Scenario-Based Programming: Reducing the Cognitive
Load, Fostering Abstract Thinking -

Giora Alexandron

Michal Armoni

Michal Gordon David Harel

Weizmann Institute of Science, Rehovot, 76100, Israel

ABSTRACT

We examine how students work in scenario-based and object-
oriented programming (OOP) languages, and qualitatively
analyze the use of abstraction through the prism of the dif-
ferences between the paradigms. The findings indicate that
when working in a scenario-based language, programmers
think on a higher level of abstraction than when working
with OOP languages. This is explained by other findings,
which suggest how the declarative, incremental nature of
scenario-based programming facilitates separation of con-
cerns, and how it supports a kind of programming that al-
lows programmers to work with a less detailed mental model
of the system they develop. The findings shed light on
how declarative approaches can reduce the cognitive load
involved in programming, and how scenario-based program-
ming might solve some of the difficulties involved in the use
of declarative languages. This is applicable to the design of
learning materials, and to the design of programming lan-
guages and tools.

Categories and Subject Descriptors

K.3.2 [Computers and Education]: Computer and Infor-
mation Science Education—Computer science education

General Terms

Languages

Keywords

Abstraction, scenario-based programming

1. INTRODUCTION

Abstraction is a fundamental concept and core skill in
computing. Just to mention a few references, Dijkstra [9]

*This research was partially supported by an Advanced Re-
search Grant from the European Research Council (ERC)
under the European Community’s 7th Framework Pro-
gramme (FP7/2007-2013). The work of the first author was
supported by a grant from the Azrieli Foundation.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions @acm.org.

ICSE Companion’14, May 31 — June 7, 2014, Hyderabad, India

Copyright 2014 ACM 978-1-4503-2768-8/14/05...$15.00
http://dx.doi.org/10.1145/2591062.2591167

311

described abstraction as “the only mental tool by means of
which a very finite piece of reasoning can cover a myriad of
cases” (p. 864). Wing [39] referred to abstraction as one of
the defining characteristics of computational thinking, and
as a core skill that a computer scientist must possess. Ac-
cording to the task force chaired by Denning [8], abstraction
is one of the three processes that characterize the discipline.

Hazzan and Kramer [25] defined the concept of abstrac-
tion in computer science (CS) and software engineering (SE)
as “a cognitive means, according to which, in order to over-
come complexity at a specific stage of a problem solving
situation, we concentrate on the essential features of our
subject of thought, and ignore irrelevant details.” (p. 3). Ab-
straction is fundamental to many CS and SE subjects, but
specifically, it is central to programming. Thus, an essential
characteristic of programming languages is their approach
to abstraction.

In [11], Green proposed a cognitive framework for charac-
terizing programming languages, termed ‘cognitive dimen-
sions’, which also refers to abstraction properties. We find
two of its dimensions especially applicable to our analysis.
The first is abstraction gradient, which refers to the mini-
mum and maximum levels of abstraction, and to the readi-
ness or desire to accept new abstractions. Languages that
are abstraction tolerant can be used ‘as they come’, but also
allow new abstractions to be created (C is one example).
In languages that are abstraction-hungry, one is required to
create new abstractions when starting a new program (basi-
cally this is the case for most OOP languages). The second
dimension is closeness of mapping, which refers to the dis-
tance between the problem domain and the solution domain.
The closer the distance, the easier the problem solving ought
to be.

The way a programming language deals with abstraction
is also tightly connected to the programming paradigm that
underlies it. For example, procedural abstraction is about
encapsulating sequences of instructions in procedures. Pro-
cedural languages separate the abstraction of control from
the abstraction of data. Object-oriented languages focus on
decomposing the system into objects that abstract data and
control. Declarative languages concentrate on the goal that
the program should achieve, and abstract away the com-
putation that leads to it. However, as Petre and Winder
[32] stated, the distinction between declarative and non-
declarative programming languages is not unequivocal, but
gradual. Some declarative languages totally hide the oper-
ational model that underlies them, while in others the un-
derlying operational model is more accessible.

Scenario-based programming [21], as implemented in the
visual language of live sequence charts (LSC) [7], is such a
mid-way approach to declarative programming. It allows
defining in a high-level, declarative-style, independent soft-

ware modules that are interwoven at run-time by the under-
lying execution tool. (We elaborate on LSC in section 2.)

Due to its importance, developing abstract thinking is a
main objective of the mainstream CS and SE curricula (see
[26, 27]). The common approaches to teaching abstraction in
programming seem to rely on (at least) two premises: First,
that abstract thinking can be developed. This means that
we expect that a quality computing education will improve
students’ abstraction skills. The second premise is of scaf-
folded learning. This approach to learning is rooted in the
ideas of Bruner [6] and in Vygotsky’s concept of the zone of
prozimal development (ZPD) [37]. Basically, it means that
the instruction and the learning environment should be tai-
lored to the needs of the learners (as opposed, for example,
to approaches that emphasize learning in real-life contexts),
and should support a gradual development of skills.

One way or another, there is a body of work that tells us
that abstraction is difficult to learn. Hazzan and Kramer [25]
ascribed that to the fact that abstraction is a soft conceptual
idea, which is never applied out of context, but is utilized
when another topic is at the focus of the activity. Kop-
pelman and van Dijk [28] blamed this on the gap between
‘real-life’, natural-language based problem solving and pro-
gramming problem solving, which is guided by the abstrac-
tion mechanisms of the programming language. They con-
cluded that abstraction should be taught explicitly, from the
beginning, in many contexts. This recommendation might
sound like a truism, but actually it is not always followed.
Sivilotti and Lang [34] stated that since abstraction is such
a common theme, educators and students may use it casu-
ally, without explicitly drawing attention to it. The moti-
vation behind their work was to scaffold abstract thinking
within the framework of the objects-first approach, though
they mentioned that implementations of this approach might
cause students to “mingle abstract and concrete state” (p.
2). To overcome this, they suggested an approach termed
‘components first’, which focuses on separating the concerns
of the interface from the concerns of the implementation.

However, several studies claimed that object-oriented ab-
straction is too complicated for novices. For example, Sprague
and Schahczenski [35] claimed that OOP requires a higher-
level of abstraction than does procedural programming. This
concurs with the findings of Haberman [13], who found that
novice programmers feel comfortable with procedural ab-
straction, when the concept is explicitly taught. Still in the
procedural framework, Haberman and Ben-David Kolikant
[14] studied how a blackbox-based approach can be used for
introducing basic programming concepts to novices. Obvi-
ously, the essence of the black-box concept is abstraction.

Organizing the teaching around the concept of black-box
has also been suggested by other authors. In the context
of OOP, examples include the work of Warford [38], and
the aforementioned work of Sivilotti [34]. In the context of
declarative programming, Haberman and Scherz [15] used
the idea of evolving boxes to teach Abstract Data Types
(ADTSs). They suggested starting with the use of the ADT
as black-box, gradually revealing its internal implementa-
tion. This rationale, which states that black-boxes should
be taught before, or at least together with, their internal
implementation, underlies the black-box oriented methods.
This contrasts with the more traditional approach, which
goes in the opposite direction, bottom-up.

This debate can also be seen as an instance of the more
general question of whether abstraction should be taught
top-down or bottom-up. Currently, it seems that the com-
mon approach is bottom-up. However, as argued in the con-
text of black-boxes [14], or in the context of moving from
low to high-level languages [2], this can lead to difficulties
in using high-level abstractions. Alternatively, some recent

312

curricula, for example the new Israeli high-school curricu-
lum ', emphasize the use of high-level abstractions at early
stages. Emphasizing the use of high-level abstraction, espe-
cially of the kind that appears in declarative programming,
is also the essence of the ‘logic programming based curricu-
lum’ [33] suggested by Scherz and Haberman. They and
others conducted a series of studies on the learning of Prolog
by novices. All in all, their bottom-line was positive. How-
ever, other work has revealed some significant difficulties in
learning Prolog. Taylor [36] found difficulties that stem from
the fact that the underlying operational model was not clear
to the novices. Petre [30] claimed that operational models
underpin declarative reasoning (and stated that Prolog does
not supply such a model). The approach described in the
present paper is also high-level and declarative, but it is
introduced through a language (LSC) that gives access to
its underlying, lower-level model, and this seems to address
some of the difficulties associated with Prolog.

Using high level abstraction also requires ‘meta’ and re-
flective thinking. Among other things, meta-cognition refers
to managerial processes, such as the allocation of cognitive
resources, to self-verification processes, to attitudes, etc.
The contribution of this component to abstract thinking
was stressed by Dijkstra [10], who emphasized (among other
things) the importance of being able to control the think-
ing process in order to focus attention on the task at hand
and ignore unnecessary details. According to Armoni [5],
the ‘meta’ component is also important for the transfer of
abstraction skills between domains.

In this study, we examine patterns of abstract thinking in
LSC, which is a scenario-based language, and in Statecharts,
which is an object-oriented language. Both languages are vi-
sual in nature. We analyze these patterns qualitatively in
light of the kind of programming that each paradigm encour-
ages. The findings show that with LSC students develop a
less detailed mental model of the system, and work at a
higher level of abstraction. We believe that this reduces the
cognitive load, and that it is facilitated by the declarative,
scenario-based nature of LSC.

2. LIVE SEQUENCE CHARTS AND STAT-
ECHARTS

2.1 Live Sequence Charts

The language of live-sequence charts (LSC) was originally
introduced by Damm and Harel [7] as an extension of mes-
sage sequence charts, and was later extended significantly
in [21] and [22]. It is a visual programming language for
reactive system development, and is supported by the Play-
Engine [21] and PlayGo [20] programming environments (here
we concentrate on the former). Below we review the three
main concepts underlying LSC and Play-Engine.

2.1.1 Scenario-Based Programming and Inter-Object
Specification

LSC introduces a new paradigm, termed scenario-based
programming, and is a language that uses visual, diagram-
matic syntax. The main decomposition tool that the lan-
guage offers is the scenario. In the abstract sense, a sce-
nario describes a series of actions that constitute a certain
functionality of the system, and may include possible, neces-
sary or forbidden actions. Since a scenario usually involves
multiple objects, and emphasizes the interactions between
them, scenario-based programming is inter-object by nature
(see [7]). Each chart is an independent module capturing a

"http://www.csit.org.il/CS2012/CS-1-2-4-ver-2.6.pdf (in
Hebrew)

scenario. At run-time, the execution engine interweaves the
charts according to the synchronization rules. An example
of an LSC is shown in Figure 1.

% | Brake ‘ | Cruize ‘ Accelerator
< L Cick___y! %
L __Release(] _>
.<_ _Releasel]

Figure 1: An LSC

An LSC is composed of two parts — the prechart, and the
main chart. The prechart is the upper dashed line hexagon,
and it is the activation condition of the chart. In case the
events in the prechart occur, the chart is activated. Execu-
tion then enters the main chart. This is the lower rectangle
in the figure, which contains the execution instructions. The
vertical lines represent the objects, and the horizontal ar-
rows represent interactions between them. Time flows from
top to bottom. Figure 1 presents a simple scenario taken
from the implementation of a cruise control. Once the user
presses the brake pedal, the cruise unit releases control of
the accelerator and the brake, and then turns itself off.

In addition to LSC, scenario-based programming is also
available as an extension to Java, C++, Erlang, and Google’s
Blockly. The general approach has been termed behavioral
programming. See [23].

2.1.2 The Play-In Method

LSC is supplemented with a method for building the scenario-

based specification over a real or a mock-up GUI of the sys-
tem — the play-in method [17, 21, 22] — which is implemented
in the Play-Engine. With play-in, the user specifies the sce-
narios in a way that is close to how real interaction with the
system occurs. This is illustrated in Figure 2, which shows a
GUI of a cellular phone, and a simple LSC containing a sce-
nario that describes what the display and the speaker should
do once the user shuts the cell phone cover. This scenario
was ‘programmed’ by clicking on (i.e., by playing with) the
components of the GUI.

2.1.3 The Play-Out Method

LSC has an operational semantics that is implemented
by the play-out method (originally introduced in [21, 22]).
It too is included in the Play-Engine. Play-out makes the
specification directly executable/simulatable, thus enables
using LSC as a high-level programming language (other than
merely as a specification language). For more details see [21].

2.2 Statecharts

As opposed to the inter-object approach, the more clas-
sical intra-object approach calls for specifying behavior of
each object separately, usually by a state-based approach.
Since OOP is based upon separating the system into ob-
jects and implementing each of the objects independently, it
is intra-object by nature. An intra-object approach for spec-
ification is supported by many languages, and in particulary
by the visual language of Statecharts [16], which was later
adopted as part of the UML standard and is supported by

313

=
kaffJff\

Close

| Caover | Display ‘ |Speaker

¢

17/5/M 12 34

Displa}l State<>0If > |

Figure 2: The play-in method

various tools, such as IBM Rhapsody?. Rhapsody can sim-
ulate statecharts directly, or translate them into, e.g., C,
C++ or Java.

3. METHODOLOGY
3.1 Levels of Abstraction

We refer to abstraction as something that can be viewed
and measured on various levels. Specifically, we use two
kinds of hierarchies. Both refer to abstraction level as some-
thing that moves from the “in the large” to “in the small”,
as Knuth put it (quoted from Hartmanis [24], p. 39). One
hierarchy refers to the level of magnitude, and the other hier-
archy refers to the level of meaning. If we view information
coded by bits as the lower level of abstraction, then the hier-
archy of magnitude can be viewed as referring to the amount
of bits that are encapsulated by (or hidden under) the ab-
straction means of a specific level. For example, a procedure
encapsulates information into one symbol (the procedure’s
identifier), thus it increases the level of abstraction. The
hierarchy of meaning refers to the what vs. the how. When
we refer to the what, we ignore the details of the how, which
are thus located on a lower level of abstraction.

Let us illustrate the use of the hierarchies with a ‘real life’
example. Consider the following software development sce-
nario: i) a user creates a list of needs; ii) a system architect
analyzes the list and creates a superset of groups containing
needs with common characteristics; iii) the architect designs
a high level architecture of the target system. Now, let us
analyze the moves from i to ii, and from ii to iii, in terms of
moving between levels of abstraction. When moving from
i to ii, the architect analyses the user needs, so he/she still
works on the same domain of what the program should do.
In that domain, he/she forms an abstraction of the user
needs, i.e., he/she moves up in the level of magnitude. When
going from ii to iii in order to deal with the (high level design
of the) implementation, he/she remains on the same level of
magnitude, but moves into the domain of the how, which
means a move down in the level of meaning. So i to ii is up,
and ii to iii is down. But can we compare the abstraction
level of i and iii? Our observation is that these activities are
not comparable, because they reside on different hierarchies,
and we do not have a metric for comparing a move in one
hierarchy to a move in the other.

2http://www-01.ibm.com /software/awdtools/rhapsody/

3.2 The Research Setting

The research population was composed of two groups.
The first included nine CS research students who partici-
pated in a course on “Executable Visual Languages for Sys-
tem Development™, given by the fourth-listed author in the
Fall term of 2010-2011 at The Weizmann Institute of Sci-
ence. The course introduced two approaches to reactive
system development: The intra-object based approach of
Statecharts, and the inter-object, scenario-based approach
of LSC. Course assignments included implementing a sys-
tem in both languages. Students’ projects included model-
ing electronic devices, biological systems, etc. The students
were instructed to use the same system for both languages,
but they could implement either the same or different parts
of the system. A report on previous experience of teaching
the course appears in [18].

The second group included nineteen 12th grade high-school
students (age:17-18) majoring in computer science. The stu-
dents participated in a mandatory course that was developed
and executed as a pilot course aimed at teaching scenario-
based programming and reactive system development with
LSC. It was given mainly by the third-listed author. The
course included theoretical and technical lectures, combined
with hands-on experience in the lab. The last few lessons
were devoted to developing final projects in groups of 3-5
students, under the guidance and assistance of the teacher.
The task involved implementing a reactive system of the stu-
dents’ choice. Projects included a memory game (‘Simon’),
an elevator, etc. The students were also subjected to writ-
ten exam, in which they were required to comprehend and
modify LSC programs.

Hereafter we denote the group of graduate students by
GR, and the high-school students by HS.

We note that the setting was not the same for both groups,
as the primary goal of the two experiments was different.
The main difference was that group HS was not exposed to
Statechart, so we could not directly compare the two ap-
proaches in the context of this group. However, since the
experience of this group included two introductory courses
in Java, the students of this group did had some experience
with object-based programming, which is close in nature to
the intra-object approach of Statecharts.

3.3 Research Approach and Data Collection
Tools

This study takes a qualitative approach, in order to de-
velop a deep understanding of how abstraction is used in
scenario-based programming vs. OOP. Data sources in-
cluded post-interviews, projects, and class notes in both
groups, and exam questions in group HS. In some cases we
re-interpret data that we used elsewhere. The main source of
data for the present study were the post-interviews. These
were semi-structured, and took from thirty (HS) to sixty
(GR) minutes. The focus of the interview was the LSC
project, and in group GR also the Statecharts project. The
students were mainly asked to describe the development pro-
cess of their projects and to explain design decisions. In
group GR all the students were interviewed, and in group
HS four representative students only (one per group, except
for one group that did not submit its project).

The analysis was composed of two main steps — defining a
hierarchical model of categories, and mapping the data into
the leaves of the model. The initial categories emerged from
the data and led to a bottom-up development of a partial
model, which was then extended in a more top-down ap-
proach. Below is a schematic representation of the model.

3http:/ /www.wisdom.weizmann.ac.il/ michalk/VisLang2011/

314

The relation between the three high-level categories is ex-
plained in the following sections.

Closeness of mapping
Similarity in structure
Mapping between the problem and the solution
Program comprehension
Adding a new functionality
Using scenarios to define requirements
Implementation first, integration later
Abstract thinking
Working on a high level of abstraction
Working on the level of the ‘what’
Black-boxes and nondeterminism
Abstract data types
Referring to the artifact as a black-box
Nondeterminism
Symbolic elements
Difficulties
Moving between levels of abstraction
Meta-cognitive behavior
Avareness of abstraction levels
Gradual refinement
Separation of concerns

After the model was built, each of its leaves was associated
with an operational definition (for example, one definition
for ‘moving between levels of abstraction’ was ‘referring in
the same sentence to different levels of abstraction’). The
data was then analyzed according to the operational defini-
tions. This was done by the first author, and was reviewed
by the other authors.

The strength of qualitative research lies in its ability to
study complex phenomena in depth. From that, significant
insights about the phenomena can be derived, and these
can guide further, more focused research. The limitations of
qualitative research are its subjective nature, and the fact
that (usually) it is executed in a specific context and relies
on a small number of participants. These limit the gener-
alizability of the results. Using post-factum interviews to
analyze problem solving behavior, as we do, has two known
limitations. First, it refers to the thinking processes in ret-
rospect. Second, the interview itself has an effect on the
interviewee’s behavior. Nevertheless, this approach is ac-
cepted in qualitative research.

4. FINDINGS

In this section, we discuss our findings. We present the
analysis of groups GR and HS together, except for places in
which a different behavior was observed, or places that rely
on analysis that was based on data collected from only one
of the groups.

The findings are arranged according to the model pre-
sented in Subsection 3.3: Subsection 4.1 refers to the high-
level category of closeness of mapping. Subsection 4.2 refers
to the second high-level category, which focuses on how
scenario-based programming affects the way programmers
add a new feature to a program that is being developed.
Subsection 4.3 refers to the third high-level category, ab-
stract thinking, and describes patterns of abstract thinking
that were observed in the behavior of students working with
LSC and Statecharts.

The relation between the three subsections is as follows.
The first two show how the characteristics of scenario-based
programming support a kind of programming that enables
one, cognitive-wise, to execute several programming activi-
ties (such as program comprehension and adding a new func-
tionality) while remaining at a higher level of abstraction.
The third subsection shows that indeed this is associated
with students exhibiting patterns of high-level thinking.

In each subsection we describe the relevant findings, and
exemplify them with a few examples. Due to lack of space,
the current paper does not include the full analysis. Some of
the categories were omitted, and some of the others include
only a subset/summary of the findings.

4.1 Closeness of Mapping

Three aspects of closeness of mapping were found to be
prominent in LSC: (1) similarity in structure, (2) mapping
between the problem and the solution, and (3) program com-
prehension.

4.1.1 Similarity in Structure

A task in the user domain is often captured as a scenario
[21]. Scenario-based programming allows one to capture a
scenario in a single LSC; thus, the structure of the imple-
mentation reflects the structure of the task. Since the logic
of the scenario, which is embodied in the objects and the
relations between them, can be retained, the programmers
do not need to invest a lot of effort in separating this logic
into different modules. One result is that the cognitive ef-
fort is reduced. This is exemplified by the following excerpt.
One of the students described how the scenario-based de-
composition allowed her to capture a certain task in a single
LSC, whereas the object-oriented decomposition forced her
to invest effort in thinking about how to separate the task
into objects (hereafter, students are denoted by the group
prefix, followed by an identifying index):

GR1: Basically, the implementation is pretty much the
same, but there were some things that were much easier
to do in Play-Engine. Things that in Statecharts you
had to divide into several modules, and it was extremely
unnatural. You had to think about how you implement
the scenario with respect to each object, while in LSC
one chart captured it all.

4.1.2 Mapping Between the Problem and the Solu-
tion

Another kind of closeness of mapping is the direct map-
ping between the entities of the task and the entities of the
program. A task is composed of entities and the relations
between them. As described above, the structure of the task
can be retained by the chart that implements it. Retaining
the structure seems to help in understanding the role of the
objects; thus, it facilitates the mapping between the entities
of the code and their counterparts in the task domain. This
is exemplified by the following excerpt. A student was asked
a general question about the relation between the structure
of the requirements and the structure of the charts. In or-
der to demonstrate her answer, she chose one of the LSCs,
and explained what each of its entities does in terms of the
scenario that it implements:

HS1: Here, in the Extract [a name of an LSC], when you
press this it shows the product that you chose [...]. Here
it checks if there is a cup. This is something that the
teacher told us to check for bugs [pointing to other piece
of code] — if there is no cup, don’t pour coffee. When
you press this, it shows what you have picked.

We believe that retaining the structure helps to map be-
tween the problem and the solution. Another factor that
helps in that is the high level of abstraction. We note that
other studies, for example [12], have also underscored var-
ious ways in which these factors support program compre-
hension (which mapping is one of its aspects). One of the
interesting issues that Petre [31] discussed in this context,
and we briefly mention, was the Gestalt effect. According to

315

Gestalt, the way that the human mind understands mean-
ing in a bi-directional process — the details build the whole,
but also get their meaning from it. Projecting this idea onto
our domain, scenario-based programming retains the whole;
thus, it facilitates understanding the meaning of the details.
This is in contrast to OOP, which breaks the whole into parts
in a way that loses the relationship between the elements.

4.1.3 Program Comprehension

Program comprehension is the process by which one un-
derstands the meaning of a program from its representation.
The closer the distance between the level of the representa-
tion and the level of the meaning, the easier the process
ought to be. Thus, comprehensibility is an indication of
closeness of mapping. It can be measured, for example, by
one’s ability to describe what the program does in one’s
own words, and it seems to be an important characteristic
of LSC. Among other things, it was manifested in how easy
it was, even for novice programmers, to understand LSCs
that were written by other students. This is demonstrated
by an excerpt that was taken from a continuation of the
interview from the previous section:

I: [After the student mentioned that the work was di-
vided among the group members] Was it easy for you to
understand the things that X [a teammate] did?

HS1: When I didn’t understand I asked her, but I un-
derstood most of the things. Maybe I asked her once.

Next, the student was asked to point to a chart that her
teammate had prepared. She pointed at the chart she had
explained before (see the previous subsection). Whereas the
latter excerpt shows that the student had a subjective feeling
that she easily understood, namely, the charts written by her
teammate, the former gives an objective indication that she
indeed understood it. Comprehensibility was also something
that the students perceived as a central advantage of LSC:

HS4: [The main advantage of LSC is] that it is much
easier to realize processes of something that causes some-
thing else. [...] If you give me something that is ready, I
can understand what’s happening, so later if you ask me
to write what it does in my own words, I can do it.

To conclude, we believe that comprehensibility is an in-
dication of closeness of mapping, and is supported, among
other things, by the two aspects described above — the simi-
larity in structure and the direct mapping between the prob-
lem and the solution.

4.2 Adding New Functionality

We now examine the process of adding new functional-
ity to a program that is being developed in LSC, and we
compare this to the way a similar process is executed with
Statecharts. In both languages, the process of adding new
functionality is done top-down from the user’s domain to the
program’s domain, and includes two main stages:

1. Defining the new functionality in the task/user domain.
2. Adding the new functionality to the system.

We now examine how each of these stages was executed in
each language.

4.2.1 Using Scenarios to Define Requirements

Stage 1 (defining the new functionality) was executed the
same way in both languages. This means that we did not
find that the language influenced the way the tasks were
defined in the user domain. In both cases, the new func-
tionality was defined as a use case; i.e., a scenario that de-
scribes the interaction between the system and the environ-
ment/user:

GRS: I considered the system and thought what pro-
cesses can occur. The leopard is chasing them, they are
running away... concrete scenarios that can occur, like
I’'m sitting there and watching it happen.

4.2.2 Implementation First, Integration Later

Stage 2 deals with the design and implementation of the
new functionality. The main difference that we observed is
that with LSC the students first implemented the new func-
tionality and only later considered its integration, whereas
with Statecharts it was the other way around: integration
first, implementation later. This is elaborated upon below.

In LSC, the new functionality, described as a scenario, was
added to the system as an LSC. Prior to implementing it, the
students usually did not consider the relationship between
the scenario and the existing code; i.e., they worked on the
scenario without considering its integration. Only after it
was implemented, did they work on its integration with the
existing code. This indicates separation of concerns, though
not necessarily done consciously:

I: And when you worked on these features, did you con-
sider where the new feature synchronizes with them, like
common events and things like that?

GRT: [...] basically I don’t think that we considered
that, we just concentrated on the new feature and how
we should implement it.

This behavior illuminates one way in which the students
exploited the declarative nature of LSC. Since they could
rely on the underlying engine to weave the independent sce-
narios, they could construct their application incrementally
by ‘heaping’ behaviors one on top of the other. With Stat-
echarts, however, we observed a different behavior: First,
the students thought about how the implementation of the
new functionality could be merged into the existing code.
Second, they implemented it. Of course, this behavior is a
byproduct of the nature of the object-oriented paradigm:
The use case, which is captured as one or more scenar-
ios, needs to be divided according to the borderlines of the
objects. Dividing the scenario between the objects means
thinking about the integration, which is a task that requires
planning. The following excerpts illustrate this process, and
show that it can be quite exhaustive.

GR9: Another thing that we noted is that working with
LSC and Play-Engine was convenient, whereas State-
charts required a lot of ‘blackboard work’. We spent
hours in the planning.

Later on in the interview, the student returned to this
point:

I: T don’t understand — was it convenient or not [in Stat-
echarts]?

GR9: Not convenient. It was not convenient, [...] it is
less obvious what is actually happening.

I: When you examine it, or also when you build it?
GR9: When you build it.

I: So what is the result? That you need to spend more
time on the implementation?

GR9: Yes, exactly! In Statecharts, besides the fact that
it was harder because it was the first project, there were
a lot of hours spent using the blackboard. We had four or
five design meetings, and two of them were blackboard
meetings. In LSC, it just flowed. You just take the
keyboard and start working. You see on-the-fly if it’s
working or not. In Statecharts you can’t do anything
without designing it first.

316

One implication is that LSC helps the programmer in sep-
arating two concerns: the implementation of a new function-
ality and its integration. This is further discussed in Section
5

4.3 Abstract Thinking

In this section we refer to two aspects of abstract thinking:
(1) working on a high level of abstraction, and (2) moving
between levels of abstraction. We present findings that ex-
emplify how each aspect was manifested in students’ work
in LSC. When possible, we compare these to findings that
refer to working at this level with Statecharts or other OOP
languages. Owing to space limitations, we omit the analy-
sis of a third aspect, meta-cognitive behavior. Analysis of
this sheds light on how scenario-based programming pro-
motes meta-cognitive behavior with respect to abstraction.
This level of thinking is especially important for transferring
abstraction skills from one domain to another, as noted in
Section 1. We intend to include this analysis in a future
publication.

4.3.1 Working at a High Level of Abstraction

We refer to working at a high level of abstraction with
respect to the two scales: meaning and magnitude. With
respect to the former, we examine patterns of working at
the level of what the program should do. With respect to
the latter, we examine how it is manifested itself when work-
ing with black-boxes, and when using nondeterminism as a
means of abstraction. We conclude by describing some dif-
ficulties that were observed.

Working at the level of ‘what’ — a user- vs. programmer-
oriented perspective.

The highest level of abstraction is that of what the pro-
gram should do, which is basically an external, user view
of the system. In a previous publication [4], we showed
that when working with LSC, students tended to adopt an
external, usability-oriented view of the system they devel-
oped, whereas when working in an object-oriented context
they tended to adopt an internal, implementation-oriented
view. For example, the viewpoint was manifested in stu-
dents’ perception of their role with respect to the system
they developed. With LSC, the programmers tended to per-
ceive themselves as ‘users’, whereas with Statecharts, they
tended to perceive themselves as ‘programmers’.

The analysis conducted for that study was based on group
GR, but it is also supported by later findings from group HS,
which showed a similar pattern with respect to LSC. This is
exemplified by the following excerpt:

I: And when you programmed this game, did you think
like someone who is implementing this game, or like
someone who is using it?

HS4: What is the difference between someone who is im-
plementing it and someone who is using it?

I: Say, a programmer who builds it, or a user who simply
plays with it.

HS4: A wuser, then. [...] I thought like the one who is
playing, and how it would be most convenient for him.

Black-boxes and nondeterminism.

Working with a black-box means working with the inter-
face of a functional unit without dealing with its internal
implementation. Thus, a black box is regarded as high-level
abstraction.

Abstract data types: One kind of black-box is abstract
data type (ADT). Working with ADTs is inherent in the
kind of programming that LSC deals with. The components
of the model are implemented in one language (say, VB or

Java), and are used in LSC as black-boxes. Among other
things, it seems that the fact that the components are im-
plemented in one language and are used in a different one
places a sort of conceptual ‘firewall’ between the two levels.
This is supported by the following. Although most of the
graduate students had the technical knowledge needed to
work at the lower level, none of them chose to do so. In [2],
we argued that the programming language gives program-
mers a strong cue about the level of abstraction in which
they work. Thus, the fact that the black-boxes are defined
in one language and are used in another one might help pro-
grammers distinguish between the two abstraction levels.

In the context of the novices, the advantage of using black-
boxes to teach abstraction was discussed in Section 1. The
fact that in LSC the novices reached a level of expertise that
allowed them to build projects, both supports the black-
box first approach and indicates that LSC offers a teaching
vehicle that is appropriate for novices.

Referring to the artifact as a black-box: With LSC,
we observed a pattern of using the artifact as a black-box
during the development process. The students did not try
to anticipate how the integrated system (the existing code
+ the new scenario) would behave. Instead, they simulated
the system in order to see how it would behave. One of the
experienced programmers described the simulation as a way
to learn new things about the system:

GR&8: [...] It is a kind of debugging that, in the process
you see that unwanted things occur, and then you update
your scenarios accordingly [...]

This indicates that the student did not anticipate some of
the results, but it is still possible that he/she tried to antic-
ipate them but did not succeed in doing so. An indication
that supports our conjecture that the student did not try
to perceive this in advance was noted a little later in the
interview:

GRS8: Things that, at the beginning, when you imple-
ment the scenario, take scenario X for example, you don’t
think about what happens with XYZ [examples of pos-
sible interactions of scenario X with other scenarios, and
a specific example of an interaction that he/she did not
anticipate].

These findings might indicate that the students had a
strong perception of the system as a black-box. Since the
internals of the black-box are not known, it is hard for the
programmer to determine how the new code will be inte-
grated into the existing code. This phenomenon can be also
viewed from a different viewpoint. Figuring out the inte-
gration requires a mental model of the artifact. A detailed
mental model enables one to mentally simulate the artifact
[1]. Thus, not being able to simulate the artifact might indi-
cate an ineffective mental model. Indeed, we observed that
some of the students were not fully capable of simulating
the system they developed. The pattern of using the ar-
tifact as a black-box sheds light on how programmers can
exploit the declarative nature of LCS to do less work them-
selves, delegating hard mental tasks to the execution engine.
One thing that makes this empirical evidence interesting is
that this behavior is optional: LSC also allows one to work
at a lower level. However, the students preferred to work
at a higher level when possible, and used the lower level to
underpin the process (for example, when debugging). We
discuss this further in Section 5.

Nondeterminism: The concepts of nondeterminism (ND)
and abstraction are closely related. ND allows one to ignore
some of the operational details, thus it represents things
more abstractly. For example, adding ND to the model of

317

deterministic finite automaton enables one to describe state
machines that are equally powerful in a more compact and
abstract manner. As a nondeterministic programming lan-
guage, LSC includes various nondeterministic mechanisms
that facilitate abstraction. One example is its partial order
semantics, which allows one to define events without com-
mitting to the order between them. In [3], we examined how
LSC can be used to introduce ND to high-school students.
Whereas that study focused on ND as a concept that stands
on its own merit, here we examined its use from an abstrac-
tion viewpoint. Owing to space limitations, we omit more
details.

Difficulties.

Some of the difficulties involved in working at a high level
of abstraction are related to self-regulation and control. One
needs to convince oneself that it is permissible to work at this
level, and that one can ignore the irrelevant details, and not
be bothered by them. In [2] we studied how previous pro-
gramming experience affected the learning of new program-
ming concepts. In the context of abstraction, we observed
in some students behavioral patterns that we thought were
intended to reduce the perceived abstraction level of LSC
in order to deal with cognitive dissonance. In some cases,
this dissonance even led to a negative attitude towards the
high-level abstraction. Indeed, in [2] we conjectured that
programmers tend to develop some perception of what is
the ‘right abstraction level’, which is based on their early
programming experience. The novices group was not in-
cluded in that study, but the fact that in this group we did
not observe such attitudes towards high-level abstraction re-
inforces this conjecture.

4.3.2 Moving Between Levels of Abstraction

In scenario-based programming.

In LSC, it seemed that it was relatively easy for the stu-
dents to move in both hierarchies (meaning and magnitude).
Among other things, this was operationalized as combining
entities from different levels of abstraction in the same sen-
tence. This is exemplified by the following excerpt, in which
one of the graduate students explained the biological ratio-
nale behind one of the charts:

GR6: In MusGluUptake [the name of an LSC], on every
GluUptake — Muscle, Liver, Fat [GluUptake is a general
behavior that is implemented by three different scenar-
ios for muscles, liver, and fat]; it sends a message that it
updates the Glucose level. What happens is that each of
the organs updates the glucose level, because of the hor-
mone level, etc. Actually it takes glucose, breaks down
glycogen to glucose, stores the glucose, and then when
it takes glucose from the blood, it reduces the glucose
level. This happens with three organs.

Analyzing this through the scale of meaning shows that
the student moves from the problem domain (given as the
context of the question) to the solution domain (referring
to the charts implementing this behavior), and then back to
the problem domain (referring to the way that the organs
update the glucose level). Analyzing this through the scale
of magnitude can be done in both domains. In the solution
domain, the student starts with a high-level description of
the general behavior (GluUptake), then descends in the level
of magnitude to explain how this behavior is implemented in
three different places (muscle, liver, and fat), and then de-
scends further to describe more specific details of how this
is achieved. In the problem domain, the student starts with
the common behavior of the organs (“each of the organs...”),

then goes down to describe the specific details (“Actually it
takes Glucose...”), and then makes a generalization (“This
happens with three organs”), which is ascending in the ab-
straction level

In OOP.

In OOP, moving between levels of meaning seems to be
more difficult. For example, a graduate student who is a
very experienced programmer described how she ‘forgets’
about the user scenario when working according to the con-
ventional OOP methodology, which is going from use cases
to objects.

I: So, you took some behavior, and modeled it? (refer-
ring to the work in LSC)

GR5: Yes.

I: And do you work the same way with object-oriented
[programming languages]?

GRS5: No, only when I deal with use-cases |[...].

I: So, you think of the use-cases and then transform them
into objects?

GR5: Yes, and then when they become objects, I stop
thinking about the scenarios. Maybe that’s the prob-
lem...

Analyzing this through the scale of meaning shows that
the student is moving from the problem domain to the solu-
tion domain, but that it is hard for her to return. We believe
that this difficulty stems from the fact that OOP languages
provide a less close mapping between the user’s task domain
and the programming entities. This is manifested, among
other things, in the way that the task is divided between
the objects.

Before we deal with the issue of moving between levels
of magnitude in OOP, let us first examine the structure of
object-oriented programs, which tends to be very layered.
This is true for data — the idea behind OOP is to encap-
sulate everything inside objects, and this is also true for
control — it is considered a good OOP habit to use small
methods that delegate the ‘real work’ to another object.
To quote Adele Goldberg, “In Smalltalk, everything hap-
pens somewhere else.” (This was quoted by Nierstrasz [29],
who referred to it as a general characteristic of OOP lan-
guages). The result is that tracing the flow of a ‘well-written’
object-oriented program requires going back and forth be-
tween methods and objects, meaning that the nature of OOP
requires the programmer to constantly move between lev-
els of abstraction. This can be very confusing, even for a
programmer with several years of experience, like the one
quoted below:

GR9: In Statecharts things have a certain hierarchy, they
don’t work together, it’s like a Matryoshka doll. The hi-
erarchy makes it difficult to build the scenario; you be-
come confused. It’s like something is happening, then it
goes to another place, to do something else... You see,
in Statecharts the ‘storing’ [a feature of the particular
system the student was working on] is built from several
boxes, there is a box representing each mode, and the
storing moves them from here to there.

I: T didn’t understand. Was it convenient or not [in Stat-
echarts]?

GR9: It was not convenient. [...] Also, when you exam-
ine it, it is less clear what is actually happening.

Nierstrasz referred to this as the “Lost in Space syndrome”
of OOP [29]. Although some programmers feel very comfort-
able with OOP languages, for others, especially novices, the
need to switch between many levels of abstraction might be
too much.

318

S. DISCUSSION

This section is organized as follows. First, we discuss how
scenario-based programming reduces the cognitive load in-
volved in adding new functionality to an existing program.
Second, we discuss how this, together with the closeness of
mapping, supports programming with a less detailed mental
model. Third, we show how the reduced cognitive load, the
closeness of mapping, and the less detailed mental model,
support working at a high level of abstraction, and the de-
velopment of abstract thinking. Fourth, we discuss some
possible implications of this observation to programming ac-
tivities that require more concrete, less abstract thinking,
such as debugging.

5.1 Reducing the Cognitive Load

5.1.1 Separation of Concerns

Scenario-based programming helps in making a clear sep-
aration between the implementation of the new functional-
ity and its integration. As shown in Subsection 4.2.2, LSC
encourages programmers to adopt a programming pattern
in which they first deal with implementing the new func-
tionality, and only later, and separately, they consider its
integration.

In contrast, OOP languages seem to blur this separation.
The literature and our findings suggest that this approach
encourages programmers to think about the new function-
ality and its integration simultaneously. Since the two con-
cerns are dealt with together, the cognitive load is conse-
quently increased.

5.1.2 Simple First, Complex Later

Scenario-based programming encourages ordering the tasks
by increasing levels of complexity: First the implementation
of a new scenario, which is a local activity, then its integra-
tion, which is a broader activity that requires one to con-
sider the relationship between various modules. OOP does
the opposite. One is first required to consider the relation-
ship between the new functionality and the existing code in
order to design the solution, and only then can the more
local task of implementing the behavior of each object be
done.

5.1.3 Facilitating the Integration

In Subsection 4.3.1 we described the following pattern. In
order to learn how an integrated program behaves, the stu-
dents executed it and referred to the whole system as black
box, instead of mentally simulating it. This means that the
students delegated the integration task to the machine. It is
somewhat similar to the difference between computing the
result of a formula, and delegating the computation to a
calculator. It is reasonable to assume that this behavior is
cognitively easier than computing the integration, and the
fact that the students chose it (probably subconsciously) is
in itself evidence supporting that assumption.

5.2 Working with a Simpler Mental Model

In Subsection 4.3.1 we showed that when working with
LSC, students tended to view the system as black box. We
related this to findings showing that with LSC the students
held a less detailed, more abstract mental model of the sys-
tem. This relation is bi-directional. Not having a sufficient
mental model of the artifact can lead to viewing it as black
box. In contrast, when the development process can be ac-
complished with a less detailed mental model, there is no in-
centive to develop such a model (which does not mean that
this is a conscious decision). We claim that scenario-based
programming supports such a development process. The
separation of concerns allows concentrating on the new func-

tionality. The closeness of mapping allows it to be expressed
in the language in such a way that the structure of the task
is retained and one is not forced to break it up according
to the structure of the solution (as in OOP). Finally, the
incremental nature allows one to simulate the system with
the new functionality without being concerned about how
it is integrated into the previous code. We note that this
analysis of the way scenario-based programming supports
programming with a less detailed mental model might be
applicable to other declarative programming languages that
support incremental and high-level programming. However,
some studies underscored the role of a clear, accessible op-
erational model in the learning process [30, 36]. One way
of resolving this apparent contradiction is by building the
declarative language in a way that gives flexibility to work
at both levels — the level of the declaration and the level of
the execution.

5.3 Implications to Abstract Thinking
5.3.1 Abstract Thinking Becomes Easier

Based on the arguments discussed earlier, we contend that

LSC and scenario-based programming facilitate abstract think-

ing and thus foster it. Since the programmer can work with
a less detailed mental model, working at a high-level of ab-
straction becomes easier. The closeness of mapping between
the problem domain and the program domain helps one
move between the two representations — the level of the prob-
lem and the level of the program, which are the two main
levels of abstraction. This raises a delicate issue: Close-
ness of mapping can lead programmers (especially novices)
to confuse human discourse with formal discourse. Such
confusion was reported with Prolog [36], and among other
things this was related to the fact that Prolog uses terms
that are taken from a natural language, which can blur the
distinction between the two. With LSC, we did not note
such confusion.

5.3.2 Scaffolding

No more, no less.

In Subsection 4.3.1 we presented some ways by which
LSC and scenario-based programming allow programmers to
execute several programming activities without descending
to lower levels of abstraction. Among these, we mentioned
the use of nondeterminism to abstract away ordering issues.
This is in contrast with the deterministic nature of conven-
tional languages, which is counter-abstraction, because it
sometimes requires programmers to add unnecessary details
(such as order), thus forcing them to reduce the abstraction
lower than necessary.

But there is also the other side of this, which is ‘too much’
abstraction. Since OOP languages are “abstraction-hungry”,
the design in such languages usually starts with the class hi-
erarchy. When teaching OOP, students are encouraged to
design upfront a ‘modular’ hierarchy that will support future
extensions. Since such extensions are not fully known in ad-
vance, and changing the model afterwards can be difficult,
the advice is to be as abstract as possible, for example, by us-
ing abstract types. This can often lead to ‘overkill’, and can
be exhausting, especially for novices. (Indeed, one of the mo-
tivations behind Agile Programming is that it provides a de-
velopment methodology that avoids such over-engineering.)
Thus, OOP languages might encourage programmers to add
unnecessary levels of abstraction, which increases the cogni-
tive load in two ways: There are more levels with which to
work, and there are more levels with which to navigate.

Scenario-based programming in LSC encourages program-
mers to adopt a different mode of work. Abstraction is done

319

more on a ‘need to’ basis. As a result, programmers tend to
create abstractions that are not higher or lower than neces-
sary. If we examine the higher level of abstraction, since the
language is abstraction-tolerant, the programmers are not
forced to construct a-priori abstractions that later may be
found to be higher than necessary. If we examine the lower
level of abstraction with respect to conventional languages,
then there are several mechanisms that obviate the need to
introduce unnecessary details.

Requiring vs. developing abstract thinking.

OOP does not seem to support the development of ab-
stract thinking. It requires abstract thinking. OOP lan-
guages are abstraction-hungry, so one must plan the ab-
stractions in advance, top-down, before the actual goals
can be attempted [12]. Furthermore, it is not so easy to
leverage the abstraction level of object-oriented programs
gradually, since this might require massive refactoring. This
means that when beginning to work with OOP languages,
one should already possess good abstraction skills. LSC is
abstraction-tolerant. One can start working with it as is,
but it also accepts new abstractions easily. Also, owing
to the closeness of mapping and to the ‘no more/no less’
effect discussed above, there is less distance between the
lowest and the highest levels of abstraction. Thus, there
are less levels that the programmer is required to work in
and move between. The bottom line is that scenario-based
programming requires less a-priori abstraction skills, and en-
ables developing them on-the-fly. From a scaffolding point of
view, this means that LSC and scenario-based programming
can serve as a good tool for developing abstract thinking.
This result might also apply to the behavioral programming
approach that generalizes scenario-based programming (see
Section 2.1.1), which we have implemented in more conven-
tional languages, such as Java, C++ and Erlang, but this
requires further study.

5.4 Mental Models and Debugging

Debugging involves comparing the program’s actual be-
havior with the programmer’s perception of what it should
do. According to Adelson and Soloway [1], this process re-
lies on simulation of the programmer’s mental model. In
previous sections we claimed that in languages that require
a detailed mental model, the process of adding new function-
ality is more cognitively demanding. Thus, there might be
a trade-off between the cognitive effort required when build-
ing the system and that required when debugging it: In
languages that reduce the cognitive load involved in build-
ing the system by leveraging programming to a higher level,
debugging might be more challenging. However, this is true
for conventional debugging approaches that focus on finding
the bug and fixing it in place. Scenario-based programming
includes the concept of ‘forbidden scenarios’, which are sce-
narios that the system is not allowed to execute. Among
other options, this can be used for non-intrusive repair of
various kinds of bugs by forbidding the scenarios that lead
to them, and this can be done without going ‘under the
hood’ (for more details see [19, 21]).

6. SUMMARY AND CONCLUSIONS

In this study we investigated the relationship between the
programming language (and the paradigm that underlies
it) and abstract thinking. The findings indicate that when
working in a scenario-based language, programmers exhibit
a higher level of thinking regarding abstraction. This can be
explained by other findings that show how programmers use
the declarative, incremental nature of scenario-based pro-
gramming in such a way that it reduces the cognitive load.

We believe that these results are applicable mainly in
two domains. In the educational domain, they suggest that
scenario-based languages like LSC can be used to develop
abstract thinking. The feasibility of this is based on the re-
sults of a pilot semestrial course on LSC and scenario-based
programming that was given to 12th grade high-school stu-
dents, and on broader experience with teaching graduate
students.

From a broader perspective, the results shed light on the
cognitive aspects of using declarative, scenario-based, and
object-oriented languages. This can be of interest for those
who develop programming tools, and for those who need to
choose an implementation language according to the char-
acteristics of the developers and the task.

7.
1]

[11]

[12]

[13]

[14]

[15]

[16]

REFERENCES

B. Adelson and E. Soloway. The Role of Domain
Expenence in Software Design. IEEE Trans. Softw.
Eng., 11(11):1351-1360, Nov. 1985.

G. Alexandron, M. Armoni, M. Gordon, and D. Harel.
The effect of previous programming experience on the
learning of scenario-based programming. Koli Calling
’12, pages 151-159. ACM, 2012.

G. Alexandron, M. Armoni, M. Gordon, and D. Harel.
On Teaching Programming with Nondeterminism.
WiPSCE ’13. ACM, 2013.

G. Alexandron, M. Armoni, and D. Harel.
Programming with the User in Mind. The 23rd
Workshop of the Psychology of Programming Interest
Group (PPIG), 2011.

M. Armoni. On Teaching Abstraction in CS to
Novices. Journal of Computers in Mathematics and
Science Teaching, 32(3):265-284, July 2013.

J. BRUNER. The Process of Education, Revised
Edition. A Harvard paperback. Harvard University
Press, 1977.

W. Damm and D. Harel. LSCs: Breathing Life into
Message Sequence Charts. Form. Methods Syst. Des.,
19(1):45-80, 2001.

P. J. Denning, D. E. Comer, D. Gries, M. C. Mulder,
A. Tucker, A. J. Turner, and P. R. Young. Computing
as a discipline. Commun. ACM, 32(1):9-23, Jan. 1989.
E. W. Dijkstra. The humble programmer. Commun.
ACM, 15(10):859-866, Oct. 1972.

E. W. Dijkstra. On the role of scientific thought. In
Selected Writings on Computing: A Personal
Perspective, pages 60-66. Springer-Verlag, 1982.

T. R. G. Green. Cognitive dimensions of notations. In
People and Computers V, pages 443-460. University
Press, 1989.

T. R. G. Green and M. Petre. Usability Analysis of
Visual Programming Environments: a ‘cognitive
dimensions’ framework. JOURNAL OF VISUAL
LANGUAGES AND COMPUTING, 7:131-174, 1996.
B. Haberman. High-school students’ attitudes
regarding procedural abstraction. Education and
Information Technologies, 9(2):131-145, June 2004.

B. Haberman and Y. B.-D. Kolikant. Activating
“black boxes” instead of opening “zippers” - a method
of teaching novices basic CS concepts. SIGCSE Bull.,
33(3):41-44, June 2001.

B. Haberman and Z. Scherz. Evolving boxes as flexible
tools for teaching high-school students declarative and
procedural aspects of logic programming. ISSEP ’05,
pages 156-165. Springer-Verlag, 2005.

D. Harel. Statecharts: A visual formalism for complex
systems. Sci. Comput. Program., 8(3):231-274, 1987.

320

[17]
[18]

[19]

[20]

21]

22]

[23]

[24]

[25]

[26]
[27]

28]

[29]

[30]

[31]

32]

33]

[34]

[35]

[36]

[37]

[38]

[39]

D. Harel. From Play-In Scenarios to Code: An
Achievable Dream. Computer, 34(1):53-60, 2001.

D. Harel and M. Gordon-Kiwkowitz. On Teaching
Visual Formalisms. IEEE Softw., 26:87-95, May 2009.
D. Harel, G. Katz, A. Marron, and G. Weiss.
Non-intrusive repair of reactive programs. ICECCS
12, pages 3-12. IEEE Computer Society, 2012.

D. Harel, S. Maoz, S. Szekely, and D. Barkan. PlayGo:
Towards a Comprehensive Tool for Scenario Based
Programming. ASE ’10, pages 359-360. ACM, 2010.
D. Harel and R. Marelly. Come, Let’s Play:
Scenario-Based Programming Using LSC’s and the
Play-Engine. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2003.

D. Harel and R. Marelly. Specifying and executing
behavioral requirements: The play-in/play-out
approach. Software and Systems Modeling (SoSyM),
2(2):82-107, 2003.

D. Harel, A. Marron, and G. Weiss. Behavioral
Programming. Commun. ACM, 55(7):90-100, July
2012.

J. Hartmanis. Turing award lecture on computational
complexity and the nature of computer science.
Commun. ACM, 37(10):37-43, Oct. 1994.

O. Hazzan and J. Kramer. Abstraction in Computer
Science & Software Engineering: A Pedagogical
Perspective. System Design Frontier Exclusive
Frontier Coverage on System Designs, 4(1):6-14, 2007.
IEEE/ACM. Computer Science Curricula 2013.
IEEE/ACM. Software Engineering 2004 — Curriculum
Guidelines for Undergraduate Degree Programs in
Software Engineering, 2004.

H. Koppelman and B. van Dijk. Teaching abstraction
in introductory courses. ITiCSE 10, pages 174-178,
2010.

O. Nierstrasz. Ten Things I Hate About
Object-Oriented Programming, 2010. A Banquet
speech given at ECOOP.

M. Petre. Shifts in Reasoning about Software and
Hardware Systems: Must Operational Models
Underpin Declarative Ones? The 3rd Workshop of the
Psychology of Programming Interest Group (PPIG),
1991.

M. Petre. Why looking isn’t always seeing: readership
skills and graphical programming. Commun. ACM,
38(6):33-44, June 1995.

M. Petre and R. L. Winder. On languages, models and
programming styles. Comput. J., 33(2):173-180, 1990.
Z. Scherz and B. Haberman. Logic programming
based curriculum for high school students: the use of
abstract data types. SIGCSE Bull., 27(1):331-335,
1995.

P. A. Sivilotti and M. Lang. Interfaces first (and
foremost) with java. SIGCSE ’10, pages 515-519.
ACM, 2010.

P. Sprague and C. Schahczenski. Abstraction the key
to CS1. J. Comput. Sci. Coll., 17(3):211-218, 2002.
J. Taylor. Analysing novices analysing Prolog: what
stories do novices tell themselves about Prolog?
Instructional Science, 19(4-5):283-309, 1990.

L. Vygotsky and M. Cole. Mind in Society: The
Development of Higher Psychological Processes.
Harvard University Press, 1978.

J. S. Warford. Blackbox: a new object-oriented
framework for csl/cs2. SIGCSE Bull., 31(1), 1999.

J. M. Wing. Computational thinking. Commun. ACM,
49(3):33-35, Mar. 2006.

