
The Rhapsody Semantics of Statecharts
(or, On the Executable Core of the UML) ?

(Preliminary Version)

David Harel and Hillel Kugler

Department of Computer Science and Applied Mathematics
The Weizmann Institute of Science, Rehovot, Israel

{dharel,kugler}@wisdom.weizmann.ac.il

Abstract. We describe the semantics of statecharts as implemented in
the current version of the Rhapsody tool. In its original 1996 version this
was among the first executable semantics for object-oriented statecharts,
and many of its fundamentals have been adopted in the Unified Modeling
Language (UML). Due to the special challenges of object-oriented behav-
ior, the semantics of statecharts in Rhapsody differs from the original
semantics of statecharts in Statemate. Two of the main differences are:
(i) in Rhapsody, changes made in a given step are to take effect in the
current step and not in the next step; (ii) in Rhapsody, a step can take
more than zero time. This paper constitutes the first description of the
executable semantics of Rhapsody, highlighting the differences from the
Statemate semantics and making an effort to explain the issues clearly
but rigorously, including the motivation for some of the design decisions
taken.

1 Introduction

In this paper we describe the semantics of statecharts as implemented in the
Rhapsody tool. Some early work on incorporating statecharts into an object-
oriented framework appears in [11, 1, 12]. However, the detailed basis for a se-
mantically solid OO version of the language of statecharts first appeared in [5].
Two consequences of [5] were (i) the development of the Rhapsody tool to sup-
port object-oriented statecharts, and (ii) the essential adoption by the UML
developers of its underlying semantics. As a result, Rhapsody [9] can be viewed
as the tool that captures the executable kernel of the UML [13].

This having been said, and despite extensive UML documentation, it is also
commonly known that there has never been a responsibly detailed description of
the executable semantics of the OO statecharts language of [5], as captured by

? This research was supported in part by the John von Neumann Minerva Center
for the Verification of Reactive Systems and by the European Commission project
OMEGA (IST-2001-33522).



Rhapsody. This we take upon ourselves here, making an effort to explain the is-
sues clearly, including the motivation for some of the design decisions taken. We
focus on the differences between the object-oriented nature of Rhapsody com-
pared to the original non-OO statecharts in Statemate. The general spirit and
structure of this paper are similar to the paper that described the Statemate
semantics [6], and occasionally we even borrow some of the phrases from there.
This is done not out of laziness, but to allow readers familiar with statecharts
to easily focus on the novel aspects in the new approach. Still, the paper is self-
contained, and so is accessible to readers who are not familiar with Statemate
semantics or with [6].

The current version of the semantics is a result of much experience gained
by users of the Rhapsody tool over the years, which led to modifications and
adjustments. Rhapsody executable models can be run in different modes of op-
eration: regular mode, trace mode or animation mode. In the trace and animation
modes the user can test the model’s behavior by simulating the environment. Af-
ter each step, the user can generate events and invoke triggered operations that
will influence the run of the system. In trace mode, textual information about
the system behavior is displayed, while in animation mode a visual graphical
representation is displayed showing how the active configuration of each object’s
statechart changes, by highlighting states entered and transitions taken. The
animator can also show inter-object behavior, by creating animated message
sequence charts that show graphically how messages are sent between objects
during runtime. These can then be compared with previously prepared sequence
charts that capture requirements on behavior. There are many interesting issues
related to the animation of executable models, but they are beyond the scope
of this paper. An important fact that should be stressed is that in contrast to
Statemate, the trace and animation modes in Rhapsody use code generated
by Rhapsody with additional instrumentation, so that the behavior of the sys-
tem in these modes is the same as that of the actual production code. This is one
of the basic principles that gives added power to executable object modeling.

2 The Basics

An object-oriented system is composed of classes. A statechart describes the
modal behavior of the class, that is how it reacts to messages it receives by defin-
ing the actions taken and the new mode entered. A class can have an associated
statechart describing its behavior. These classes are called reactive classes.
Simple classes that are data driven do not necessarily have statecharts. During
runtime there can exist many objects of the same class, called instances, and
each can be in a different active configuration — a set of states in which the
system resides. Thus, a new statechart is “born” for each new instance of the
class, and it runs independently of the others.

The statechart itself is similar to the original description in [4], and to that
of Statemate [6, 7], in that there are three types of states, or-states, and-
states and basic states. The or-states have substates related to each other



by “exclusive or”, and-states have orthogonal components that are related by
“and”, while basic states have no substates, and are the lowest in the state
hierarchy. Fig. 1 shows the hierarchy and the three types of states that can be
used in a statechart. States S, B, C, D are or-states, state A is an and-state and
states B1, B2, C1, C2, D1, D2, E are basic states. When building a statechart
in Rhapsody an additional state is created implicitly, the root state, which is
the highest in the hierarchy, in this case the root state has state S as a substate.

Fig. 1. A small hierarchy of states

The active configuration is a maximal set of states that the system can be in
simultaneously, including the root state, exactly one substate for each or-state
contained, all substates for each and-state contained and no additional states.
An example of an active configuration of the statechart in Fig. 1 is :
{B1, B, C1, C, D2, D, A, S, root}.

The general syntax of an expression labelling a transition in a statechart is
“m[c]/a” where m is the message that triggers the transition, c is a condition
that guards the transition from being taken unless it is true when m occurs, and
a is an action that is carried out if and when the transition is taken. All of these
parts are optional.

In Rhapsody, there is a single trigger, which can be an event or a triggered
operation. Events mean asynchronous communication and triggered operations
mean synchronous communication. This issue is discussed in greater length in a
separate section. It is also possible to have a transition without a trigger, called
a null transition. Another kind of message that is used in Rhapsody is a



primitive operation, which corresponds to an invocation of a method call in
the underlying programming language. A primitive operation cannot be used as
the trigger of a transition in a statechart, but it can be used in the action part.
A trigger can also be a special event timeout, abbreviated tm(t), where t is the
time in milliseconds until the event occurs (measured from the time the relevant
source state was entered). In Rhapsody, the guard and action are written in
the implementation language1 and in contrast to Statemate there is no special
action language. This is a practical design decision, but it should be emphasized
that in principle it would be no problem to incorporate such a language. In
fact, once the community agrees upon an abstract action language, this could
be integrated into the Rhapsody tool semantics in a natural way.

Besides actions that appear along transitions, they can also appear associated
with the entrance to (Entry action) or exit from (Exit action) a state (any
state, on any level). Like actions on transitions, these too are written in the
implementation language. Actions associated with the entrance to a state S are
executed in the step in which S is entered, as if they appear on the transition
leading into S. Similarly, actions associated with the exit from S are executed
in the step in which S is exited, as if they appear on the transition exiting from
S.

A state can have static reactions (SRs), which have the same format as
transition labels, i.e., “m[c]/a”, and again the guard and action are written in
the implementation language. Consider the statechart appearing in Fig. 2 (a).
State W is associated with a static reaction, as noted by the > symbol attached
to its name in the statechart. The actual static reaction f/act() is shown in the
state menu at the bottom of the figure. The object is now in state W and in its
substate U , and if method f occurs this causes the static reaction to be taken,
which involves performing action act(). The active configuration of the object
does not change, and it remains in U . Semantically, each static reaction in a
state can be regarded as a transition in a virtual substate that is orthogonal to
its ordinary substates and to the other SRs of the state. Thus, the statechart of
Fig. 2 (b) describes the same behavior of that of Fig. 2 (a).

Statemate is based on the structured analysis paradigm, where the func-
tional capabilities of the system are captured by activities that are dynamically
linked to states in the statechart. Linking states to activities is not relevant to
Rhapsody. As mentioned before, in Rhapsody the mode of an object of a
reactive class is the active configuration of the object’s statechart.

The behavior of a system described in Rhapsody is a set of possible runs.
A run consists of a series of detailed snapshots of the system’s situation. Such a
snapshot is called a status. The first in the sequence is the initial status, and
each subsequent one is obtained from its predecessor by executing a step (see
Fig. 3). The heart of the semantics, and the main goal of this paper, is to define
the effect of a step.

1 The original version of Rhapsody used C++ as the implementation language, but
current versions support also C, Java and Ada.



Fig. 2. Static reaction

Each step is composed of microsteps, as is shown by “zooming-in” on one
of the steps in Fig. 3. The system, being in a certain status and as a response to
an occurrence, undergoes a series of microsteps as part of the run-to-completion
principle, until it reaches a final status, and at which point it is ready for the
next occurrence. Thus the run-to completion principle applies to a step, and it
means that as a response to some external occurrence a sequence of microsteps is
performed leading to a final status for this step, at which point a new occurrence
is considered, initiating a new step. A special case is that of null transitions, that
is, transitions without a trigger, and these can be taken spontaneously. A loop
of null transitions could in principle cause an infinite number of microsteps to
be taken in a single step. However, in Rhapsody this is avoided by the system



setting a maximum value for the number of null transitions that can be taken
as part of a step, and informing the user if this bound is violated.

Certain invariants regarding the system’s behavior (e.g., being in an or-
state requires being in exactly one of its substates) hold at the beginning and
end of a step, but not necessarily in each of the microsteps. Also, a microstep
can correspond to performing an action in the implementation language, which
can take time. As a consequence, in Rhapsody a statechart may reside in an
or-state for some non-zero time prior to entering one of its substates.

Rhapsody supports the development of reactive multi-threaded applica-
tions. In such applications each thread can perform steps in parallel to the
other threads, which makes the definition and behavior more complicated. This
topic will be discussed in Section 10, by explaining how threads are introduced
into statechart-based systems and how the semantics are defined for them.

step step stepstep

status status status status status
(initial)

microstep microstep microstep

Fig. 3. The step model

A status contains information about all the objects in the system — the states
in which the object currently resides, history information for states, values of
data members, connections of relations and aggregations and event queues.

Here are some general principles adopted in defining the Rhapsody seman-
tics:

1. Changes that occur in a step may be sensed in the same step. There is no
double buffering to prevent effects from being sensed immediately. This approach
is the one more suited to the Rhapsody context, since a system consists of
classes, not all of which have statecharts, and the guards and actions are written
in the implementation language. Double buffering would have entailed a high
overhead.

2. In Rhapsody, unlike the situation in Statemate, it is possible that many
steps will be executed between the time an event is generated and put in the
proper event queue and the time it is dispatched to the statechart. Once an event
is dispatched to the statechart it will “live” for the duration of one step only,
and will not be remembered in subsequent steps.



3. Calculations in one step are based on the current values of data members
and the state configuration. When performing a microstep, first the set of rele-
vant transitions is computed and only then are these transitions actually taken.
Since there is no buffering as in Statemate, the calculation itself can effect
the data members; an evaluation of a guard that has side effects can affect the
system. It is not considered good practice to use guards with side effects.

4. A maximal subset of nonconflicting transitions and static reactions is al-
ways executed. We refer to this as the “greediness property” of the semantics.

5. The execution of a step does not necessarily take zero time. The time
a step will take depends on the actions that are performed while taking the
step, mainly those actions corresponding to method calls in the implementation
language, and thus are not zero time. Rhapsody supports two models of time,
real and simulated. More on these in section 9.

3 Basic System Reaction

A statechart describes the behavior of all instances of a class, but each instance
(i.e., each instance’s statechart) can be in a different active configuration. After
the instance is created a special method, startBehavior, is invoked, initializing
the behavior of the reactive object and causing its statechart to enter an active
configuration according to the default transitions taken from the root. The active
configuration can change according to the messages received by the object and
the transitions that are performed. The object terminates its life-cycle if it is
explicitly deleted or its statechart enters a termination connector.

Statecharts can react to messages by performing a transition from an active
configuration to a new active configuration and possibly performing an action.

We now define the reaction of the system during a simple step: how the
status of the system changes when performing a single transition between two
or-states with the same parent state. Assume that the object in question is
in state A in the statechart of Fig. 4(a), and message m (event or triggered
operation) is dispatched to the statechart of the object.

The response of the system will be as follows: (i) The exit action of state A is
performed. (ii) The action act specified by the transition is performed. (iii) The
entry action of state B is performed. (iv) The active configuration is updated,
and the object is ‘placed’ in state B. The new active configuration of the example
is shown in Fig. 4(b).

The action act may be of the form act1; act2; ... acti. In Rhapsody, actions
are guaranteed to be performed in sequential order, each action being executed
after the previous has terminated. This in itself does not cause a racing condition.
The motivation for this semantics is that actions are written as code in an object-
oriented programming language and thus sequential ordering without any double
buffering is a natural choice.



Fig. 4. A simple transition

The behavior described in Fig. 4 could actually be part of a larger step,
during which in some microstep the triggered operation m occurs and activates
the response described above.

Statecharts can communicate via an asynchronous communication mecha-
nism that uses events and a synchronous communication mechanism that uses
triggered operations. In Fig. 4, for example, the message m can be either an
event or a triggered operation. We now discuss the two cases and the differences
between them.

3.1 Events

Events are used to describe asynchronous communication. They are entities of
the model and are defined as part of a package. Each class defines the set of events
it can receive. The main motivation for using events is that the sender object
can continue its work without waiting for the receiver to consume the event.
Events can also be used early in the system development process, and later,
when a better understanding of the system is gained and decisions regarding
synchronization are made, some of these events can be converted to triggered
operations.

Events are sent by applying the GEN method to the destination object:
O → GEN(event(p1, p2, · · · pN )) The sending object should be able to refer
to the destination object O (possibly using a navigation expression based on
relations in the model). Here p1, p2, · · · pN are event parameters that match the
event’s formal arguments (data members). The GEN method creates the event
instance and queues it in the event queue of O’s thread. In this section we assume
a single system thread, and thus all events are handled by the same event queue.



In a multi-threaded application (see Section 10) there is an event queue for each
thread.

Events are managed by an event dispatcher in a queue. Once an event gets
to the top of the queue, the dispatcher delivers the event to the proper object.
When an object receives an event, it will process it according to the run-to-
completion semantics. After processing, the event no longer exists and is deleted
by the computational framework. Between the time an event is generated and
put it in the queue and the time it is dispatched to the destination object, the
destination object could be destroyed, in which case all events that were sent to
it will be deleted and will have no effect.

Fig. 5. Communication using events

Consider the system in Fig. 5, with objects O1 and O2 of classes C1 and C2,
respectively, and with a one-to-one relationship between the objects. If object
O1 receives event e (say, from the user), the transition from state A to state B is
taken, involving sending event f to object O2 (by placing a new event f in the
event queue), as specified by the action getItsC2() → GEN(f), since O2 is the
object that it recognizes from class C2. Once the transition to state B of O1 is
completed, event f is removed from the event queue, and is dispatched to object
O2, causing it to take the transition from its state A to state B. In a similar way,
object O2 now sends event e to O1, and the process repeats itself. In this way,
a feedback loop is created, with objects O1 and O2 repeatedly moving between
states A and B, and sending events e and f to each other, ad infinitum.

Unlike Statemate, there is no special treatment of internal events in Rhap-
sody. Sending events internally is done simply by omitting the destination object
from the send operation, as follows:



GEN(event(p1, p2, · · · pN ))
Consider Fig. 6. On creation of an object of this class the statechart is ini-

tiated, and the default transition to state A is taken, performing the action
GEN(e(1)), which causes the internal event e with parameter value 1 to be
sent. Only after the object has completed the transition and is in state A, is the
event e dispatched to the statechart. Processing this event causes a transition to
state C, since of the two outgoing transitions from the condition connector, the
guard of the transition to state C is satisfied (the parameter of the event in the
transition is referenced using the params → command, and here the value was
1).

Fig. 6. More communication using events

Events are independent entities of the model and can be sub-classed like
inherited objects, a mechanism that can be used in order to add attributes —
event parameters. In particular, if event e2 is derived from event e in this way,
e2 will trigger any transition that has e as a trigger. For example, in Fig. 7,
after taking the default transition into state A and sending event e2 to itself, the
transition to state B is taken, since e2 inherits from event e.

3.2 Triggered operations

Triggered operations are services provided by a class, and are defined as part
of the serving class. They are a synchronous communication means between a



Fig. 7. Event e2 inherits from e

client and the server object. A triggered operation may return a value to the
client object, since its activation is synchronous.

Unlike events, triggered operations are not independent entities; rather, they
are part of the class definition, and are not organized in hierarchies. The use of
a triggered operation corresponds to the invocation of a class member function.
The main reason that triggered operations were integrated into the Rhapsody
framework was to allow the usage of statecharts in architectures that are not
event-driven, and thus to specify the behavior of objects in the programming
sense of operations and object state. Triggered operations also provide means for
late design decisions to optimize execution time and sequencing, by converting
event communication into direct triggered operation invocation.

A triggered operation is invoked like a primitive operation in the underlying
implementation language:

result = O → t(p1, p2, · · · pN )

A triggered operation may return a value whose type is the one defined in
the object model, where the operation interface is defined. The return value for
a triggered operation must be set within the transition. Replying to a triggered
operation is done by calling the reply method defined for the class. The following
transition label specifies a reply to the operation t:

t/reply(17)

Consider the two statecharts of classes X and Y , described in Fig. 8 (a). If
an object of class X receives the event go, a transition from state A to state B
is taken, which invokes the triggered operation t in the relevant object of class
Y , as specified by the action getItsY () → t(). The transition to state B of X
is not completed before t is processed, causing the Y object to move from state
A to state B, with 10 being the returned value of t. The figure shows the active
configuration of the statecharts in animation mode, at a point when the Y object
has completed its transition to state B, and the X object is in the midst of the
transition. The X object’s transition is completed after setResult is called with



Fig. 8. Using triggered operations

the value 10 that was returned by the triggered operation, and the value of the
data member result of X is updated. Only then is state B entered.

One thing that has to be resolved here is the reaction of an object to an
invocation of a triggered operation when it is not in a stable state, i.e., when it is
in the midst of performing a transition. This is especially relevant in Rhapsody,
since transitions do not take zero time. This would not be a problem if we
considered only events, since events represent asynchronous communication and
are queued; the next event is taken from the queue only after the step completes,
so that the run to completion semantics assures the object is in a stable state.
For triggered operations there is no such assurance.

This situation is demonstrated in Fig. 8 (b). While taking the default tran-
sition to state S1, event e is generated, causing the transition from state S1 to



state S2. However, during the process of carrying this out, the action t() is per-
formed which invokes the triggered operation t on this statechart. There are a
number of alternatives for dealing with this kind of situation: One is to treat this
as a deadlock, and a problem in the design. Another is to allow the transition
to be completed and state S2 to be entered, and only then to process t, causing
a transition to be taken back to state S1.

Fig. 9. Coordinated transitions

In Rhapsody, a different choice was made: the invocation of a triggered
operation t in the midst of a transition causes no effect, and the return value
from such a call is undefined. In the above example, the object completes its
transition to state S2 and remains there. The semantics is implemented by a
locking mechanism that causes an object to ignore the invocation of triggered
operations while in the middle of a step. A self call such as that in the example
is a special case, but in general this can also occur as the result of a chain of
calls between different objects, ending in a triggered operation invocation to one
of the objects that is still in the process of performing a transition.



Earlier, in Fig. 5, we showed an example of a feedback loop between two
statecharts. If we modify this example so that e and f are triggered operations
instead of events, as shown in Fig. 9, then the result of invoking e on O1 is that
both objects enter state B. In this case, the feedback loop does not close, since
when O2 takes the transition to state B and invokes e on O1, O1 is still in the
middle of the transition between A and B; hence e is ignored. Once both objects
are in state B, if e is externally invoked on O1 (or, alternatively, f is invoked
on O2), both objects take transitions to state A and remain there. Notice that
had we changed only one of the two events to a triggered operation and left the
other as an event, the feedback loop would have remained.

4 Compound Transitions

Fig. 10. A fork connector

Statecharts allow defining transitions in a richer way then just by the simple
directed arrow that connects two states, of the kind shown in Fig. 4. This general
construct is called a compound transition (CT) and may consist of a number
of separate transitions appearing in different orthogonal state components. Each
of these, in turn, may consist of a number of linked transition segments, which
are the labeled arrows that connect states and connectors of various kinds. This
section explains how transition segments are combined to form a compound
transition (CT). We explain the semantics of the different types of connectors
and restrictions on how they are used.



The connectors come in two different types: AND and OR. The fork and
join are AND connectors. The transition segments connected to an AND con-
nector will all participate in the same CT. Consider the statechart appearing in
Fig. 10. It the object is in state A and the trigger e occurs, the CT transition
is taken, causing entrance to state C1 in orthogonal component C and entrance
to D1 in orthogonal component D. The fact that the fork is an AND connector
implies that both the transition segment leading to state C1 and the one leading
to D1 must be taken as part of the CT. The destination of a fork segment must
be a state or a history connector and the segment cannot have a label.

An example of a join connector is shown in Fig. 11. If the object is in states
B2 and C2 and in either D1 or D2 and the trigger e occurs, the CT is taken,
which causes a transition to state E. The fact that the join is an AND connector
implies that both the transition segment leading from state B2 and the one
leading from state C2 must be taken as part of the CT. The transition segments
entering the join connector cannot have labels.

Fig. 11. A join connector

The junction and condition are OR connectors. Of the transition segments
connected to an OR connector exactly one incoming transition segment and
exactly one outgoing transition segment must participate in the CT.



Fig. 12. A junction connector

An example of a junction connector is shown in Fig. 12. If the object is in
state A and the trigger e1 occurs, or it is in state B and the trigger e2 occurs,
a transition to state C is taken. In terms of the active configuration of the
statechart, an equivalent statechart has two separate transitions, one from state
A and one from state B, as shown in Fig. 13. The label is either written on
each of the transition segments entering the junction connector, as in Fig. 12, or
on the common transition segment exiting the junction connector, as shown in
Fig. 14.

A condition connector has one incoming transition and can have several
outgoing transition segments called branches. Branches are labeled with guards
that determine which one is to be actually taken. Since the condition connector
is an OR connector, only one of the branches can be taken. If the guard of more
than one of the branches holds then one is chosen arbitrarily. Each condition
connector can have one special branch with a guard labeled else, which is taken
if all the guards on the other branches are false. Branches cannot contain triggers,
but in addition to a guard they may contain actions. A branch can enter another
condition connector, thus providing for the nesting of branches. An example is
shown in Fig. 15.

When taking a transition, first the guards are all evaluated, and only then
are the actions performed. In the statechart described in Fig. 16, for example,
the state that is reached is B. The reason is that first the transition to be
taken is selected by evaluating the guard, and in this stage x = 1; only when



Fig. 13. A construct equivalent to a junction connector

Fig. 14. A junction connector with a common label

performing the transition is the action x = 2 performed, but it cannot influence
the transition taken.

A step always leads from one legal state configuration to another. A state-
chart can not remain “stuck” at a connector (with the exception of a termination
connector). Similarly, a statechart cannot be in a non-basic state without the
ability to enter appropriate substates. For this reason, every OR state with more
than one substate must have a default connector with a transition to one of the
OR state’s substates. If a destination state of a CT causes a statechart to enter
a non-basic state, the default transition associated with this state will be taken.
For example, if the object in Fig. 17 is in state A and e occurs, the transition to
state B is taken, followed by the default transition to state C.

Taking a default transition is considered to be a microstep. Attributes get
their values just prior to the microstep and not the values present at the begin-
ning of the entire step. Thus, in Fig. 18, if the object is in state A and e occurs,
the transition to state B is taken, and this is followed by the default transition
that leads to state C, since the action x = 1 is performed before the default
transition’s microstep is taken.



Fig. 15. Nested condition connectors with a common label

Fig. 16. A condition connector

As part of a CT, it is possible that several default transitions are taken,
each one leading to a deeper state in the hierarchy until finally a basic state is
reached. Each such default transition is a microstep and actions performed in
the previous microsteps are taken into account.

5 Dealing with History

A history connector is used to store the most recent active configuration of a
state. Each state can have at most one history connector. The semantics of the
history connector is that when the connector is the source of a CT, the statechart
transitively enters the most recently visited active states.

An example of a history connector is shown in Fig. 19. If the object is in state
A, but has never yet entered state B, and the trigger e occurs, a transition to the
history connector is taken, followed by the outgoing transition from the history



Fig. 17. A default connector

Fig. 18. A default transition as a microstep

connector to state D. Next, if the trigger f occurs the transition to state F is
taken. Later, if the trigger f occurs again the active configuration is stored by the
history connector and the transition to state A is taken. Finally, if the trigger
e occurs, state D and then its substate F are entered, since they constituted
the last active configuration prior to state B being exited. States D and F are
entered without taking the outgoing transition from the history connector and
without performing default transitions or any actions associated with them.

Unlike Statemate, the semantics of the history connector in Rhapsody is
the “deep history” semantics (in [4] this is associated with the special notation
H*), which entails entering the substates of the most recent active configuration
recursively, until basic states are entered. The shallow semantics of Statemate
is not supported in Rhapsody .

Also unlike Statemate, currently Rhapsody does not support the history−
clear(S) operation, which erases the history of state S, thus causing the next
transition to the history connector in S to proceed via the default transition as
if it were the first time S is entered.



Fig. 19. A history connector

6 The Scope of a Transition

In taking a transition from a source to a target, a CT will often pass through dif-
ferent levels of the statechart hierarchy. As part of performing the CT this causes
exiting some of the states and entering others, and performing the appropriate
exit and entry actions.

The goal of this subsection is to define the scope of a transition, thus de-
termining which states should be exited and which entered while taking a CT.
The definition of the scope is the same as in Statemate, and we repeat it here
for self containment. There are some differences in the usage of the definition,
which are discussed later.

Before presenting the definition, consider the simple case of the statechart in
Fig. 20. Taking the transition with trigger e causes exiting state B and entering
state C. Any relevant entry and exit actions are performed. The scope of this
transition is state A.

Fig. 20. The scope of a transition



The scope of a CT is the lowest OR state in the hierarchy of states that is
a proper common ancestor of all the source and target states. Taking the CT
will result in a change of the active configuration involving only substates in
the scope. When the CT is taken, all the proper descendants of its scope in
which the system resided at the beginning of the step are exited, and all proper
descendants of that scope in which the system will reside as a result of executing
tr are entered. Thus, the scope is the lowest state in which the system stays
without exiting and reentering when taking the transition.

We now illustrate the notion of scope by some examples. Consider the state-
chart of Fig. 21 (a). If the associated object is in state W and message e occurs,
the transition with scope U is to be taken, since according to the previous defini-
tion U is the lowest OR state in the hierarchy that is a proper common ancestor
of V . Thus, taking the transition implies exiting states W and V and entering
states V and W . We defined U to be the scope of the transition since we con-
sider state V to be both the source and the target of the transition. Notice that
although the (implicit) default transition to state W is taken, we still consider
V to be the transition’s target since the default transition is taken as part of a
new microstep. This is important, since if the statechart was modified so that
the source of the transition becomes W , as shown in Fig. 21 (b), considering W
to be also the target of the transition would have implied that V is the scope of
the transition, while in fact according to our definitions U is the scope.

Fig. 21. The scope of a transition

Consider the statechart of Fig. 22. If the associated object is in states B2 and
C1 and receives message f , it takes a compound transition, causing it to enter
states C2 and B1 (the latter by the default transition). According to the previous
definition, S is the scope of the transition, being the lowest OR state in the
hierarchy of states that is a proper common ancestor of states B1, B2, C1 and C2.
The states exited are B2, B, C1, C and A, and those entered are A,B, B1, C and
C2. Notice that the notion of scope does not depend on the way the transition
itself is drawn, but on its sources and targets only: the transition in Fig. 22 is
drawn inside state A but this does not cause A to be the scope of the transition



rather than S. Even if the transition would have be drawn as exiting the contour
of S, the scope would still be S.

Fig. 22. More on the scope of a transition

7 Conflicting Transitions (Nondeterminism)

We say that two transitions are in conflict if there is some common state that
would be exited if either of them were to be taken. Consider the statechart in
Fig. 23 (a), the two outgoing transitions from state A labeled e are in conflict
because they would each imply exiting state A. The transition from state U to
state D is in conflict with the two outgoing transitions from state A and also
with the transition from state B to state C, since if the transition from U to D
is taken it implies also exiting whatever substate of U the object was in.

Two conflicting transitions cannot be taken in the same step. If they are both
enabled only one will be taken. We now explain how this choice is made.

The two types of conflicts in Fig. 23 (a) are treated differently. If the object
was in state A and message e occurred the system is faced with nondeterminism,
since there is no reason to prefer a transition to one of the states B and C over the
other. Rhapsody detects such cases of nondeterminism during code generation
and does not allow them. The motivation for this is that the generated code
is intended to serve as a final implementation and for most embedded software
systems such nondeterminism is not acceptable.2

2 We suggest that an option be provided to the user to allow such nondeterminism,
which can be useful in certain development stages where the model is not yet com-
plete. In any case, the current implementation cannot block all nondeterminism when
performing code generation, since we may have conflicting transitions with the same
trigger but with different guards, and in general it is impossible to detect at compile
time whether both guards will evaluate to true.



The second case of conflict in Fig. 23 (a) is that between the transition from
A to B (assume that the transition between A and C has been removed) and
the transition from U to D. In Rhapsody, when a message can trigger several
conflicting transitions priority is given to lower level source states. Hence, here
the transition from A to B takes priority over the one from U to D, and there
is no nondeterminism. At the end of the step the object will be in state B.
Join transitions get priority according to their lower source state. If there is no
hierarchal relation between the source states no priority is defined between the
transitions. This priority strategy is different than that of Statemate, which
determines priorities outside-in; in our case according to Statemate the object
will end up in state D. The strategy in Rhapsody is more object-oriented, since
it enables substates to override transitions in higher states in a way similar to
that in which operations in subclasses can override those of the superclass.

Another technical difference between Statemate and Rhapsody is that
in Statemate we determine priorities outside-in according to the scope of the
transition, while in Rhapsody we determine priorities inside-out according to
the source state. Consider the statechart in Fig. 23 (b). If the object is in state
E and message e occurs, then in Rhapsody we take the transition to state F ,
since the source of this transition E is lower than the source of the transition to
state C which is B. In Statemate the scope of both transitions is A, resulting
in nondeterminism.

Fig. 23. Conflicting transitions

The priority of a static reaction is determined according to the state in which
it is defined, giving high priority to lower-level states. If a CT and a SR are in
conflict, the one with lower source state will be taken and the other will not. If
the CT and SR have the same source state, as in Fig. 24, the CT has higher
priority, thus the transition to state B will be taken and the static reaction will



not be carried out. This is different from the Statemate approach, were an
enabled static reaction defined in state S is executed if the system was in S at
the beginning of the step but S was not exited by any CT during the step.

Fig. 24. Conflict between transition and static reaction

8 The Basic Step Algorithm

In this section we present a schematic description of the algorithm that executes
a step. For a single threaded application, we do the following repeatedly:

If the event queue is not empty, get the next event and its destination from
the queue. If the destination object still exists dispatch the event to that ob-
ject’s statechart. The event invocation may cause taking SRs or CTs and all
the relevant default transitions, as explained in earlier sections. At the end of
the run-to-completion the statechart of the object is in a (possibly new) ac-
tive configuration. If the statechart does not specify a transition in response to
the event, the active configuration remains unchanged. The loop can now be
continued, processing the next event.

A pseudocode description of the procedure is:



procedure StepCycle ()
begin

loop forever
while Event-Queue 6= empty do

ev ← Get-Event-From-Queue
dest ← Get-Destination-Of-Event
if dest still exists then

dest → takeEvent(ev)
else

Ignore ev
end if

end while
end loop

end

Here now are the details of the main part of this procedure (takeEvent), in
which an event is processed by the statechart.

– Determine the CTs/SRs that will fire in response to the message: Traverse
the states in the active configuration from lowest states in the hierarchy
upwards. A CT/SR is enabled if its trigger is the dispatched event ev or a
super-event of ev, and the guard evaluates to true. Since for a given state CTs
have priority over SRs, they are considered first. Once an enabled transition
is found with a given source state stop traversing the states that are higher
than this state in the hierarchy. States in orthogonal components are still
considered since they may be taken without necessarily causing a conflict.

– Perform the CTs/SRs that we found should fire:
For each transition do:
• Update histories of exited states.
• Perform the exit actions of the exited states according to the order states

are exited, from low state to high state.
• Perform the actions on the CT/SR sequentially according to the order

in which they are written on the transition, from the action closest to
source state to the action closest to target state.

• Perform the entry actions of the entered states according to the order
states are entered, from high state to low state.

• For lowest level states that were entered, which are not basic states, per-
form default transitions (recursively) until the statechart reaches basic
states.

• Update the active configuration.
The order of firing transitions of orthogonal components is not defined, and
depends on an arbitrary traversal in the implementation. Also, the actions on
the transitions of the orthogonal components are interleaved in an arbitrary
way.

– Deal with null transitions: After reacting to a message, the statechart may
reach a state configuration where some of the states have outgoing enabled
null transitions — transient configurations. In such a case further steps need



to be taken until the statechart reaches a stable state configuration where
no null transitions are enabled. Null transitions are triggered by null events
that are dispatched to the statechart whenever a transient configuration is
encountered. Null events are dispatched in a series until a stable configura-
tion is reached. It is possible that the statechart will never reach a stable
configuration; for example when there is a loop of null transitions. In Rhap-
sody the infinite loop is detected during runtime and execution is halted.
It is possible using the execution framework to set a maximum value for
null transitions. When performing the null transitions, each one is taken
separately and the values used in the computation are the values after the
previous null transition and not the values before the entire step.

– Wrap up: Once a stable configuration is reached, the reaction to the message
is completed, control returns to the dispatcher and new messages can be
dispatched.

9 The Time Model

The Rhapsody time model is more complex than that of Statemate, since
Rhapsody allows describing both synchronous and asynchronous behavior in
the same model. Moreover, a step does not necessarily take zero time. Due to
these facts, the synchronous time model of Statemate is not relevant here.
Rhapsody supports two different modes of handling the progress of time: real
time and simulated time. In real time mode time advances according to the actual
underlying operating system clock. In simulated time the user of Rhapsody
can control the progress of time in an interactive way, thus enabling effective
debugging and testing of the model. A detailed description of the Rhapsody
time model will appear in the full version of the paper.

Recall that all aspects of the execution of a Rhapsody model, and this
includes timing aspects too, are carried out via the generated code. This is
important in Rhapsody, since one of the main goals is to develop production-
code. However, there are many interesting opportunities for further research
on the timing aspects of modeling object-oriented systems, especially regarding
the simulated time mode. In fact, we predict that analytic techniques could be
modified to apply to timed behavior, in ways that do not depend directly on the
generated code and are thus more robust.

10 Multi-Threaded Systems

Rhapsody supports the development of reactive multi-threaded applications.
In such applications each thread can perform steps in parallel to the other
threads. Obviously, this makes the definition and behavior more complicated. We
now discuss this topic in some detail, by explaining how threads are introduced
into statechart-based systems and how their semantics is defined. A detailed
description of this topic will appear in the full version of the paper.



An object-oriented system consists of objects exchanging messages. The ideal
analysis view of such a world is that each object is an autonomous entity exe-
cuting concurrently with all other objects. In order to have a more realistic and
concrete model, this general abstraction can be given various interpretations,
regarding the synchronization between objects and the semantics of messages.

In the synchronous model objects execute on a clock edge, and the period
between two clock edges is called a step. This model is similar to digital hard-
ware systems, where all components are synchronized by a clock. It is also the
model implemented in Statemate, and although Statemate is executed on
a sequential machine and concurrency is achieved by simulation, messages sent
at a certain step being processed in the next step. The major advantage of this
model is that it is deterministic and simple. However, it does not fit software
systems for the following reasons: Software systems have a very limited form of
concurrency, since in general they run sequentially on the same CPU. Also, in
the case of concurrent software, tight synchronization is an undesired overhead,
so that concurrent software components are by default asynchronous unless they
are explicitly synchronized.

Since real concurrency does not exist in most software applications, the CPU
is shared by all software objects. The sequence in which software functions ex-
ecute is known as the thread of control, which can be thought of as a token
(representing the CPU) passed between objects in the system, enabling them
to execute. Initially, the token is given to the main program, and it is typically
passed along by method activation. A client object sending a message to a server
object actually gives up its control of the CPU in favor of the server object. This
passing along can be nested, with o1 calling o2, who calls o3, and so forth.

In the general case, a system will have more than one thread, which means
that conceptually it has multiple tokens, and this is a far more complicated setup
than a single-threaded one. We now discuss the way Rhapsody deals with some
of the major issues in multi-threaded systems: thread creation and destruction,
associating objects with threads, and communication and synchronization be-
tween threads.

Object/thread relationship: An important issue in a multi-threaded sys-
tem has to do with which objects belong to which thread. In Rhapsody, a class
can be defined as an active class and then each of the instances of this class
will have its own thread of control. Another way of defining the object/thread
relationship is through composition. Instances that are components of a com-
posite class run on the thread of the composite class, unless they are instances
of an active class, in which case they have their own thread.

Instances of classes that are not designated as active classes run on the unique
system thread, which is the default thread used by the main program.

It is also possible to set the thread of an object explicitly, by calling the
setThread() command. This gives developers more control over threading poli-
cies. However, it also introduces many delicate issues, such as thread destruction
policy, and how to transfer events to the new event queue after an object changes



its thread. Some of these issues of dynamic object/thread relationship require
further research to enable automatic support for more complicated groupings.

Creation and destruction of threads: The special system thread is cre-
ated when the main program for the executable model is started. This thread
will be destroyed only when the application terminates. Creating an object that
is an instance of an active class causes the creation of a thread on which this
object runs. This thread is destroyed when the object is destroyed, which can
happen explicitly from the outside, or by the object’s statechart entering a ter-
mination connector. In the case where components of a composite class run on
the thread of that composite class, destroying a component does not cause the
destruction of the thread; the thread will be destroyed when the composite class
object is destroyed.

Automatic support for thread destruction in the case of explicit setting of an
object’s thread is not currently supported by Rhapsody. A possible solution is
to destroy the thread only when the last object running on the thread is deleted.

Communication and synchronization between threads: As discussed
previously, the statechart of an object can deal with asynchronous communica-
tion using events and synchronous communication using triggered operations. In
the multi-threaded case, an object can receive messages from different objects,
each having its own thread of control and therefore running concurrently with
other objects.

The case of asynchronous communication using events is simpler: The gen-
erated events are put in the event queue of the receiving object and are later
dispatched to the statechart. In the case of synchronous communication using
triggered operations, the sending object is blocked until the receiving statechart
completes its response to the triggered operation. Hence, if different threaded
objects invoke a triggered operation on the same statechart they will be posted
to the statechart one at a time and each sending object is blocked until its in-
vocation is completed. Situations of deadlocks and starvation are possible, and
must be avoided as part of the model design.

Classes can also communicate by calling member functions; i.e., primitive
operations. Since synchronization in multi-threaded applications is important,
Rhapsody allows the definition of guarded primitive operations. All the guarded
primitive operations of a class are mutually exclusive, in that only a single op-
eration can run at any given time and the other invocations are blocked. Oper-
ations that are not defined as guarded can run in parallel. Triggered operations
can also be defined as guarded, thus causing all guarded operations (primitive
or triggered) of the class to be mutual exclusive.

The step algorithm for a multi-threaded system consists of performing the
step cycle described in the basic step algorithm for each thread. There are several
complications in the semantics relative to the single-threaded case. For exam-
ple, when one thread is in the middle of performing a step (and as explained
earlier, this might take more than zero time), a second thread can interact with
it by invoking primitive or triggered operations or sending events. For events,



the Rhapsody execution framework guarantees that the event queue is not cor-
rupted by different threads interacting with it simultaneously, and that events are
not lost. This is achieved in Rhapsody by locking mechanisms. Before access-
ing the event queue a lock() command is invoked, which prevents other threads
from interfering with the queue. Only after the interaction with the event queue
is over does the unlock() command allow other threads to lock the queue and
use it. The code generation framework in Rhapsody implements the lock() and
unlock() commands using a mutual exclusion mechanism in the underlying oper-
ating system. In the multi-threaded case, these locking mechanisms can prevent
an object attempting to send an event from proceeding until it manages to per-
form the lock. In contrast, the single-threaded case allows the sending object to
generate an event and continue progress immediately.

11 Racing Conditions

A racing condition occurs when the execution of transitions in two different
legal orders would cause the system to end up in two different configurations.
In Statemate, the semantics and execution model were simpler, and this al-
lowed the tool to detect and report such conditions. The fact that Rhapsody
deals with synchronous and asynchronous communication and well as with multi-
threaded applications, and the fact that a step does not take zero time, make
automatic detection and reporting of racing conditions a much harder task, and
Rhapsody does not attempt to undertake it. Developing tool support to handle
these issues requires further research. Until this situation changes, users of tools
that deal with such advanced features are advised to make efforts to avoid racing
conditions by improving and tightening their models.

12 Comparison with other work

Readers interested in comparing the Rhapsody semantics of statecharts with
non-OO approaches to statechart semantics are referred to the discussion in Ap-
pendix A of [6]. We now briefly discuss appropriate object-oriented approaches.

ROOM: The ROOM method of [12], and its supporting tool ObjecTime
(which later evolved into Rose-RT) were the first to introduce extended state-
machines into an object-oriented paradigm in a way that allows development of
fully executable models. The main formalism for describing behavior in ROOM
is called ROOMcharts, which was inspired by the original statechart formalism
[4]. ROOMcharts allow hierarchal nesting of or-states but not orthogonality
(and-states), which thus renders the language much simpler. The semantics of
the language is based on the run-to-completion principle, and an assumption is
made that the time taken to process any single event should not exceed the max-
imum latency requirements of the object. The communication between objects
implemented as ROOMcharts can be carried out using asynchronous events and



triggered operations of Rhapsody, and there is a mechanism for defining event
priorities.

UML 2.0: In the very recent UML 2.0 there is a distinction between two
kinds of state machines (both are variants of statecharts): behavioral state
machines and protocol state machines. Behavioral state machines are really
the original OO statecharts of [5] and the present paper, and they are used to
describe the behavior of an object. In contrast, protocol state machines describe
usage protocols, and are thus geared to specifying requirements of classes, in-
terfaces and ports, rather then defining the entire behavior of an object. In the
behavioral statecharts of UML 2.0 shallow history is allowed too, in addition to
deep history. Triggers can be signals (corresponding to events in our paper) or
operations (corresponding to our triggered operations). The semantics is that of
run-to-completion [5], and the way conflicting transitions are handled is by a se-
lection algorithm similar to the one introduced in Rhapsody and reported upon
here. UML allows deferred events, which are not lost if dispatched to the object
and the event is not enabled. This extension is currently not part of Rhapsody
statecharts. The UML allows the definition of submachines, which is a syntactic
way to break up a statechart and describe some of the more complex hierarchal
states in different diagrams. This is also supported by Rhapsody, but is not es-
sential to this paper because it is essentially a syntactic extension with virtually
no impact on the semantics.

It should be noted that the UML standard leaves certain semantical options
open, thus allowing “semantic variation points”, that can be implemented dif-
ferently by the tool vendors or according to the application domain.

Semantics for formal verification: Following the publication of [5] and
the release of Rhapsody, and aided by the growing popularity of the UML [13],
its application to safety-critical systems, and advances in the field of formal ver-
ification, extensive research efforts have been invested in formalizing the UML.
The main goal is to develop formal semantics for the UML, which will make it
possible to apply formal verification methods and tools.

In Damm et al. [3] a kernel of the UML is defined and formalized, by asso-
ciating a model with a symbolic transition system. Semantics of a richer UML
subset is then defined by compiling it into that kernel. The rich subset cov-
ers such features as active objects, dynamic object creation and destruction,
dynamically changing communication topologies in inter-object communication,
asynchronous signal based communication, synchronous communication using
operation calls, and shared memory communication through global attributes.
While the semantic model of [3] is quite general, the paper suggests certain re-
strictions on the communication scheme between objects, in order to optimize
the verification process.

In contrast, Rhapsody takes a more general approach: rather than impos-
ing restrictions, it allows users to make their own design decisions and supports
powerful execution semantics through code generation capabilities. As the im-
pact of formal verification methods increases and verification engines scale up to
handle larger systems, we believe that tools like Rhapsody will be modified to



support and take advantage of certain restrictions and semantic idiosyncracies,
of the kinds adopted in [3].

A more abstract version of the semantics of [3] appears in [8] by formalization
in the langauge of the PVS theorem prover. For more details on other UML
verification-driven semantics, e.g., [10, 2] see [3].

Acknowledgements:

We would like to express our deepest gratitude to Eran Gery and Yachin
Pnueli for many helpful discussions on Rhapsody and its semantics. Thanks
also to the entire Rhapsody development team at I-Logix Israel, Ltd. Finally, we
thank one of the referees for his/her helpful comments.

References

1. G. Booch. Object Oriented Analysis and Design with Applications. Benjamin/Cummings, Califor-
nia, 1994.

2. E. Borger, A. Cavarra, and E. Riccobene. Modeling the Dynamics of UML State Machines.
In Int. Workshop on Abstract State Machines (ASM’00), volume 1912 of Lect. Notes in Comp. Sci.
Springer-Verlag, 2000.

3. W. Damm, B. Josko, A. Pnueli, and A. Votintseva. Understanding UML: A Formal Semantics
of Concurrency and Communication in Real-Time UML. In Formal Methods for Components and
Objects (FMCO’02), volume 2852 of Lect. Notes in Comp. Sci. Springer-Verlag, 2003.

4. D. Harel. Statecharts: A visual formalism for complex systems. Science of Computer Programming,
8:231–274, 1987. (Preliminary version: Technical Report CS84-05, The Weizmann Institute of
Science, Rehovot, Israel, February 1984.).

5. D. Harel and E. Gery. Executable Object Modeling with Statecharts. IEEE Computer, 30(7):31–
42, July 1997. (Also in Proc. 18th Int. Conf. Soft. Eng., Berlin, IEEE Press, March, 1996, pp.
246–257.).

6. D. Harel and A. Naamad. The statemate semantics of statecharts. ACM TRANS. Software
Engineering and Methodology, 5(4):293–333, October 1996.

7. D. Harel and M. Politi. Modeling Reactive Systems with Statecharts: The STATEMATE Approach.
McGraw-Hill, 1998.

8. J. Hooman and M. Van Der Zwaag. A Semantics of Communicating Active Objects with Timing.
In Specification and Validation of UML Models for Real-Time and Embedded Systems (SVERTS’03),
2003. Available from the European Project OMEGA homepage http://www-omega.imag.fr.

9. I-logix,inc., products web page. http://www.ilogix.com/fs prod.htm.
10. G. Reggio, E. Astesiano, C. Choppy, and H. Husmann. Analysing UML active classes and

associated statecharts - a lightweight formal approach. In Proceedings Fundamental Approaches
to Software Engineering (FASE’00), volume 1783 of Lect. Notes in Comp. Sci. Springer-Verlag, 2000.

11. J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object Oriented Modeling
and Design. Prentice - Hall, New York, 1991.

12. B. Selic, G. Gullekson, and P. Ward. Real-Time Object-Oriented Modeling. John Wiley & Sons,
New York, 1994.

13. UML. Documentation of the unified modeling language (UML). Available from the Object
Management Group (OMG), http://www.omg.org.


