and let ~ be a

tuple of dmjoint primed versions of the varvables in var( C).
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Define c“( X) to be T(X) with every appearance of a subprogram

a of the form P? or C“’x(f) replaced by (u u x+b), and every

appearance of the program variable X replaced by

((x=a7;y=a?;y+b ;Z’+-Z) u x+b u X)

where Z’+-Z abbreviates the composition of the assignments z’+-z

for all z(Z. Now, define a?ong( c,Q) to be

<X+a ;y@a;@*(~)>( y=b A <Z+-Z’>Q).

The Inttrltlon is that m x+-a ;y+a;T’’*(f) one has the option of,

whenever X is reached, storing the current values of the

variables Z in Z’, as long as the computation until that point

has been an honest simulation of a computation in c*(j). once

such a store has been carried out it cannot be carried out

again because of the y=a? guard. Furthermore, as in the proof

of “Fheorem 17, execution can always choose to “surface”

quickly to the end of T“*(~) by executing x+b whenever

possible. Then, when the execution fmaliy termmates, we

assert that Q M true for the values of Z which we stored in

~ just before the recursive call. It should now be clear that

‘I’he reason the theorem now follows IS that, when using

Induction on the structure of c and assummg the theorem holds

for the subterms of T, we can deduce that our inductive

hypothesis M in fact that too)a is expressible in CFDL for a

which appears in C. This follows from Theorems 17 and 18.

Thus, the definmon of 1P, which uses 100pa for such a,

gives rise to a CFDL-wff. n

6. Augmented CFDL

In this section we augment CFDL with the abihty to reason

about divergences directly without having to go through the

translation of 100pa into tts equivalent CFDL-wff. The

resultlng language will be called CFDL+. The reason for doing

so, even though by the previous section CFDL and CFDL+ are

equivalent in expressive power, is rooted m the fact that the

CFDL equivalent of loo~a supplled above ( including the part

commg from the omitted construction in the proof of Thin. 18)

has the unpleasant property of being strongly dependent on the

structure of a and on the variables appearing In a. Calling

that equivalent Pa , one can see that Pa, cannot be obtained

from Pa by substituting a’ for a throughout. Consequently,

proving a formula with an appearance of 100pa will inevitably

involve carrying out the transformation of 100PU to Pa , and

then reasoning in CFDL. The point is that the intuition one

might have about ~oopa is, in a strong sense, lost in the

process.

Our axiomatlzatlon here too wIII be of an extension CF’DL+

which Is Cleflned as CFDL+ but with the programs coming from

the set CF’. As in SectIon 4, we wIII be using the fact that

in an arithmetical universe A there exists, for any afCF, a

first-order formula P such that Pz expresses a. The problem

that arises !s that of defmmg IOOP(PZ). We would like

z Woop( PzlIt to be the case that for any P , holds.

However, for a given ~~r it is possible that the set J(PZ)

= {$1 ( J,$)fm(pZ)} IS Infinite., One solution to this

problem IS to define ct( a,~) to be a tree of possibly infinite

outdegree, with the Iocahon of the node given by a hst of

natural numbers (as opposed to a list, or string, of 0’s and

l’s) ; for PZ the tree would be defined (roughly) as

ct(Pz,l) ❑ {( X, J)} u {(l,ji)l (~,$l)~m(Pz)l

Then, we would define ~PlooPa to hold iff ct(a, f) has an

mfiolte path (which In this case N not necessarily

equivalent to ct( a,~) being mfmlte).

Another, equivalent method N to associate with any u(CF’

and ~fl” a set of computauon trees CT(a, ~), For PZ we

would define

‘l-he rest of the defmltfon is carried out analogously to the

def!nitlon of ct(a, ~) above. For example, CT(a;~,~) is the

set of trees obtatned by following the construction of

ct(a; d,~) for every tree in CT(a, ~), attaching any tree in

CT(~,$) to a node labeled ~ whenever ct( @,$) was to be

attached to that node in constructing ct(a ;fl,~).

Exarnl~la Let a: x+x+1, P: XCX’ and Z=(x). For any jflf such

that XJ=O we have:

CT(a,~) ❑ { {( A,$),(O,[l/xl~)} },

cT(P~,[l/xlf) = { {( A, E1/xlf),(o,j’)1 I X$>l },

and thus

CT(a;PZ, j) = { {( X,~),(O,[l /xl~,(OO,~)} I X$>l }. E

Now define ~kloopa to hold Iff there is an infinite tree in

CT( a,~ ). We remark that either way /oopd IS uniquely defined

for afCF’, and that for afCF, CT(a, ~) = {ct(a,~)}.

Now consider the axiom system R+ for CFDL+ defined as ~

of SectIon 4 augmented with the following axioms and rules:

(In the following, P and Q are first-order, R M a CF’DL+-wff,

T(X) is a term, x and y are variables x,y$ uar(~) , Z=uar(C) ,

V ]s the tuple of variables obtained by augmenting Z with x

and y, and u, T’ and d’ are as defined in the proofs of

Theorems 17 and 19 respectively.)

CFDL+ is defined to be CFDL u {toopal acCF}, with the

semantics of the CFDL part being as in CFDL and the semantics

of /OOpa as defined m SectIon 5.
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Axioms:

(L) [oo~x+e ~ false,

(M) !oo~p? Efalse,

(N) /OOpa ;8 = (/oopa V <&>100@) ,

(o) loopoup= (100pa v looP/lj) ,

(P) /oop( Pz) = false.

Ru[es of Inference:

(Q)

R ‘D ( <x*a ;y+a;@’*(j) >( y=b A <~+~>looPC(Q~) ) V

Vn<x+a;y+a;P(n) v>y=b ) ,

P(O,V,V’)~<u>V=V’ , Q(Z,Z’) =1<c*(j) >Z=Z’ ,

P(n+l,V,V’) ~ <~’(P(n)v)>V=V’

(R)

R ~ ( [x+a;y~a;C’’*(~)]( y#b v ~l+~l&OOP=(Q~) ) A

3n[x+a;y+a; P(n)vly#b ) ,

v=v’%rIP(o, V’,V) , Z’=Z ~ [c*(~) lQ(Z’,Z) ,

V’=V ~ [C’(P(n)v)]P(n+l, V’,V)

for any n, P(n) v is “smaller” than C’n(u), one can see

that Vn<x*a; y+a; P(n) ‘>y=b implies Vn<~n>y=b. ~

In order to prove the arithmetical completeness of R+ we

need to show that A-valid CF’DL+-wffs of one of the forms

R =loopa or R~~lOOP,x, where R is first-order, are provable in

??+( A). Then the general theorem (11 in [14], 3.1 in [1S])

is used to obtain the final result. More details can be found

in [1S1.

‘f Aeorerrs 22: For every sY~CF’ and first-order formula R,

if FA( R3/OOpa) then ER+( A) ( R~loo~J.

~: By mducticm on the structure of u, The only

nontrivial case is when a IS of the form C*(f) for some term t.

Assurmng PA ( R~loopa), we show the existence of first-order

formulas Q and P(n) such that the premises of rule (Q) are

A-valid. Since these premises involve only CF’DL-wffs and the

formula /oopT( QZ,, m which the program is of complexity

lower than T*(j), the result WIII follow, Indeed, by Theorem 2

we can take Q and P(n) to be first-order formulae involving,

respectively, only variables in Z and V, and such that kA( Q ~

C*(Y) ) and for all n ~A(P(n) ~ C’n(a)). All the premises

R ~ +oOp=*~ are easily seen to be A-valid for this choice. ~

Let A be any arithmetical universe. l?+(A) is defined Slmiiarly we hav~
analogously to R( A). Provability in R+(A) is defined as

usual. TAeorem 2?: For every csHX’ and first-order formula R,

Theorem 21 ( A-soundness of R+): For any CF’DL-wff P,

If ‘R+(A) P then ‘Ap. And thus, as remarked, we conclude:

~: The proof of the A-validity of(L) -(P) is left to T/Ieot em 24 ( A rithmeltical Soundness and Completeness for
the reader. We show that rule (Q) is sound, noting that the CF’DL+): For every CF’DL+-wff P,
soundness of the dual rule ( R) follows Immediately. k,AP iff ~R+( A) P.

Consider rule (Q). We argue that the A-vahdity of the first

premise of this rule, under the assumption that the other Acknowledgments
three are A-valid, asserts that

—
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( Recall that Tn is an abbreviation of (x+-a ;y+a;C’n(@) ).)
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