Annals of Discrete Mathematics 24 (1985) 51-72
© Elsevier Science Publishers B.V. (North-Holland) 51

Recurring Dominoes:
Making the Highly Undecidable Highly Understandable

David Harel

Department of Applied Mathematics
The Weizmann Institute of Science
Rehovot, 76100 Israel

Abstract.

In recent years many diverse logical systems for reasoning about programs
have been shown to posses a highly undecidable, viz I1}-complete, validity problem. All
such known results are reproved in this paper in a uniform and transparent manner by
reductions from recurring domsno problems. These are simple variants of the classical
unbounded domino (or tiling) problems introduced by Wang and the bounded versions
defined by Lewis. While the former are (weakly) undecidable and the latter complete
in various complexity classes, the problems in the new class are Ti-complete.

It is hoped that the paper, which contains also NP-, PSPACE-, 1¢- and 13-
hardness results for various logical systems, will enhance interest in the appealing
medium of domino problems as a useful set of reduction tools for exhibiting “bad
behavior”.

1. Introduction

About two decades ago Hao Wang introduced domino problems (W1]. A
domino is a 1 X 1 square tile, fixed in orientation, each of whose edges is associated
with some color. In general, a domino problem is a decision problem that asks whether
or not it is possible to tile some portion P of the integer grid G = Z X Z by dominoes
of certain types, with perhaps some constraints on the placement of certain dominoes,
colors or combinations thereof. The input to such a problem always includes some
finite set T = {dy,...,dm } of domino types, consisting of the colors on the sides of
each; one assumes the existence of an infinite supply of dominoes from each of the
types in T. The general rules of tiling are that each grid point of P be associated with
a single domino type from T, and that adjacent edges be monochromatic.

The problems introduced by Wang are characterized by the fact that the
portion of G to be tiled is unbounded; it is either @ itself, or a quadrant, halfgrid,
octant, etc. The constraints in these unbounded domino problems are of finitary nature;
some tile is required to appear, say, at the origin, the boundary of the quadrant (if
that be the case) is to be colored, say, white; the dominoes occurring, say, along the
diagonal are to be in some specified T' C T, etc. All these unbounded problems are
undecidable but are co-r.e.. In other words, they are I19-complete; i.e., they and their
complements reside at the base of the arithmetical hierarchy R].



52 D. Harel

With the notable exception of the constraint-free versions (e.g. “can T tile
G?") which are more difficult [Be], undecidability is established by setting up a
straightforward correspondence between tiled rows of the portion P to be tiled and
legal configurations of Turing machines (TM’s). This is done such that adjacent rows
correspond to legal transitions of the machine at hand, and the constraints are used to
enforce an initial configuration containing the start state and, say, 3 blank tape. Given
a TM M one can thus construct a set Ths of domino types that can tile P in accordance
with a particular unbounded problem iff M halts on empty tape. Unbounded domino
problems have been extensively investigated and have becen used widely for proving
undecidabilily of subcases of the decision problem for the predicate calculus (cf. [E,
GK, G, KMW, L2, LP, W2]). The underlying idea in these proofs is pre-domino, and
is rooted in work of Buchi [Bu].

Another class of domino problems, characterized by bounded portions P of the
grid G, appears in work of Lewis [L1]. These bounded dotmino problems are complete
in various complexity classes such as NP and PSPACE, and the hardness directions
of theso facts are established by similar reductions from TM computations. Bounded
dominoes have been used in {L1, LP, E] for exhibiting intractability of certain problems,
including the NP-completeness of satisfiability in the propositional calculus.

In [E] van Emde Boas presents strong arguments to the effect that the com-
binatorical and geometrical simplicity of domino problems renders them an ideal medi-
umn for introducing and proving “bad behavior” such as NP-hardness or undecidability.
He suggests that they be used as “master reductions” in such lower-bound proofs. In-
deed, one can easily describe domino problems to a novice, and unless a proof from first
principles (i.c., computing machines such as TM’s) is requircd, the proofs by reduction
from dominoes are usually easy to present and to comprehend. Thus, domino problems
can be regarded as an appealing abstraction capturing the two-dimensional time/space
character of computation, but one which is devoid of the details of particular comput-
ing machines.

The existence of a third class of useful domino problems has been recently
noticed in Harel [H2]. Problems in this class are obtained from unbounded domino
problems simply by requiring that a designated domino, color or finitary combination
thereof occur infinitely often in the tiling. These recurring domino problems (not to
be confused with periodic tilings as in [GK, Be, Ro]) are shown in [H2] to be Zi-
complete, i.e., to reside at the base of the highly undecidable analytical hierarchy
[R]. The proof of these facts is similarly based on reductions from TM’s but here the
correspondence is with infinite computations of nondeterministic TM’s (NTM’s) which
reenter a “signalling situation” infinitely often. As an illustration of the usefulness
of recurring dominoes, an easy, almost trivial proof of the known Ti-hardness of
salisfiability in eilher infinitary logic [K] or first-order (quantificational) dynamic logic
[P, HMP] is presented in [H2]. This is actually an extension of the uubounded domino
proof of undecidability of the predicate calculus, which in turn can be seen to be an
extension of a bounded domino proof of NP-completeness for the propositional calculus

(cf. [LP]).



Recurring dominoes 53

The purpose of the present paper is to reinforce the arguments of [E, H2] by
presenting weighty evidence of the uscfulness of domino problems, in particular recur-
ring domino problems, for bounding from below the complexity of decision problems in
logical systems, especially program-oriented ones such as dynamic and temporal logics.

Many I1}-completcness results for deciding validity in certain programming
logics (i.e., Xi-compleleness for satisfiability) have been established in the past few
years using various techniques. These systems are quite diverse both in their motivation
and applicalions and in their expressive power. ILxamples are quantificational dynamic
logic, two-dimensional temporal logic, and context-free propositional dynamic logic.

The bulk of the present paper is Section 4 which is devoted to presenting
proofs of all these I1]-completeness results by reductions from recurring dominoes.
The moral of this unifying exercise is that when dealing with logics of programs “when
you have a grid you have il all”; that is, once one has forced candidate models of the
formulas at hand to correspond to a manageable grid (usually the positive quadrant
of G), the rest of a I1}-hardness proof follows effortlessly by reduction from recurring
dominoes. The grid-forcing part varies from trivial to quite tricky among the results
presented, but in each case (i) the resulting proof is considerably easier and more
transparent than the original one, and (ii) the grid-forcing part usually appears buried
in the original proof anyway. Seclion 4 also contains domino proofs of various PSPACE-
and I13-hardness results for logical systems, as well as some hitherto unpublished II}-
results.

Section 2 defines the specific domino problems used in the sequel and states
their complexity; it then provides some background on the logical systems discussed.
Scetion 3 presents the threc-part warm-up proof given in [H2] that the satisfiability/
validity problem for the classical languages behaves as in the following table (in which
notation of the polynomial-time, arithmetical, and analytical hierarchies has been used
to emphasize uniformity):

formalism satisfiability /validity - reduction from
propositional logic T/ bounded dominoes
predicate logic m/x? unbounded doiinoes
infinitary logic i/l recurring dominoes
(constructive)

It is hoped that the exposition presented herein will guide intuition as to the
possible high undecidability of logical systems introduced in the future and will ease
proofs of II} results (and other lower bounds) by encouraging reductions from domino
problews.



54 D. Harel

2. Preliminaries

2.1 Domino Problems and Their Complexity

The input to s domino problem always includes a finite set T = {do,...,dm }
of domino types, cach of the form d; = (left;, righti, up;, down;), giving the four colors
associated with the sides of di. Colors are taken from some denumerable set C. Let
G=2ZXZ,Gtr=NXN,and Gttt ={(,7) | (i,5) €G*, and ¢ <73}

Following are some particular domino problems utilized in the sequel.

Bounded Problems:

Bl: Given T aund n (in unury), can T tile an n X n subgrid of 244

B2: Given T, n (in unary) and two colors ¢g, ¢1, can T tile some n X m subgrid of G
such that the leftmost colors on the bottom and top are ¢ and ¢, respectively?

Unbounded Problems:

Ul: Given T, can T tile G?

U2: Given T, can.T tile G*?

U*: Given T and two colors co, c1, can T tile G* such that the sequence of colors on
the bottom of the first row is of the form cfcf for some n?

Recurring Probleras:

R1: Given T; can T tile G such that dp occurs in the tiling infinitely often?

R2: Given T; can T tile G such that d¢ occurs in the tiling infinitely often in the
first column?

R3: Given T; can T tile G such that dy tiles at least one point in each row-column
combination

Gi={(,910<i<i}U{EN]i<I}

We assume familiarity with the hierarchy notation of Rogers [R], and with
standard notions of complexity theory. In particular, we shall be using NP and
PSPACE to stand for the set of problems decidable by a nondeterministic Turing
machine in polynomial time and space, respectively. (By [Sa] the adjective “nonde-
terministic” is redundant for the latter.) NP is denoted Lf in the notation of the
polynomial-time hierarchy [St], and PSPACE contains that entire hierarchy.

£¢ is the class of r.e. sels and its complement, 119, is the class of co-r.e. sets.
I3 consists of all those sets (such as the codes of everywhere-halting TM’s) which can be
characterized by formulas over IN of the form Vz 3 yR for recursive R; its complement
is £J. Thesc classes reside low in the arithmetical hierarchy [R].

The class T} and its complement I} reside low in the analytical hierarchy
and represent sets characterizable, respectively, by formulas over N of the forms 3 /R
and V f R for arithmetical Ii.



Recurring dominoes 55

) Bl is NP-complete, cf. [L1, LP, E].

) B2 is PSPACE-complete, [L1, E.
iii) Ul and U2 are I13-complete, {Be, Ro].

)

)

U* is X3-complele, cf. [H2].
R1, R2 and R3 are I}-complete, [H2].

For details and discussions ol these and other domino problems the reader is
referred to van Emde Boas [E] and Harel [H12]. Problems Ul and R1 are not used in
the paper and are described in order Lo exhibit the “cleanest” known unbounded and
recurring versions.

2.2 The Logical Systems Considered

The systems considered in the sequel are of propositional and quantificational
(first-order) character. We briefly describe each and provide references for details.

1) Propositional calculus, cf. [Me, Sh]:

Closure under V and — of propositional variables P,Q, ... Abbreviations:A,
D, =. Formulas satisfied by truth assignment to propositional variables.

2) Propositional Temporal Logic of Linear Time (TL), cf. [Pn, MP]:

Closure under V,~, <> and Qof P,(),.... Abbreviations: as above, and
0= = <> -. Formulas satisfied in linear models of order-type w in which each point
supplies a truth assignment for the P, @,... <> means “eventually”,Omeans “at the

next instant”. Example: PAQ<>(QDOP), “P true now and infinitely often @ implies
P at the next instant”.

3) Two-Dimensional Temporal Logic (2TL), cf. [HP]:

Closure under V, —~, <>; (i fori = 1,2, of P,Q, .... Abbreviations: as above,
and [; = - <>;-. Formulas interpreted is cross-product of two TL models, i.e.,
in grids G*, with <>;,( indicating progress along the two coordinates. Example:
Oh <>2 P, “P is true at least once on each column of the grid”.

4) Temporal-Spatial Logic (TSL), cf. [RS]:

Closure under V, -, <>,0 somewhere and L of P,@,.... Abbreviations: as
in TL, and cverywhere == —somewhere—. Formulas interpreted in “proper interpreta-
tions” of networks of processors, with <> and Qreferring to time, L the (spatial) im-
mediate connection belween processors, and somewhere the reflexive transitive closure
of L. Proper intcrpretations have a grid-like structure just as in 27I'L. Example: P A
<> L (QVeverywheref), “P truc now and here, and eventually the neighboring process

salisfies @ or all its connected processes salisfy 7.




56 D. Harel

5) Propositional Dynamic Logic (PDL), cf. [FL, H1J:

Formulas are closure under V, -, and <a>> of P,@Q, ..., where the programs
o are regular expressions (i.e., closure under U, ;, *) of atomic programs a,b,... and
tests p? for formulas p. Abbreviations: as in prop. cale., and [a] = ~<a>=. Tor-
mulas salisfied in structures (W, 7, p)with 7(P) C W and p(a) € W X W, interpreting
propositional variables as true or false in states (= clements of W), and atomic pro-
grams as binary rclations on states. Regular operators interpreted in standard rela-
tional calculus manner. <> means “it is possible to exccute a such that” .Example:
POle*|(RV <bUc*d>Q), “if P is true then any terminating finite sequence of ex-
ecutions of & leads to a state in which either R is true or it is possible to execule either
b or some number of ¢’s followed by d and reach 2 state satisfying @”.

68) PDL With Additional Programs, cf. (HPS, HPa]:

Certain single nonregular programs, such as L; = {a’ba* | ¢ > 0}, denoted
a®ba®, or Ly = {a*® |1 > 0} are added to PDL. Example: [L2]{a] P, “P is true at all
points along a-paths at distance 22+ 1, fori € w”.

7) Deterministic PDL With Intersection (DPDL +“N”), cf. [HV]:

PDL interpreted in structures in which p(a) is a function, and enriched with
the intersection operator on programs; p(an f) = p(a)N p(8). Example: <an true?>
true, “there is an eflectless execution of a”.

8) Inference and Implication in PDL cf. [MSM]:

A formula of PDL contzining a “free” propositional variable @, and denoted
A(Q) is regarded as an axiom scheme, standing for the set A(PDL) of all formulas
obtained from it by consistently substituling arbitrary PDL lormulas for @. A(Q)
infers P if P is valid in all structures in which all formulas of A(PDL) are. A(Q)
implies P if P is true in any state in which all formulas of A(PDL) are. Example:
<a>@Q>[a]Q infers all formulas true for deterministic a.

9) Global Process Logic, cf. [HKP, S]: -

Closure under V, ~, <a>, first and suf of P,@,.... Programs are as in
PDL. Abbreviations: as in PDL. Formulas satisfied by paths in structures (W,r,p),
where r(P) € W* and p(a) C W*, interpreting both formulas and programs as paths
of states. <a> P satisfied in path p if P is satisfied in some path pq with ¢ € p(e). The
connective first, for example, is unary and firstP is satisfied in p if P is satisfied in the
first state of p. A derived operator next, is defined so that p satisfies nextP if the greatest
proper suflix of p satislies P. For each ¢ a formula L; can be defined, true in all paths
of lenglh 7. ‘I'he operalor last is also derived. Example: Ly A <a*>>(last[b]next@)), is
true in “paths consisting of a single state, in which there is some a* path, at the end of
which cach b path is such that the path oblained by truncating the iirst state satisfies
Q.




Recurring dominoes 57

10) Predicatc Calculus (with equality), cf. [Me, Sh]:

Closure under V, =, 3z of atomic formulas P(t;,...,¢,) for terms t;. Lan-

guage includes binary predicale “=". Formulas interpreted in first-order structures,

“« ”

=" inlerpreted as equality. Abbrevistions: as in prop. cale., and Vz = ~3Jz-.

11) Augmented Arithmetic, cf. [Sh]:

Predicale caleulus with =, 0, 1, +, 2, < interpreted over N in the standard
way, augmented with extra uninterpreted predicate symbols.

12) Infinitary Logic (constructive version is denoted LS%), cf. [K]:

wyw/

Predicate calculus closed also under w-disjunctions and conjunctions. In the

constructive version disjunctions and conjunctions are r.e. Example: V,e, @i, Where

po =-3z(x =2), py =JzVy(z =y), pe =JzIy(rz =y AVz(z =2V y=2),
etc., is true precisely in finite structures.

13) Quantified Temporal Logic of Lincar Time (QTL), cf. [Pn}:

Closure under Vv, =, <>, O and Jz of atomic formulas as in pred. calec.
Abbreviations: as in TL and pred. cale. Formulas satisfied in linear models of order-
type w underlying first-order structures. Each point in time provides values for all
variables. Example: z = yD <> O(P(z) Az = y), “if 2 = y then from some future
point on £ = y and P is true of z”.

14) Quantificd Dynamic Logic (QDL), cf. [P, Hi):

Closure under V, =, <a>, Iz of atomic formulas, where the programs «

are regular cxpressions over assignments £ «— ¢ for term £ and tests ©? for formula .

Abbreviations: as in PDL and pred. cale. Formulas satisfied in first-order structures

in which states provide values for variables; assignments interpreted in the standard

way, and program operations as in PDL. Example: z = yD|(z + f(f(z))*]<(y «~

J(W))*>z =y, is valid states “every execution of (ff)* corresponds to some execution
of f*".

15) Repeating in QDL, cf. [H1]:

" The predicate repeat(c) for @ a QDL program states that « can be repeated
indefinitely. Formulas satisfied in QDL structures. Example: repeat((z + f(z); P(z)‘?),
states “for all £, P(f(z)) is true”.

We remork that the rest of the paper presents only the hardness directions
of the results. All resulls are actually completeness results and the upper bounds are
usually easy to establish. In parlicular, 21-hard satisfiability problems can be shown
to be in £} by appealing to an appropriate version of the Lowenheun-Skolcm Theorem,
and writing “p is satisfiable” as “3 countable structure ...”, wiich is &i.



58 D. Harel

3. Classical Systems

In all reductions we assume an input set T = {do,-..,dm } involving colors
Cr = {co,...,ck—1}, where wlo.g. k is a power of 2. We use propositional or
predicate symbols denoted by LEFT, RIGHT, UP, DOWN, indexed by superscripts
1 < u < logk. In propositional logics we might have additional subscripts yielding,
for example, LEFT};, or LEFTY, for 1 < 4,7 < n,and in quantificational (= first-
order) logics the predicates are binary or upary, as in LEFT%(z,y) or LEFT%(z). In
general, unsuperscripted syinbols stand for the appropriately ordered sets of the log &
superscripted ones; e.g., LEFT; is (LEFT!,... ,LEFT',-""‘). In this way, indentifying
color ¢; with the binary representation of 1, the colors in Cr are in a fixed one-to-
one correspondence with possible truth assignments to such sets. Accordingly, we
shall write, say, RIGUT;; = ¢ as an abbreviation of the appropriate conjunction
of the tRIGIITY;, to indicate that the color on the right hand edge of the domino
associaled with (¢,7) is ¢¢ or UP(z,y) =down, to mean that the color on the top
edge of the domino al (z,y) is that on the bottom of domino dy, in T. To associate
dominoes from T with such indices we write, e.g.,, LRUD;; = d,, as an abbreviation
of LEFY; ; =left,, ARIGHT; ; = right, AUP; ; =up, ADOWN; ; =down,,. Similarly
for LRUD(z, ).

Theorem 3.1 [C]: Satisfiabilily in the propositional calculus is NP-hard.
Proof [LP]: Given T and n, construct Pr . 28 the conjunction of

/"\ /"\ (\n/ LRUD;,; = dt), (1)

fum] jam] “le=0
and
n—-1 n
A N (RIGHT;; = LEFT:41,; A UPj; = DOWN; i11). (2)
o] el

Clearly Pr,n is of size a polynomial in n + m, and is satisfiable iff T, n satisfies B1.
The latter is seen by observing that (1) associatcs a domino from T with each point of
[1...n] X [L...n], and (2) asserts correct matching of colors. &

Theorem 3.2 [Ch,T]: Satisfiability in the predicate calculus is 119-hard.

Proof; Given T', construct o as the conjunction of

Vz(f(z) # z AVy(f(z) = fy) Dz =1y)), (0)
vz Vy( \7 LRUD(z,y) = dv), (1)

(=0



Recurring dominoes 59

and

Vz¥y(RIGHT(z, y) = LEFT(f(z), y) A UP(z,y) = DOWN(z, f(y)))- (2)

The claim is that @7 is satisfiable iff T satisfies U2. The if direction is trivial
since if a tiling exists yr is satisfied in IN with 2z interpreted as 0 and f as successor.
Conversely, the domain of any structure satisfying wr must contain, by clause (0),
an infinite sct S constituting the values of z, f(2), f(f(2)),.... The grid G* matches
S X §, with (4, 7) corresponding Lo (f¥(z), f7(z)). Clause (1) and (2) behave as in Thm.
3.1, yielding a tiling of G*. @

Theorem 3.3 (¢f. [K,R]): Satisfiability in constructive infinitary logic is i
hard.

Proof [H2}: Given T coustruct % as the conjunction of 1 of Thm. 3.2, and

vz \/ (LRUD(z, f¥(z)) = do). (3)

ICw

The claim is thal ! is satisfiable iff T satisfies R2. The if direction is as before but
now (3) holds by virtue of the recurrence of domino dg. Conversely, if (3) holds, do
occurs arbitrarily high up in the first column (2, { f*(2) };,) of G*. 1

Theorem 3.4 (cf. [R]): Satisfiability in augmented first-order arithmetic is I1-
bard.

Proof: There is no need for clause (0) of Thm. 3.2. Given T, construct 7 as
the conjunctlion of

vz¥y(\/ LRUD(z,y) = du), (1)
=0
VzVy(RIGHT(z,y) = LEFT(z +1,y) A UP(z,y) = DOWN(z, y + 1)), (2)
and
VzIy(z < y ALRUD(z,y) = do). (3)
Y is satisfiable ilf T satisfies R2.



60 D. Harel

4. Dominoe Proofs of Iardness Results in Logics of Programs
The role played by the four conjuncts (0)~(3) in the proofs in the previous
section is the connecting thread of all proofs in this one. )

While clause (0), which states that “models look like grids”, will take on quite
diverse forms in the sequel, the general form of (1), (2) and (3) will be

1. Vpoint (point € T)
2. Vpoint (colors match right and above neighbors)
3. Vdistance Ipoint-further-away (point is do).

_ Since in most cases the parenthesized parts are written easily using the ab-
breviations introduced in Scction 3, one really has to specify only how to universally
reach all points on the approprié.te grid, how to existenlially reach points “further
away” than the “current” one, and how to reach the neighbors of any “current” point.

We first discuss the quantificational logics QDL and QTL.

Theorem 4.1 ([M], cf. [HMP]): Satisfiability in QDL is II}-hard, even for
formulas of the form Vz<(z « f(z))* > for program-free ¢.

Proof: Replace (3) in the proof of Thm. 3.3 by

Vz<(z « f(z))*>(LRUD(z, z) = do). (3)

Since the program within the <> does not involve 2 (= the only free variable in oA
(1) A (2)), the final formula ¢ can be taken to be Vz<(z + f(2))*>(LRUD(z,z) =
do A o), where pr is as in the proof of Thm. 3.2. It is satisfiable iff 7" satisfies R2. 1

Theorem 4.2 [H1]: Satisfiability of formulas of the form repeat(a), for QDL
programs a with program-free tests, is Zi-hard.

Proof: Given T, let aT be

o1l (z +~ f(z)% z+ f(z); (LRUD(zz)=do)!

where @1 is as in the proof of Thm. 3.2. An indefinite repetition of o is possible only
if 7 is satisfied in a state that admits an infinite computation of z « f(z), with do
recurring along the first column of the grid G*. Hence repeat(ar) is satisfiable iff T
satisfies R2. @

In contrast to Thm. 4.2, satisfiability of formulas of the form loop(a) for QDL
programs o with program-free tests cun be shown to [1{-compete. See [H1].



Recurring dominoes 61

Theorem_4.3: Satisliability in QTL is I’li_hard, even for formulas of the form
0O <> ¢ for  involving only a singleO(and no g or < ).

Proof: Given T, construct ¥ as the conjunction O, where @ is (0) of the
proof of Thm. 3.2, and

DV:::( \/ LRUD(z) = dg), (1)

=0

k—1

OV z(RIGHT(z) = LEFT(f(z)) A /\ (UP(z) = ¢; DO(DOWN(z) =¢i))),  (2)
1==0

01 <> (LRUD(z) = do). . 3)

Here the infinite set z, f(z), f(J(2)),... of clause (0) is used only in the horizontal
direction; the vertical one is modeled by the temporal axis. The special form is obtained
as in Thm. 4.1 and is satisfiable iff T" satisfies R2. 1

It is possible Lo prove the I13-hardness of validity of Hoare [H]partial correct-
ness assertions using the U* domino problem. To see this note that ¥{a }p is ¥ D[]
in QDL notation, or {$?; a}e. The following Theorem thus gives the result.

Theorem 4.4 [HMP]: Satisfiability of formulas of QDL of the form <a> ¢ for
program-free ¢ is L3-hard, even for test-free a.

Proof: Given T, construct ¢y to be the conjunction of ¢ from Thm. 3.2,

and
LRUD(z, z) = do AV z((DOWN(z,2) = ¢¢D
(DOWN(f(z), z) = co V DOWN(f(z), 2) = c1}} A *)
(DOWN(z, z) = ¢; DDOWN(f(z), 2) = c1))-
Now let ¥ be
<z + z;(z « f(z))*>(DOWN(z, 2) = ¢co ADOWN(f(z), 2) =c1 A ¥'7).
Given that downy = co, 9’y forces the bottom colors on the bottom row of G¥ to

be either ¢ or cifcy for some n. ¥ then prevents the first possibility and hence is
satisfiable iff T satisfies U*. W

Turning now to Lhe propositional logics PDL, TL and PL, the results here are
at times somewhat more involved due to the dificully of forcing models to look like
grids.



62 D. Harel

Theorem 4.5 [HP]: Satisfiability in 2TL is T |-hard.

Proof: Given T', construct Py as Lhe conjunction of

01 Dz( \/ LRUD = dc), 1
te=0

k—1
mp} Dg( A ((RIGHT = c‘-:)(;,(LEFT =¢;)) A (UP = c,-D%IDOWN = c,-)))), (2)

i=0
and
O < 2(LRUD = dy). (3)
Pris satisfiable iff T satisfics R2. B

Theorem 4.6 [RS): Satisfiability in TSL is Ti-hard.

Proof: Given T, construct Py as the conjunction of

[]everywhcre( \/ LRUD = dt), (1)
(=0

k—1
Deverywhcre( A ((RIGHT = ¢; DOLEFT = ¢;)) A (UP = ¢; DL(DOWN = c.-)))),
1=
(2)
everywhere(somewhere(LRUD = do)). (3)
Py is satisfiable iff T satisfies R2. &

It is possible Lo prove that one-dimensional TL is PSPACE-hard using bounded
dominoes (without Oit is NP-complete [SC]):

Theorem 4.7 [SC]: Satisfiability in TL is PSPACE-hard.
Proof: Given T, n and colors co, ¢1, construct PT n,co,c, 38 the conjunction of

n m

0@> A V (LRUD: = dy)), (1)

tom] (=0



Recurring dominoes 63

n—1 n k-1
[:J(QD( N\ RIGHT; = LEFT;41) A \ A (UP:i = ¢; DOQ@D(DOWN; = c,-))))),
fom | fom] jamQ
(2)

Q A O(~@D0~Q) ADOWN; = ¢g A < (Q A(-Q) AUPy =¢y) (*)

Process along the vertical [1...m] axis of B2 is achieved with the temporal
operators, and the horizontal axis is bounded by n and referred to by 1 < ¢ < n.
Pr o co.c, is thus satisfiable iff (T,7,co,c1) satisfies B2, since (*) states that the first
color o the first row matches ¢o and on some (further) one matches ¢y, Throughout,
Q is forced to be true precisely at the first m vertical points.

It is possible to use the trick from |[MS] combined with a reduction from B2, to
obtain similar transparent domino proofs of PSIPACE-hardness for quantified Boolean
formulas [M4], the first-order theory of equality [MS], and certain systems of modal
logic [La]. We omit the details here.

Theorem 4.8 [MSM|: The non-inference and non-implication problems for
PDL are £!-hard.

Proof: Let A(Q) be

(<ab>QD[ba]Q) A (<ba>QD[ab]@).

Given 7', coustruct Pr as the conjunction of

[(a U b)*)(<a>true A <b>tirue), (0)

(au b)*]( \"} LRUD = dl), (1)

(=20

k-1
(@u0I( A\ (RIGHT = o [GI(LEFT = ) A (UP = erD[H{(DOWN = ), @

1==(
and
[6*] <b*>(LRUD = dy). 3)
Clause (0) forces the existence of a binary a, b tree from any satislying state.

The axiom scheme A(()), when regarded as the infinite set A(PDL), forces this tree to
act, as [ar as can be detected by PDL formulas, like a grid. Specifically the claims are:

(i) A(PDL) infers =P ilf T does not satisfy R2;
(i)  |(auUb)*JA(PDL) implies = Pr iff T does not satisfy R2.



64 D. Harel

To see (i), if T satisfies R2 the structure consisting of a quadrant as in Fig. 1, tiled
accordingly, satisfies A(PDL) in all states, but satisfies Pr at state a. Conversely, if
all states of some structure satisfly A(PDL), and sowme slate s satisfies Pr then the
“forward part” from 8 [MSM] looks essentially like Fig. 1, by (0) and A(PDL). Clauses
(1)(3) then asseri the existence of the required tiling. 1

Remark: Our proof of Theorem 4.8 invoives only test-free programs (ef. [MSM,

Thm. 4.4]-) and can be strengthened as in [MSM, Thms. 4.5, 4.6] to atomic-test-DPDL.

A very similar-looking proof can be given for deterministic PDL with inter-

section:
Theorem 4.9 [HV]: Satisfiability in DPDL + “n” is Ti-hard.
~ Proof: [HV]: Construct Pr as the conjunction of (1)-(3) of the previous proof,
and,

[(a U b)*](<ab N ba>true). (0)

Clause (0) forces the existence of a (possibly cyclic) grid. Pr is thus satisfiable iff T
satisfies R2.

—_—N Theorem 4.10 [HPS]: Satisfiability in PDL + {a®ba® } is £}-hard.

b : b ~ - - -

a
b b . L

, ’ b X

a a qQ P
b b b b "

a - L
b b b b S

a a a a
b b b b b L s 5 b
sy a a a a G

Figure 2.

Figure 1.



Recurring dominoes 65

Proof: Given T, denoting a®ba® by L and a*b by N, construct Pr as the
conjunction of

<ab>rue A [N¥](<a*ab>true A [a*a][L[ab)false A [Llfaaltals),  (0)
aUb)*a LRUD = d, |, 1
leu) 1((\_/0 c) o
k—1 :
[mwyw(A«mmm=q3mm@MT=qn
=0 .
A (UP = ¢;>[L][ac](DOWN = c,-))))
o @)
/\[(NN)*Na*]( /\ (RIGHT = ¢;> [L][aa](LEFT = c,))
1==(
A (UP = c,-D[L] [a](DOWN = c,-)))),
[(NN)*]((NN)*>(LRUD =dp). 3)

Clause (0) forces the existence, in any potential model, of an infinite sequence
of the form o = aba?be®s. ... Clause (1) associates dominoes from T with those points
of o that follow a’s, and (2) forces the matching of colors, so that o corresponds to
G™, as illustrated in I'ig. 2. Nole how neighbors from the right and from above are
reached using L. Consequently, Pr is satisfiable iff T satisfies R2.

Remark: As in the proof in [HPS] it is possible to modify this proof slightly
and obtain the result for PDL +4 {a%48,5404 }. The question of whether PDL +
{a®b2 } is decidable or not is still open, cf. [H1].

Theorem 4.11 [HPa): Satisfiability in PDL + {L}, where L= {a? |i > 0},
is X}-hard.

Sketch of Proof (I1Paj: Given T, construet Pr as the conjunction of the
following formulas, which involve the additional predicate symbols @, £Z;, for 0 <

i<6,0<5<3.



66 D. Harel

la*l(<a>tﬂ_§A A =@AQ)n N -\(R.-/\R,-))

0<i<s<o 0<i<j<3

8
A Qo A [a*]( /\ (QiD[a]@(i+1)(mod 7))

im0 (0)
A [L)Rs A [La)(Q3 D Ey) A (@5 DRy))
ALLY((By D[L)(Ro V B2 V 1%3)) A (B D[L](Ro V R1)) A (Bo D [L](B1 V Rz))),
[LL](--R;;D \7 LRUD = dt), (1)

L=l

2 k-1
lLLl( A N\ (B:D(RIGHT = ¢; D[L(B(i~1)(moa 3) DLEFT = ¢;))
te=( yu=0 (2)

A (UP = ¢; D[L)(B(i+1)(mod 3) DDOWN = Cj)))))y

and

[L]<L>(~R3; ALRUD = dp). (3)

Here the claim is that Pr is satisfiable iff T satisfies R3. This is rather difficult
to see immediately, and the details of the proof appear in [HPa]. However, to get a
feeling for it, clause (0) forces points at cistances in {2°+27 |4,7 > 0} to form
an octant grid as in Fig. 3. There, a parenthesized number is the subscript of that
R; forced to be true at the point. One secs that the element to the right of a point
s satisfying R; for ¢ #£ 3, satisfies R(i—1)(mod 3) and the one above it E(i+1)(mod 3)-
Moreover, these arc the only two points in Gt at distances a power of 2 from a.
Thus, from any point on the superdiagonal portion G+ of this L? grid, any execution
of L leads either Lo its neighbors or outside the grid. Clause (3) can be seen to state
the recurrence property of R3, and for it to work it is essential that dg occurs in all G
as in the statement of R3. 1

Remark: It is open whether, e.g., PDL + L, for L = {a"’ |£>0}or L=
{av,":l | 2 > 0}, is undecidable.

Theorem 4.12 [S]: Satisfiability in Global Process Logic is $i-hard.



Recurring dominoes 67

Proof (cf. {S]): Given T, construct Pr as the conjunction of

Lo A lolast(fe] L), ©)
sl \/ LRUD = 4y, )
L==0
k—1
[a*]l_aﬂ([a"‘]( A\ (RIGHT = ¢;[a](LEFT = ¢;)) A
gz ()

(UP = c;D[a]m’t_,(DOV;/N =.c,-))))),
(2)
[a*]last(<a*a>last(LRUD = dy)). (3)

Here the claim is that Pyr is satisfiable iff T" satisfies R2. Clause (0) together with the
<> part of (3), forces Lhe existence of an implicil quadrant grid G* in which point (¢, 7)
corresponds Lo the segment P;; = (sy,...,8,4,) of an infinite path p == (s9,8y,...)
with (8¢, 8i+1) € p(a) for cach <. In this way, the right neighbor of p;; is obtained
by an cxeculion of a, and the above neighbor by an execution of a followed by next.
Executions of a* followed by lasi correspond to arbilrary movement up a column; in
this way (3) really asserts the recurrence property of R2. See Fig. 4. @

33 34 36 40 48 64
(2> () oy (2 () (3)

7 18 20 24 32
a)y w0 @2 (3

(o)) (2) (1 (3)

5 6 8

(2) (1) (3)

3 4

(tn (3}

2 Figure 3.
(3

Figure 4.



68 D. Harel

5. Conclusions and Discussions

It is hoped that the simplicity and similarity of the proofs in Section 3 and 4
speak for themselves. All lower bounds of NP, PSPACE, 119, 13 and &} for satisfiability
in logical systems which are known to the author have been provided with such prools.
It seems that domino problems, with their “3 tiling” format, are a perfect match for
satisfiability problems, with their “3 model” format. It is the third class of domino
problems, the recurring ones of [H2], that enable completion of this picture for the
various programming logics.

Three general additional points are worth making.

1. Since all domino problems owe their complexity to the correspondence with Turing
machine computations, and since this correspondence applies to nondeterministic
models just as well (“3 tiling” corresponds to “3 computation”), cf. [H2], domino
problems can apparently not distinguish between deterministic and nondeterminis-
tic classes. Thus, e.g., EXPTIME-hard salisfiability problems, such as that for
PDL [FL], do not admit domino proofs, whereas the above mentioned classes all
do (PSPACE does by Savitch’s Theorem [Sa}).

2. Domino problems are existential in nature and do not seem to extend in any natural
way to capture alternation. One additional quantifier can usually be managed, cf.
the (relatively cumbersome) formulation of the £9 problem U* used in the proof
of Theorem 4.4. Thus, while games are good for alternation, dominoes are good
for single existentials. Indeed the EXPTIME-hardness of PDL is proved using
EXPTIME = allernating-lincar-space, with alternating TM’s, and as noted above
cannot be proved using the kinds of domino problems considered herein.

3. The present paper and ils companion [I12] make the case for viewing %1 sets as cor-
responding to computable finitely-branching trees with an infinite path containing
a recurrence. Call these F-trees. It is a well known fact that I{ sets correspond
to computable possibly infinitely-branching trecs containing some infinite path.
Call these I-trees. For example, the set of (notations for) recursive ordinals, of
well-founded recursive trees, and of terminating computations of programs with
unbounded nondeterminism, etc. are all I1}-complete (cf. [R, Cn, AP]).

The correspondence belween these views can easily be visualized by traversing a
computable infinitely-branching tree with an NTM which at each stage nondeter-
ministically chooses to cither move across to a brother or down to a son, signalling
when the latter is chosen. Its computation tree is an F-trec with recurring signal
if the initial tree is an I-tree. Conversely, given a computable finitely branching
trec with a “signal”, an infinitely-branching tree can be constructed with nodes
corresponding to signal nodes in the former, and a node’s sons corresponding to
all possible signalled descendents of the origin node. In particular, the recursive
ordinal corresponding Lo a nonrecurring domino set T = {do,...,dm } is that
assuciabed with the following tree: The root is associated with the 1 X 1 tiling con-



Recurring dominoes 69

sisting of dp. The sons of each node are all possible minimal n X n extensions of
the tiling associated wilh that node, for any possible n, which contain additional

" occurrences of dy. This tree is well-founded iff T does not satisfy R1. (Similar
constructions clearly exist for other recurring domino problems.)

This obscrvalion concerning “fat” and “thin” infinite trees is formalized in [H2],
and the ¥l-hardness of the recurring NTM’s (from which recurring dominoes are
derived) is obtained as a corollary. A significantly stronger correspondence result
for infinitc trees, which has applications to lair computations as well as to richer
cases of the domino problem, will be published separately.

6. Relerences

[AP]
[Be]
(Bo]
[Ch]
[Cn]
(€]
[E]
[FL]
[G]
[GK]
[H1]

2]

Apt, K.IR. and G.D. Plotkin, Countable Nondeterminism and Random As-
signment, Manuscript, 1982.

Berger, R., The Undecidability of the Dominoe Problem, Mem. Amer. Math.
Soc. 66 (1966).

Buchi, J.R., Turing Machines and the Entscheidungsproblem, Math. Ann.
148 (1962), 201-213.

Church, A., A Note on the Entscheidungsproblem, J. Symb. Logic 1 (1936),
101-102.

Chandra, A.K., Computable Nondeterministic Functions, 19tk IEEE Symp.
Found. comput. Sci., 127-131, 1978.

Cook, S.A., The Complexity of Theorem Proving Procedures, $rd ACM Symp.
Theory of Comput., 151-158, 1971.

van Emde Boas, P., Dominoes are Forever, 1st GTI Workshop, Paderborn,
75-95, 1983. )

Fischer, M.J. and IR.E. Ladner, Propositional Dynamic Logic of Regular Pro-
grams, J. Comput. Syst. Sci. 18 (1979), 194-211.

Gurevich, Y., The Decision Problem for Standard Classes, J. Symb. Logic 41
(1976), 160-464.

Gurevich, Y. and L.O. Koryakov, Remarks on Berger’s Paper on the Domino
Problem, Siberian Math. J. 13 (1972), 319-321.

Harel, D., Dynamic Logic, In: Handbook of Philosophical Logic II, Reidel
(1984), Lo appear.

Harvel, D., A Simple Ilighly Undecidable Domino Problem (or, A Lemma on
Infinite Trces, With Applications), Proc. Logic and Computation Conference.
Clayton, Vicloria, Australia, Jan. 1984.



70
[BKP]

[HMP)

[Me]

(M]
[MS)]

[MSM]

D. Harel

Harel, D., D. Kozen and R. Parikh, Process Logic: Ixpressiveness, Decidability,
Complelencss, J. Comput. Syst. Sci. 25 (1982), 144-170.

Marel, D., A.R. Mcyer and V.R. Pratt, Computability and Completeness in
Logics of Programs, 9th ACM Symp. Theory of Comput., 261-268, 1977.

Harel, D. and M.S. Paterson, Undecidability of PDL with L = {a2'. |i >0}
RJ 4066, 10/83, IBM Research, San Jose. Submitted for publication.

Ilarel, D. and A. Pnueli, Two Dimensional Temporal Logic, Manuscript, 1982.

Harel, D., A. Pnueli and J. Stavi, Propositional Dynamic Logic of Nouregular
Programs, J. Comput. Syst. Sci. 26 (1983), 222-243.

Harel, D. and M. Vardi, PDL with Intersection, Manuscript, 1-982. ‘

Hoare, C.A.R., An Axiomatic Basis for Computer Programming, Comm.
Assoc. Comput. Mach. 12 (1969), 576-580, 583.

Kalr, A.S., E.F. Moore and 1. Wang, Intscheidungsproblem Reduced to the
V3V Case, Proc. Nat. Acad. Sci. USA, 48, (1962), 365-377.

Keisler, J., Model Theory for Infinitary Logic, North Holland, 1971.

Ladner, R., 'The Computational Complexity of Provability in Systems of
Modal Propositional Logic, SIAM J. Comp. 6 (1977), 467-480.

Lewis, 1L.R., Complexily of Solvable Cases of the Decision Problem for the
Predicate Caleulus, 19tk IEEE Symp. Found. Comput. Ses., 35-47, 1978,

Lewis, H.R.,Unsolvable Classcs of Quantificational Formulas, Addison-Wesley,
1979.

Lewis, H.R. and C.H. Papadimitriou, Elements of the Theory of Computation,
Prentice-Hall, 1981.

Manna, Z. and A. Paoueli, Verification of Concurrent Programs: Temporal
Proof Principles, Lect. Notes in Comput. Sci., Vol. 131, Springer-Verlag,
200-252, 1981. =

Mendelson, E., Introduction to Mathematical Logic, van Nostrand Reinhold,
1964.

Meyer, A.R., Private Communication, 1977.

Meyer, A.R. and L.J. Stockmeyer, Word Problems Requiring Exponential
Time, 5th ACM Symp. Theory of Comput., 1-g, 1973.

Meyer, A.R., R.S. Strectt and G. Mirkowska, The Deducibility Problem in
Propositional Dynamic Logic, Lect. Notes in Comput. Sci., Vol. 125, Springer-
Verlag, 12-22, 1981.



[Px]
(P]
[RS]
[Ro]
i
[Sa]

(Sh)
[sC]

(St]
[S]
[T]
Wi1]

[Wz]

Recurring dominoes 71

Paueli, A., The Temporal Logic of Programs, 18th IEEE Symp. Found. Com-
put. Sci., 46-57, 1977,

Pralt, V.R., Semantical Considerations on Floyd-Hoare Logic, 17th IEEE
Symp. Found. Comput. Sci., 109-121, 1976.

Reif, J.11. and A.P. Sistla, A Multiprocess Network Logic with Temporal and
Spatial Modalities, TR-29-82, Harvard Univ., Compuliation Lab., 1982,

Robinsoun, R.M., Undecidability and Nonperiodicity for Tilings of the Plane,
Inventiones Math.12, (1971), 177-209.

Rogers, 1., Theory of Recursive Functions and Lffective Computabslity, Mc-
Graw-Hiil, 1967.

Savitch, W.J., Relationships Belween Nondéterministic and Deterministic
Tape Complexities, J. Comput. Syst. Sei. 4 (1970), 177-192.

Shoenfield, J.R., Mathematical Logic, Addison-Wesley, 1967.

Sistla, A.P. and E.M. Clarke, The Complexity of Propositional Linear Tem-
poral Logics, 14th ACM Symp. Theory of Comput., 159-167, 1982.

Stockmeyer, L.J., The Polynomial Time Hierarchy, Theoret. Comput. Sci., 3

(1976), 1-22.

Streett, R.S., Global Process Logic is I1}-Complete, Manuscript, 1982.

Turing, A.M., On Computable Numbers with an Application to the Entscheid-
ungsproblem, Proc. London Math. Soc. 2, 42 (1936-7), 230-285, 43 (1937),
544-546.

Wang, I., Proving Theorems by Pattern Recognition II, Bell Syst. Tech. J.
40, (1961), 1-41.

Wang, II., Dominoes and the AEA Case of the Decision Problem, In: Mathe-
maiscal Theory of Automata, Polytechnic Press, 1963, 23-55.



