Toward Scenario-Based Algorithmics

David Harel and Assaf Marron

Weizmann Institute of Science, Rehovot, Israel

Abstract. We propose an alternative approach to the classical way of specifying
algorithms, inspired by the scenario-based paradigm for reactive systems. Rather
than being presented as a carefully ordered sequence of instructions, an algorithm
is formalized as an unordered collection of rules or scenarios, specifying actions
that must or must not be taken when certain conditions hold or after certain se-
quences of events. A successful implementation of such a methodology, which
can be aligned with a natural language specification, can have many advantages,
including naturalness, comprehensibility and incrementality. We believe that our
approach can also accelerate the acquisition of problem-solving and analytical
skills by children and students. This is because by writing (and reading) computer
programs written in this way, people would have access to a broad base of instruc-
tions on how to solve problems, stated and organized in a way that can be readily
understood and used in practice also by humans. We describe the principles of the
approach, scenario-based algorithmics (SBA), provide some examples, and com-
pare it to other techniques for algorithm specification and to human algorithmic
or computational thinking.

1 Introduction

Ask a student, instructor or researcher of computer science, about a particular algorithm
or protocol, be it bubble-sort, quicksort, depth-first search of a tree structure, or two-
phase commit, and you are likely to get in response a short list of basic principles —
the key points that distinguish this algorithm from an arbitrary or brute force or random
approach to the problem. Similarly, text books often precede or summarize the actual
details of such algorithms with such a list of principles. The algorithm itself is most often
described in some sort of code—either pseudo-code or in some particular programming
language, like C, or C++—providing the detailed step-by-step instructions for carrying
out the prescribed process. While these instructions can be readily followed (and exe-
cuted) by a human or a computer, the basic principles of the algorithm are often only
implicit, reflected in the names of various methods and subroutines, or in the physical
structure of the code. In fact, most often they appear explicitly only in text comments
that explain the otherwise-arcane lines of code.

In this paper we propose an approach, termed scenario-based algorithm specifica-
tion or scenario-based algorithmics (SBA), for specifying algorithms. Rather than de-
scribing the algorithm in a form that explicitly prescribes a carefully ordered sequence
of step-by-step instructions, we propose to create a collection of often very brief self-
standing rules (or, more precisely, scenarios), which specify actions that must or must
not be taken when certain conditions hold and/or when certain sequences of events or

other actions take place. Humans and computers would execute these instructions by
repeatedly considering all rules, and progressing when one of these, or several of them,
instructed them to do so.

The advantages of this approach include ease of understanding by humans of the
actual steps that an algorithm would call fo allowance of runtime recognition and
tackling of conditions that were not in the specification, and amenability to incremental
enhancement of the specification itself for accommodating new or refined requirements.
In addition, and most importantly, the approach provides a unique opportunity to intro-
duce human-understandable idioms for algorithmic self-reflection and meta operations,
in which the scenarios and the instructions therein become part of the data visible to the
algorithm.

As SBA is intended to align with how people often describe their thinking about
problems and solutions, causality, planning, and design, we argue that a successful im-
plementation and adoption of the method can have a profound effect on many facets of
education in science and in human thinking skills in general.

The remainder of the paper is structured as follows. In Section 2} we present the re-
search background that inspired the paper, and in Section 3] we provide more details on
SBA and how it works. Section] presents technical and methodological considerations
relative to the SBA approach to specification. In Section[5] we discuss the software engi-
neering benefits we anticipate stemming from a successful implementation and adoption
of SBA. In Section [6] we elaborate on why we believe that adopting SBA can contribute
to education and general skill acquisition. In Section[7| we propose research and devel-
opment actions that can contribute to broad usage of SBA and to empirical confirmation
of the expected benefits, followed by a variety of research areas that can further serve to
expand SBA concepts and their impact.

2 Rationale

Regardless of whether an algorithm is specified in code, pseudo code or natural lan-
guage, working with such specifications is hard. First, points that are critical to under-
standing and implementing the algorithm may be hidden. These can include specific
innovative steps (as distinguished from mundane bookkeeping steps), or complex, sen-
sitive computations, where every typo in the code or error in reading could have far-
reaching consequences. Furthermore, the essence of simulation results and run traces
that are meant to highlight such points may be cluttered by numerous distracting and less
interesting steps. Classical code would also be sensitive to hidden assumptions, such as
certain properties of a data structure or of the data stored in it, and it may be difficult to
identify all places in the code that should be changed when such an assumption is mod-
ified or when new requirements are introduced. In addition, much time may be spent on

! In [18]] Juraj Hromkovi¢, quotes Max Planck: “Science is an innerly compact entity. Its division
into different subject areas is conditioned not only by the essence of the matter but, first and
Joremost, by the limited capability of human beings in the process of getting insight.”. To this
profound observation by a giant, may we modestly add that perhaps such a division might also
be helpful to humans’ effort to understand ever-more-refined concepts and entities, algorithms
included.

understanding the reason for including a line of code that is of little importance, merely
handling some highly atypical or even obsolete case.

Granted, several common software development practices have been devised to al-
leviate some of these concerns. They include encapsulating and abstracting certain sets
of steps in designated methods, giving meaningful names to program entities, writing
comments in the code and in external documentation and presentations, and running se-
lective or abstracted simulations and traces. However, the above issues in understanding
and maintaining algorithms still persist.

Over the last three decades much research in computer science has been dedicated
to methodologies for dealing with reactive systems [|15]]. A particular question is how to
best describe the full behavior of a system that has to constantly react to stimuli and
inputs from its environment. The meaning of the adjective best in this context usu-
ally reflects some balance of expressive power, intuitiveness to humans, executability,
compositionality, and amenability to (formal) analysis. Of particular relevance to the
present paper is the introduction of Statecharts 9] and of scenario-based programming
(SBP) [4}/10,{14}/17]. This paper concentrates mainly on the latter, though in Section
there is a comment about the potential of the orthogonality feature of Statecharts for the
present context.

2.1 Scenario-Based Specifications

In this section we provide a brief introduction to the development paradigm of scenario-
based specification (or modeling, or programming, all of which we abbreviate as SBP).
We focus on the principles and current research in SBP, emphasizing the capabilities
and promise of the approach, towards our quest of using it in the context of algorithm
specification. For more background and details we refer the reader to [4}7},8L/10}/ 12,14}
17,120] and references therein.

SBP was introduced in [4}|14]], using the live sequence charts (LSC) formalism. The
approach aims to streamline and simplify the development of executable models of re-
active systems, by shifting the focus from describing individual objects and components
into describing behaviors of the overall system. The basic building block in this approach
is the scenario: an artifact that describes a single behavior of the system, possibly involv-
ing multiple different components thereof. Scenarios are multi-modal: they can describe
desirable behaviors of the system or undesirable ones, and combinations thereof. A set
of user-defined scenarios can then be interwoven and executed, yielding cohesive, po-
tentially complex, system behavior.

In SBP, a specification, a model, or a program, is a set of scenarios, and an execution
is a sequence of points in time, in which all the scenarios synchronize. At every such
behavioral-synchronization point (abbreviated bSync) each scenario pauses and declares
events that it requests and events that it blocks. Intuitively, these two sets encode desir-
able system behaviors (the requested events) and undesirable ones (the blocked events).
Scenarios can also declare events that they passively wait-for — stating that they wish to
be notified if and when these events occur. The scenarios do not communicate their event
declarations directly to each other; rather, all event declarations are collected by a cen-
tral event selection mechanism (ESM). Then, during execution, at each synchronization

point the ESM selects for execution (triggers) an event that is requested by some sce-
nario and is not blocked by any scenario. Every scenario that has a pending request for,
or is waiting for, the triggered event is then informed, and can update its internal state,
proceeding to its next synchronization point. Fig. [T (borrowed from [13]]) demonstrates
a simple behavioral model.

Sensor and actuator scenarios tie events to physical interfaces. Sensor scenarios can
access the physical environment or other components of the software system through
specialized devices and the software interfaces that the respective devices or components
offer. They report the information to the SBP system by translating it into requested be-
havioral events. Actuator scenarios wait for the SBP system to trigger behavioral events
that signify desired changes to the environment or to other components, and call the
respective interfaces to bring about these changes.

ApDHOTWATER ApDCOLDWATER STABILITY Event Lo
wait for | | wait for |
‘WaTterLow ‘WaTerLow wait for o
AppHor ‘WaTERLowW
request request while blocking AppHor
| AppHot | | AppCoLp | AppCoLb AppCoLp
AppHot
| request | | request | wait for AppCoLp
AppHot AppCoLp AppCoLp AppHot
¥ ¥ while blocking AppCoLp
request request AppHor e
| AppHor | AppCoLb

Flg 1: Incrementally modeling a controller for the water level in a tank. The tank has hot and cold water sources, and either
one may be turned on and off in order to control the temperature and quantity of water in the tank. Each scenario is given here
as a transition system, where the nodes represent synchronization points. The labels on the edges are omitted here as they
can be readily inferred from the context of requested or waited-for events, The scenario AbDHoTWATER repeatedly waits for
WaterLow events and requests three times the event AbpHor. Scenario AbbCoLDWATER performs a similar action with the
event AbpCoLb, capturing a separate requirement, which was introduced when adding three (hot) water quantities for every
sensor reading proved to be insufficient. When a model with scenarios AbDHoTWATER and ADDCOLDWATER is executed,
the three AppHort events and three AbpCoLp events may be triggered in any order. When a new requirement is introduced,
to the effect that the water temperature should be kept stable, the scenario StaBiLITY is added, enforcing the interleaving of
AppHort and AppCoLb events by alternately blocking AbpHot and AbpCoLp events. The execution trace of the resulting
enriched model is depicted in the event log.

Several facets and generalizations of scenario-based modeling and programming
(also termed behavioral programming) have been discussed and handled in different
ways. Scenarios can be specified and represented graphically, as in the original LSC
approach (see, e.g., Fig[2), in natural language (see, e.g., Fig. [3)), by two-dimensional
blocks that are dragged-and-dropped on the programming canvas (see, e.g., Fig. [, in
specially-designed textual languages (see, e.g.,[) or in standard programming languages
like Java or C++ (see Fig.[7).

Scenario-based models can be executed by naive play-out, by smart playout with
model-checking based lookahead, or via controller synthesis. The modeling process can
be augmented by a variety of automated verification, synthesis and repair tools. How-
ever, from this and other research it seems that the basic principles at the core of the
approach, shared by all flavors, are naturalness and incrementality — in the sense that
scenario-based modeling is easy to learn and understand, and that it facilitates the in-
cremental development of complex models [2,|6]]. These properties stem from the fact

) i =
LSC1: when Bob enters the room, the = LSC2: When Bob exits the room, the =
light1 state changes to on lightl state changes to off
Bob room light1 Bob oM light1
n - v n & v
. .‘.‘I'r...hl.r... - sene ."].:t..- -
W1, 1. DN B SN ORI |, - . [N o .
setState{"on") setState("off
- g

Fig. 2: LSC scenarios specifying automated light behavior in a smart home. The function of LSC1 is described by the
comment “When Bob enters the room lightl state changes to on”. This scenario waits for the event of of Bob entering the
room, and then causes the triggering of the event of the light (in this case - the one named light1) turning on. The semantics
of the LSC implies that time flows from top to bottom; participating objects are represented by vertical ‘lifelines’; arrows
represent events or messages and are annotated as monitored or executed, mandatory or optional, and desired or forbidden.

that modeling and programming are carried out similarly to the way humans explain
complex phenomena to each other, detailing the various steps, rules and behaviors one
at a time.

“When Bob enters the room lightl state changes to on.”

Fig. 3: A scenario specified completely in natural language. The text shown is after interactive disambiguation for specific
object identification and for resolving, if needed, of whether a particular word refers to an object, a method, a property, a
property value, etc. This natural-language specification is then translated automatically into an LSC (shown in Fig. E} to be
executed in the LSC development environment PlayGo.

Years ago, as part of the work in our group on SBP for reactive systems, Nimrod
Talmon raised the question of whether SBP techniques could be applied to other forms
of processing, such as database management or classical operations on data structures.
This of course immediately points to the issue at the center of this paper — can the
specification and development of general algorithms benefit from the developments in
approaches to specification, execution and analysis of reactive systems. In this paper,
we argue that although the algorithm itself need not be reactive in the sense of being
heavily characterized by interactions with its environment, the answer is a resounding
yes, partly due to our observation that the interaction of the algorithm’s control with its
data structures has the main characteristics of classical reactivity, with the data structures
‘playing the role’ of the environment. In addition, we may draw the following analogies:

1. The computational problem that an algorithm has to solve, and/or properties of its
results align well with the concept of requirements (as provided by users, customers,
system engineers and other stakeholders) in system specifications.

RocketAtEastWall
' repeat ..
do B-Sync: request=
wait-for= RocketTouchedEastWaII-

block=

|
b-Sync: request=

wait-for= RocketAwayFromEast\Wall '

block= - RocketEast |

Fig. 4: A scenario in the BP-for-Blockly language. This is the code for the behavior of a wall in a 3D game, in which the
user attempts to land a rocket using mouse and keyboard commands. This scenario waits for the rocket to reach the wall, and
then blocks further movement in the same direction until the rocket moves back, away from the wall. In the Blockly language
(from Google), commands are organized as puzzle pieces that fit together to form program modules. In BP for Blockly each
scenario is a separate set of commands, as shown here.

assumption scenario DriverObeysStopSignal {
car->dashboard.showStop ()
car—->dashboard. showGo ()
} constraints |
forbidden env -> car.carMovesToNextArea ()
forbidden env -> car.carMovesToNextAreaOnOvertakingLane ()

]

Fig. 5: A scenario specified in Scenario Modeling Language. The context is that of automated control of cars moving in
a two-lane road, and it indicates the fact (in this case, an environment assumption rather than a system behavior), that the
human driver obeys the signals of the car’s dashboard and that once the dashboard displays a STOP command (which triggers
this scenario in the first place), the car will not move forward and will not move to the next lane either).

2. Descriptive texts that commonly accompany algorithms, which cover design prin-
ciples, operational highlights, and delicate or innovative points, also align well both
with the concept of requirement specification and with detailed operational scenar-
ios of reactive systems.

3. The incremental development and refinement of an algorithm, and the reprogram-
ming of established algorithms, which are often narrowly scoped and are done ‘one
step at a time’, also suggest a behavioral description of those constituent steps:
“when condition C1 holds, and/or after actions A1, A2 and A3 take place, the algo-
rithm must always carry out (also) action A4”.

Thus, if indeed many aspects of traditional algorithm specification can be imple-
mented using the methods that apply to reactive systems, one would gain the benefits
of the latter methods such as intuitiveness and ease of understanding by humans, direct
executability, and compositional formal analyzability.

8.2 Some Simple Sorting Schemes

Perhaps the simplest sorting method one can devise is an algorithm called
"bubblesort.” The basic idea behind bubblesort is to imagine that the records fo be
sorted are kept in an array held vertically. The records with low key values are
"light” and bubble up to the top. We make repeated passes over the array, from
bottom to top. As we go. if two adjacent elements are out of order, that is, if the
"lighter” one is below, we reverse them. The effect of this operation 1s that on the
first pass the "lightest” record, that 1s, the record with the lowest key value, rises all
the way to the top. On the second pass, the second lowest key rises to the second
position, and so on, We need not, on pass two, try to bubble up to position one,
because we know the lowest key already resides there. In general, pass 7 need not try
to bubble up past position /. We sketch the algorithm in Fig 8.1, assuming 4 15 an
array[1..n] of recordtype, and » is the number of records. We assume here, and
throughout the chapter, that one field called key holds the key value for each record.

{1y fori=1ron-1do

(2) for j == n downrto i+1 do
(3) if A[j).fey < A[j-1] Fey
then

“@ swap(A[]. AU-1])

Fig. 8.1. The bubblesort algorithm_

Fig. 6: Textbook presentation of the bubble-sort algorithm: introductory text and code, taken from Aho, Hopcroft and
Ullman (]l

2.2 A Note on Predictability and Executability

While SBP claims to be usable for creating executable code for the final operational sys-
tem, at this point we do not (yet) claim that playing out a scenario-based specification
of a classical algorithm would be an efficient way to execute the algorithm. Instead, we
claim that it will provide a highly understandable way to specify an algorithm and to fol-
low its runs. In particular, playing out the specification with particular inputs, subject to
SBP principles, can yield executable or predictable step-by-step instructions equivalent
to those provided, say, by pseudo-code. We realize that this paragraph is intended to be
something of a teaser, but it will become clearer as we proceed.

3 Scenario-Based Algorithmics

3.1 A motivating example: the bubble-sort algorithm

To explain the concepts of SBA we first consider an example. Fig.[6] taken from [T]] con-
tains program code for the bubble-sort algorithm, preceded by some textual introduction.

While the algorithm is simple and well known, we can still imagine an expert pro-
grammer explaining to a novice some delicate points and emergent concepts, which,
in this short program with no additional comments, are only implicit. Such an expert
explanation would attempt to be technical and precise, and to be complementary to the
bubble metaphor in the introductory text but not to replace it. In fact, with a good techni-
cal explanation the metaphor might not be needed. Below are some examples of possible
observations that the expert and novice would share. Note that other than the definition
of the terms and concepts that should appear before they are used, the observations can
be provided in any order:

1. “Generally, when we (we here refers to the algorithm of course) see two adjacent
records in which the keys are out of order we switch the records’ locations.”.

2. “Swapping locations of two entries moves the one located at the higher array index
to a lower index location, namely, closer to the beginning of the array.”

3. “Repeating the above process in any array, moves (‘bubbles-up’) the record with the
smallest key to the first cell of the array, possibly rearranging all other records in the
array’s remaining ‘tail’ . ”

4. “Inthis algorithm, the resulting sorted array occupies the same place as the original.”

5. “The algorithm starts by bubbling up the lowest-key record in the input array.”

6. “Whenever we finish bubbling up the record with the smallest key to the first location
of a given array A, the algorithm does similar bubbling-up in the sub-array A, which
contains all the cells of A from the second entry to the last one.”

7. “The algorithm stops after processing the array consisting of the last two cells in the
original array.”

8. “For the ‘bubble-up’ metaphor we consider low array indices as ‘up’ and high array
ones as ‘down’ ”’

Our goal is to establish programming idioms and development methodologies that
enable the working code of the algorithm to directly reflect to humans all (and only) such
relevant insights. Note that the difficulties in understanding that we are trying to address
are not in the apparent non-intuitiveness of programming expressions like “for i := 1
to 10" or of how the scope of a loop is demarcated. In fact, many would argue that these
expressions are quite intuitive, and if not, that they can be improved by some form of
one-to-one translation. However, we believe that the core issues are that (i) many insights
or guidelines about an algorithm’s execution involve multiple (not necessarily adjacent)
lines of code, (ii) a given line of code may serve multiple guidelines, and (iii) some
central insights may be hidden in a small notation artifact like a pair of parentheses,
a tagged symbol, or a —1 in an expression. Hence, we are looking for a major shift
in how the program is structured in the first place, and in how the developers express
their thinking. Once we discover such a shift, the individual programming idioms will
be gradually refined until they are sufficiently natural and intuitive for the stakeholders
who need or want to read them.

3.2 A scenario-based specification of bubble-sort

We now provide the scenario-based specification of the bubble-sort algorithm from
in [I]. A snippet of the behavioral programming code (in C++) appears in Figure [7]

ﬂlncluae levent.h

-lclass SwapPair : public BubbleSortThread

{
public:

- void entryPoint()
{
try
{
while(true) {

bSync(emptyEventList(),
allSwapEvents(),
emptyEventList(),

"SwapPair");

// assert lastEvent().class_() == IEvent::SWAP
unsigned index = lastEvent().param() ;

[/ Swap

int temp = m_array[index];
m_array[index] = m_array[index + 1];
m_array[index + 1] = temp;

}

}
A e Eoros _fe)

Fig. 7: Code snippet for a scenario coded in C++. This is an actuator scenario (behavior thread) that waits for all SwapPair
events, and then performs the actual swapping. The invocation of the bSync method is the synchronization point where the
scenario synchronizes with all other scenarios in the specification, and some event that is requested and not blocked is selected
and triggered. The three parameters of the bSync method are the requested, waited-for and blocked events, in that order.

For brevity and clarity the full list of events and scenarios is described in natural lan-
guage (English) rather than in C++. Our main focus and interest at this point is the
intuitive composition of scenarios, each of which performs a function that is intuitively
understood, and which often relates directly to the original requirements. As discussed
in Section[7] we do not include here means for enhancing the language used to code the
individual scenario. Doing so in ways that result in scenario code that is itself shorter
and/or more intuitive is something we leave as a future research objective.

The events in our system are:

— CHECK_ORDER(n): A request to check if the pair of array cells indexed by (i.e., at
locations) n and n + 1 are in the correct order. On the one hand, this is the backbone
event of the algorithm and the order of its occurrence drives the order of most other
events in each run. On the other hand, this can be viewed as a simple actuation of
a sensor, which could be driven periodically (i.e., by the elapsing of some unit of
time) or by other events.

— UNSORTED (n): This is a sensor event that reports that the pair of array cells indexed
n and n + 1 were compared and discovered to be out of order

— SORTED(n): This is a sensor event that reports that the pair of array cells indexed n
and n 4 1 were compared and discovered to be in correct order.

— EXTERNAL_CHANGE: A sensor event that reports that something in the array has
changed (in our case, probably due to a sort-related action).

— START: Triggers the entire process.

— PREFIX_IS_SORTED(n): The first n array cells are sorted and their values are
smaller than those in all other cells.

— ENTIRE_ARRAY_IS_SORTED: Reports that the process is complete

The scenarios in the specification are:

— Sensor: This sensor scenario is the only one that provides reports about the condi-
tions of the environment, namely the array. It waits for any CHECK_ORDER (n) event,
compares the values of the respective cells and then requests SORTED (n) if the value
of the lower indexed cell in this pair is smaller than or equal to the value of the other
cell, and it requests the UNSORTED (n) event otherwise.

— SortPair: This scenario is the essence of the sorting logic: it waits for any UNSORTED (n)
event, and requests a corresponding SWAP (n) event. For completeness, in our imple-
mentation, this scenario also requests the CHECK_ORDER (n) event, to (i) make sure
that the swap action completed successfully, and (ii) to facilitate the straightforward
triggering of a SORTED (n) event from the same sensor scenario (as opposed to an
insightful result report from this SortPair scenario or from the SwapPair scenario.

— SwapPair: This actuator scenario waits for all SWAP events, and carries out the
swapping of the contents of respective cells.

— BubblePair (n): This scenario controls the order of execution. When a pair of adja-
cent cells is discovered that needs to be sorted, it initiates the sensing and subsequent
possible sorting of the next pair in the array.

— BubbleStartNextPass: This scenario controls the iterative processing of bubble-
sort — the next bubble. Whenever an unsorted pair is sensed, it waits for the the
first pair in the array to be declared as sorted, and then requests that the last pair in
the array be checked again.

— PrintArray:This is a support scenario that prints/displays the entire array after
every request for comparing any two cells.

— LogSelected: Another support scenarios that logs to an external file all the events
that were selected for triggering.

— BubbleSortStart: This scenario starts the entire process by simply requesting the
CHECK_ORDER event for the last pair in the original array.

We played out the specification using the BPC execution infrastructure for behavioral
programming in C++. As expected, the trace showed the events in the same order of
comparisons and swaps that we would expect from the classical algorithm, and a visu-
alization of data movements within the array showed the expected bubble-up process.

4 Methodological Notes

4.1 Creating SBA Specifications

Creating a detailed methodology for developing scenario-based algorithm specifica-
tions, either as a transformation of a classical specification, or when starting from scratch,
is a topic we leave for future research. Below, we present part of our work-in-progress
efforts in this area, namely, key steps in an initial methodology for converting classical
algorithm specifications into scenario-based ones. The steps can be repeated until the
results are satisfactory.

— Identify the main data structures manipulated by the algorithm, and see whether they
can be considered as objects with which the control part of the algorithm interacts .

— Identify main conditions or steps in the process and create behavioral events whose
triggering indicates that the condition holds or the step took place.

— Describe in natural language key points of the algorithm, as one would do in an
introductory or summary paragraph in a textbook (e.g., “always after event E1 we
take action A2”). Attempt to translate each of these into a formal scenario.

— Encapsulate specific complex computations that are not a part of the essence of the
algorithm as sensor and actuator scenarios.

— Examine statically the step-by-step algorithm specification, identify desired ele-
ments that are not covered yet, phrase them in self standing natural language state-
ments (e.g. “and I have forgotten to say that after we do A3, if condition C4 holds,
then before we do the action A5 as is currently prescribed, we first do action A6”),
and add these (eventually by automatic translation into scenarios) as additional,
stand-alone formal scenarios.

— Play out the scenario-based specification. Whenever there is a choice of multiple
enabled events (say, dictated by different scenarios), add a scenario that makes a
deterministic choice for this case, if so desired. If a deterministic algorithm is a must,
then such choices may be arbitrary at times, as is sometimes the case in ordering
algorithm steps whose order does not matter in a classical specification.

— Compare the SBP playout trace with a run of the step-by-step algorithm. Whenever
there is a difference, study it, and adjust the SBP specification.

— Use formal verification tools or systematic test tools to confirm that the two imple-
mentations yield the same results for large ranges of data.

4.2 ‘Events vs. Method Calls’ or ‘Dedicated Scenarios vs. Method Parameters’

Scenario-based specifications of algorithms may at first be reminiscent of ordinary pro-
gramming, with methods replaced by scenarios, and method calls replaced by broadcast
events. Such an event carries information about its destination scenario or object (which
corresponds to a method name) as well as its execution parameters (corresponding to
the method-call parameters or return values). However, the SBA approach provides a
powerful alternative view:

In the extreme case there would be no parametric information passing. Instead, for
each object, field, record, or relevant set(s) thereof, and for each behavior that this entity

has to exhibit, the developer would create a dedicated scenario. This scenario stands as a
sentinel, deliberately ignoring almost everything that is happening in the system, and if
and only if certain conditions that apply to it are satisfied, or events that it is interested in
occur, the scenario requests one or very few particular actions. Once these actions take
place (and, of course, only when they are not blocked by other SBP scenarios) it reports
this fact, with little or no knowledge or ‘interest’ in what will be done with the results,
or which component will use them.

This view provides new dimensions of encapsulation, parallelization opportunities
for more efficient execution, and opportunities for functional refinement, while allowing
individual scenarios to be “taught" (explicitly by humans or via automated learning)
how to handle yet new conditions as may be encountered within their purview.

For scalability purposes, e.g., when the number of behaving entities is large, and
where some of which are dynamic in nature (i.e., are created and discarded at run time),
common optimization techniques — like using a pool of worker threads — can be ap-
plied towards efficient utilization of computer resources, without diminishing the value
of utilizing automated ‘narrow-minded’ processes working ‘with their blinders on’ ﬂ

This approach to dynamic scenario instantiation also provides an approach for recur-
sion that is presently built into standard programming languages. This ‘magic’ of using
the same code at different states, with the relevant context kept in the computer’s or the
human’s mental stack, will be replaced in SBA with the explicit creation of emergent
objects like ever-shorter tails of an array, ever-smaller subtrees, etc.

4.3 A Note on Feasibility

An important question regarding our approach is whether many or most interesting algo-
rithms can be specified in SBA. In two extreme senses, the answer is trivially positive:
First, one could simply encapsulate the entire algorithm in a single actuator scenario,
which simply waits for one Start event with appropriate parameters and carries out
the desired computations internally. Second, the structure of the algorithm can be left
unchanged, but every command in the classical specification would be converted into a
scenario, and these scenarios communicate via helper events. E.g. line 17 in some se-
quential code segment that is contained in a loop can be specified as the following sce-
nario “Repeatedly, wait for the event AnotherIteration0fThisLoopStarted; wait
for the event Line1 6Completed; then, forbid the event 1ine18Started until further no-
tice; request (and wait for) the event Linel17Started; carry out as an actuator what line
17 does in the original algorithm; request (and wait for) the event Line17Completed;
and, finally, release the blocking of 1ine18Started.”.

Such extreme cases are obviously not what we are after. Instead, the goal is to identify
methods and principles for scenario-based creation of algorithms that will have non-
trivial added value, enhancing understanding and simplifying the development of the
algorithms.

% Those that prevent horses from being distracted or alarmed.

5 Advantages of Scenario-Based Algorithmics

As stated earlier, one of our goals is to exploit SBA to enrich the intuitiveness, clarity,
alignment with the requirements, incrementality, executability, and amenability to for-
mal verification of general algorithm specification and development. Though systematic
empirical studies proving this are yet to be carried out, we believe that SBA can indeed
contribute significantly to these.

An additional non-obvious advantage is succinctness. This claim may be surprising,
since even in the relatively simple bubble-sort example, the natural-language scenarios
were quite verbose as compared to the original pseudo code, and the C++ code was
even more so. However, along the lines of formal succinctness proofs of SBP [12]], we
argue that eliminating from the specification many classical structural elements, such
as intricate control flow, and the exact locations of method invocations, can serve to
replace one large module, i.e., the entire algorithm, with multiple, smaller, more robust
modules, i.e., the scenarios. Our measure of size here is not the number of characters or
lines (which some languages can compress very efficiently), but the number of different
states and conditions and flows that a module represents. Thus, we consider the difficulty
of understanding the SBA specification to be proportional to the sum of the sizes of the
scenarios, while understanding the original specification is proportional to its own size,
which in some cases can be closer to the product, rather than the sum, of the sizes of the
constituent scenarios.

Reflection in software is the ability of a programmed entity to look at itself and at
other such entities and dynamically adjust its own behavior accordingly; e.g., checking
at run time if the definition of a target object class includes a particular method call, and
when this is the case calling this method on objects of this class. SBA enables extending
such reflection significantly . Consider the following hypothetical excerpt from an email
correspondence between a development manager (M) and a developer (D) on his or her
team:

— (M): “Please change all program modules where we do action A, to first check for
condition C.”

— (D): “But in program module P this change would be incorrect!”

— (M): “You are right, indeed, do not change program module P, and also do not
change module P2, as it suffers from the same issue.”

Collectively these requests and decisions describe precisely the revised behavior of the
system. Indeed, when the developer completes the task, the manager would know what
the system does. However, we should note that this specification was not the same as the
behavioral scenario “Action A should occur only when condition C holds”, but a struc-
tural one. As a proof, consider the fact that we do not know what is it about modules
P and P2 that render the requirement inapplicable in those contexts. Such reflective ca-
pabilities are available in a variety of programming language, as well as in Statecharts,
where the components can refer at development time and at run time to (states of) other
components. SBA allows us to readily and incrementally enhance a specification with
scenarios of this type.

SBA can also offer new insights into understanding data and behaviors. Consider for
example the Sieve of Eratosthenes method for finding the prime numbers. The classical

algorithm calls for a data structure in which cells corresponding to multiples of discov-
ered primes are marked as non-primes, and the cells remaining at the end of the process
are output as primes.

In one SBA design, we modeled the method as an iterative-cumulative process. Once
a prime p is discovered (starting with p = 2) a scenario is added that iteratively requests
events declaring all multiples of p as non-primes. In parallel, another scenario iteratively
requests events that declare an integer to be a prime but abandons that request upon the
occurrence of the event declaring the said integer as a non-prime. We then used event
priorities in the Behavioral-Programming-in-Java platform (BPJ) to make the “p is not a
prime” event take precedence over “p is a prime”, which yields the final desired results.

In another implementation (relying also on BPJ’s support for infinite sets in the decla-
ration of blocked events and waited-for events), for each discovered prime p we replaced
the requesting of events that declare multiples of p as non-primes with the creation of a
scenario that blocks the event “n is a prime” for all values of n that are multiples of p.
In yet another possible implementation, instead of dynamically creating scenarios asso-
ciated with discovered primes, one could create a scenario for each integer in the range
to block declaring its multiples as primes.

The attractiveness of these SBA implementations is not just in that they replace the
need for the data structure in the Sieve of Eratosthenes algorithm (note that they clearly
do not save in computer memory). While loyal to producing the desired functional re-
sults, the SBA versions, using priority and event-blocking semantics, can rely on the
infrastructure for some bookkeeping that in the classical versions are specified more
explicitly and prominently (as storing of interim results and evaluating conditions).

6 SBA and human thinking

“Thinking like a computer scientist” [21]] (or “thinking like a programmer” as it is often
referred to), as well as understanding the basic principles behind algorithms and com-
puter science at large [16], are considered to be desired mental capabilities, which are
valuable in many real life contexts. Much important work has been done on endowing the
population at large with such skills, even from very young ages (see, e.g., [3}/5,/19] and
references therein). To these efforts we wish to add the following observation: once we
are successful in explaining to humans, in human terms and in a systematic and repeat-
able way, what systems and computers and algorithms do, then perhaps we will be able
to distill the underlying principles of such useful human terms, and start programming
systems and computers and algorithms using those very terms themselves.

Once this is achieved, it may open up new opportunities for both humans and ma-
chines. E.g., a person who is often personally baffled by complex decisions and plan-
ning challenges may acquire necessary skills not just from occasional tips from friends
and books, but from the systematic understanding of the principles of how powerful
computer systems (like road navigation or warehouse stock management systems) ac-
complish the same. With SBA, these principles will stand out better. Conversely, once
systems are structured in this manner (built with SBP and SBA), humans will be able to
experiment with those systems, and even enhance them with an ever-growing number of
desired features and capabilities. The phrasing of an idea, like * can the system do action

A1 when condition C1 holds?” will be directly translated into a component (a scenario)
that can be tested independently and then be verified together with the system, in order
to check whether it introduces unexpected problems or conflicts.

7 Future Research

The initial proposal described in this paper must clearly be followed by further develop-
ment and research. First, existing and new integrated development environments (IDEs)
should be built to support the broad application of scenario-based development in gen-
eral, and SBA in particular. This should be geared to audiences in science, engineering
and education, tending to the users’ different needs, and with a special focus on SBA
intended strengths, such as understandability and maintainability of algorithms. The ex-
pected benefits in areas such as productivity, quality and learning should then be empir-
ically confirmed, by measuring specific results in synthetic and realistic projects carried
out by many participants, and comparing the SBA-based results to the ones obtained
using known techniques.

SBA also presents interesting research questions and technical challenges. Key among
these is the efficient implementation of direct execution of a scenario-based specifica-
tion. Work in this direction is underway along various tracks, including synthesis of an
efficient monolithic automaton from a scenario-based specification, efficient approaches
for distribution and parallelization, while relaxing some of the behavioral synchroniza-
tion requirements, hardware circuits designed especially for assisting in the SBP event
selection process, and more. Depending on the success of such solutions, especially dis-
tribution and hardware assists, we will be interested in exploring the costs and benefits
of dedicating large numbers of parallel-running behavior threads (e.g., in the case of
bubble-sort, one per every pair of array cells, or one per array ‘tail’, etc.).

For evaluating the correctness of an SBA-specified algorithm that is also available
in a classic form, one should create a log for the original specification and compare the
logs of the two implementations. Proving full equivalence is a separate task.

From a software engineering standpoint, it would be interesting to formalize and then
discuss the syntactic and semantic differences between scenarios and method calls. In
such a discussion, one would compare, e.g., the fact that each scenario can be cognizant
of the global (system-wide) conditions and events under which it should be called, with
the fact that in classical method calls it is the collective responsibility of all the callers
to invoke the method under all relevant conditions and following all relevant event se-
quences. Of particular interest are the auxiliary events that are added to indicate a par-
ticular interim condition or occurrence (e.g., that a certain pair of array cells is or is not
sorted). We believe that one would be able to show that while such events may seem to
be merely ‘helper’ events, which would not be necessary in a sufficiently powerful pro-
gramming language, they indeed provide a solid foundation for the specification. This
would be similar to storing interim computation results (e.g., of expressions in parenthe-
ses or numerators and denominators of a division in separate well-named variables), not
just for shortening and clarifying each computation, but for highlighting the existence
and subsequent use of this emergent entity.

Another interesting topic for future research is the incorporation of scenario-based
techniques into the Statecharts formalism. In a research project underway, we are en-
dowing the orthogonal state components accommodated by Statecharts with the ability
to declare requested, blocked and waited-for events, and are enhancing the event trigger-
ing and composition semantics of Statecharts to accommodate the SBP event selection
semantics. This can allow the SBA approach to be carried out in yet another, more fa-
miliar, visual formalism.

Finally, the programming idioms at the foundation of SBP languages have in mind
reactive systems operating in a real-world environment. It would be interesting to cre-
ate a standard methodological mapping (or at least a consistent approach thereto) from
classical entities and concepts that appear in algorithms, like complex data structures or
recursion, to the scenarios and events underlying SBP. Furthermore, an SBP language
may be enhanced with basic idioms geared specifically for scenario-based algorithmics.
We are particularly interested in finding concise, yet explicit, idioms for cryptic or im-
plicit notations; e.g., that in a program with an array of size n, whose indexing begins
at 0, the expression n — 1 is the index of the last item as well as the length of the ‘tail’
sub-array after dropping the first array cell. These can, of course, be conveyed in mean-
ingful names for temporary variables, but perhaps some orderly methodology could be
discovered in order to balance clarity and clutter.

8 Conclusion

We have described the SBA approach to algorithm specification, where each of the al-
gorithm’s steps and special properties is specified in a stand-alone manner, in any order,
and for which the step-by-step execution is derived from the collective parallel execu-
tion of all these specification artifacts. Data structures play the role of the environment
of a reactive system for such steps and properties. While additional experimental work
with students and engineers is still needed, SBA promises several benefits: It can facil-
itate better human understanding of algorithms, which can ultimately contribute to the
quality of computerized systems, and it can enable, and even drive, the enhancement
and improvement of algorithms, since one can more naturally focus on special features
while handling bookkeeping steps and special extreme cases separately.

The approach may also bring the development of reactive systems and classical com-
putation closer — enabling a broader or deeper application of techniques developed for
reactive systems in the classical areas of algorithm design and programming. Formal
verification can be one such example.

Finally, the SBA approach might also contribute to the teaching and learning pro-
cesses around computer science and software engineering, and perhaps even enhance the
penetration of a variety of human skills associated with computational, or algorithmic,
thinking [[16}[18}21].

Acknowledgements

We thank Nimrod Talmon for initial conversations that partly triggered this pursuit.
Thanks to Ori Koren for the prototype of the scenario-based implementation of bubble-

sort using behavioral programming in C++. We are also grateful to the anonymous re-
viewers and editors for their valuable comments. This work was supported in part by
grants from the German Israeli Foundation (GIF), the Israeli Science Foundation (ISF),
and the Minerva Foundation.

References

10.
11.

13.

14.

15.

16.
17.

. A. V. Aho,J. E. Hopcroft, and J. D. Ullman. Data structures and algorithms (1983). Addison-
Wesley, Reading, MA.

. G. Alexandron, M. Armoni, M. Gordon, and D. Harel. Scenario-Based Programming: Re-
ducing the Cognitive Load, Fostering Abstract Thinking. In Proc. 36th Int. Conf. on Software
Engineering (ICSE), pages 311-320, 2014.

. S. Bocconi, A. Chioccariello, G. Dettori, A. Ferrari, and K. Engelhardt. De-
veloping computational thinking in compulsory education—implications for pol-
icy and practice; eur 28295 en. URL: http://publications. jrc. ec. europa.
eu/repository/bitstream/JRC104188/jrc104188_computhinkreport. pdf, 2016.

. W. Damm and D. Harel. LSCs: Breathing Life into Message Sequence Charts. J. on Formal
Methods in System Design, 2001.

. P.J. Denning. Remaining trouble spots with computational thinking. Communications of the
ACM, 60(6):33-39, 2017.

. M. Gordon, A. Marron, and O. Meerbaum-Salant. Spaghetti for the Main Course? Observa-
tions on the Naturalness of Scenario-Based Programming. In Proc. 17th Conf. on Innovation
and Technology in Computer Science Education (ITICSE), pages 198-203, 2012.

. M. Gordon and D. Harel. Generating executable scenarios from natural language. In In-
ternational Conference on Intelligent Text Processing and Computational Linguistics, pages
456-467. Springer, 2009.

. J. Greenyer, D. Gritzner, G. Katz, and A. Marron. Scenario-Based Modeling and Synthesis
for Reactive Systems with Dynamic System Structure in ScenarioTools. In Proceedings of
the MoDELS 2016 Demo and Poster Sessions, co-located with ACM/IEEE 19th International
Conference on Model Driven Engineering Languages and Systems (MoDELS). CEUR, 2016.

. D. Harel. Statecharts: A visual formalism for complex systems. Science of Computer Pro-

gramming, 8(3):231-274, 1987.

D. Harel. Can Programming Be Liberated, Period? IEEE Computer, 41(1):28-37, 2008.

D. Harel and E. Gery. Executable object modeling with statecharts. Computer, pages 31-42,

July 1997. Also in Proc. 18th Int. Conf. Soft. Eng., Berlin, IEEE Press, March, 1996, pp.

246-257.

. D. Harel, G. Katz, R. Lampert, A. Marron, and G. Weiss. On the Succinctness of Idioms for

Concurrent Programming. In CONCUR, pages 85-99, 2015.

D. Harel, G. Katz, R. Marelly, and A. Marron. An Initial Wise Development Environment

for Behavioral Models. In Proc. 4th Int. Conf. on Model-Driven Engineering and Software

Development (MODELSWARD), pages 600-612, 2016.

D. Harel and R. Marelly. Come, Let’s Play: Scenario-Based Programming Using LSCs and

the Play-Engine. Springer, 2003.

D. Harel and A. Pnueli. On the Development of Reactive Systems, volume F-13 of NATO ASI

Series. Springer-Verlag, New York, 1985.

D. Harel and Y. A. Feldman. Algorithmics: the spirit of computing. Pearson Education, 2004.

D. Harel, A. Marron, and G. Weiss. Behavioral Programming. Comm. of the ACM, 55(7),

2012.

18. J. HromkoviC. Algorithmic adventures: From knowledge to magic. Springer Science & Busi-
ness Media, 2009.

19. Y. B. Kafai. From computational thinking to computational participation in k—=12 education.
Communications of the ACM, 59(8):26-27, 2016.

20. A.Marron, G. Weiss, and G. Wiener. A Decentralized Approach for Programming Interactive
Applications with JavaScript and Blockly. In SPLASH Workshop on Programming Systems,
Languages, and Applications based on Agents, Actors, and Decentralized Control (AGEREY!),
2012.

21. J. M. Wing. Computational Thinking. Comm. of the ACM, 49(3):33-35, 2006.

	Toward Scenario-Based Algorithmics

