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ABSTRACT

Remarkable progress in various fields of biology is leading in the
direction of a complete map of the building blocks of biological
systems. There is broad agreement among researchers that 21
century biology will focus on attempting to understand how
component parts collaborate to create a whole. It is also well
agreed that this transition of biology from identifying the building
blocks (analysis) to integrating the parts into a whole (synthesis)
should rely on the language of mathematics. In a recent
publication, we described the results of a first attempt at
confronting the above challenge using the visual formalism of
statecharts. We presented a detailed model for T cell activation
using statecharts within the general framework of object-oriented
modeling. In this work, we compare the statechart-based modeling
approach to a Boolean formalism presented by Thomas & D’ Ari.
This comparison was done by taking a model for T cell activation
and anergy, which was constructed by Kaufman et al. using such a
Boolean formalism, and translating it into the language of
statecharts. Comparing these two representations of the same
phenomena allows us to assess the advantages and disadvantages
of each modeling approach. We believe that the results of this
work, together with the results of our previous modeling work on
T cell activation, should encourage the use of visual formalisms
such as statecharts for modeling complex biological systems.

1. INTRODUCTION

There is broad agreement among researchers that biological
research must prepare for the transition from analysis (the
reduction of observations to elemental building blocks) to
synthesis (the integration of the parts into a whole) [1], and that
this transition should rely heavily on the language of mathematics
[2-4]. This is particularly needed in the field of immunology. Over
the last several decades there has been an explosion of
experimental data describing the cellular and molecular
components that are involved in the activity of the immune system.
“At the present time, however, there is an emerging need to
understand the system as it functions as a whole” [5].

An illustrative example for the current situation in immunological
research is the case of cytokine networks. Cytokines are small
protein or glycoprotein messenger molecules that convey
information from one cell to another. Various aspects of the
immune response are regulated by cytokine networks. More than
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200 cytokines have now been identified, and more than 12,000
papers on cytokines have been published in 1999 alone. Yet,
although many details of particular cytokine interactions have been
elucidated, “practically nothing is known about the behavior of the
network as a whole” [6].

In search for an appropriate mathematical language for modeling
biological systems, we examined formal modeling methods in
computers that were originally developed for system design.
Software and system engineers need formal models that faithfully
represent the system under design. Instead of constructing models
that represent only fragments of the system, which are useful for
investigating a limited number of questions, formal modeling
methods in computer science ecnable the construction of
comprehensive models for complex reactive systems'. Such
models are useful for investigating the behavior of the system
under many given scenarios (e.g., what will happen if button A is
pressed while signal X is still being processed, handle H is pulled
down and the temperature is 25°?), as well as for checking the
validity of various properties (e.g., verifying that under no
circumstances will the doors of an elevator open while the elevator
is between two floors).

In a previous paper [8], we presented a model for T cell activation,
using the visual formalism of statecharts [9], as implemented in
the general framework of object-oriented modeling [10-11]. We
aimed at constructing a model that will include essentially all the
relevant immunological data as presented in a standard textbook
[12] and some additional updated reviews. The model included
more than 20 distinct object classes, for which both static
properties and dynamic behavior were described in a diagrammatic
manner. Having such a formal model in hand, we were able to run
simulations of the model, using the Rhapsody tool [13]. The model
was executed for several different immunological scenarios [8]. By
and large, the behavior we encountered for most executions
followed our expectations, except of one case: we found that in
our model, the T cells could not reach a stable memory state. It
was found that this mismatch with experimental data was due to
some biological piece of information that did not appear in the
scientific literature on which the initial model was based. In this

! For the definition of reactive systems see [7]; its implications for
biological systems is discussed in [8].



specific case, we found the missing part of the puzzle after an
extensive search in the literature, and revised the model
accordingly. However, it may very well be the case that other such
mismatches will need new experimental work to be solved. This is
one of the major purposes of modeling: “one of the beauties of
mathematical modeling is that it raises questions that may not have
been addressed before” [6].

In the present paper, we carry out a comparison between the
statechart-based modeling approach and an alternative modeling
approach, based on a Boolean formalism presented by Thomas &
D’Ari [14]. In this context, we examined a recent model for T cell
activation that was constructed by Kaufman et al. using such a
Boolean formalism [15] and constructed an analogous model using
the visual formalism of statecharts. In Sections 2 and 3 we
describe the logical model and the statechart-based model,
respectively. In Section 4 we compare the two modeling
approaches. Section 5 provides some concluding remarks.

2. THE BOOLEAN LOGIC MODEL

2.1 Biological background

The engagement of the T cell antigen receptor (TCR) with its
cognate ligand can lead either to T cell activation or to the
induction of a state of unresponsiveness termed anergy. A large
body of data indicates that several anergy induction pathways may
exist [16]. One of these pathways involves a transient T cell
activation that precedes the induction of unresponsiveness. In their
work [15], Kaufman et al aimed at exploring this form of
“activation-induced anergy”, placing special emphasis on
specifying the conditions leading to positive and negative signaling
of T cells: “Using a simple Boolean formalism developed by
Thomas and coworkers [14], we show how the timing of the
signaling events may affect decision making at branching pathways
and may determine the properties of receptor signaling and final
state of the system” [15].

The model suggested by Kaufman et al is based on several
experimental observations and assumptions (all quotations are
taken from [15]):

. “An important feature of the early events of the TCR
signaling cascade is the activation of protein tyrosine kinase
(PTK) enzymes, endowed with catalytic activity... we
assume here that after stimulation, the phosphorylative
activity of the receptor associated PTK’s increases and may
remain above background level after the ligands have been
removed”.

. “In addition to its positive role in T cell activation, we
postulate that tyrosine phosphorylation also mediates a
supressive effect on the signaling events, which results in the
inhibition of lymphokine secretion and cell proliferation. In
particular, residual PTK activity after ligand dissociation may
be responsible for a defective signal transduction capacity of
the TCR system”.

. Costimulation is required for proper T cell activation. “In the
present model, costimulation does not act to suppress the
negative signal but rather enhances and accelerates the
positive signaling process”.

“Positive signaling (i.e., IL-2 secretion and cell proliferation)
inhibits, through a yet undefined mechanism, the persistent
activity of the PTKs, thus reestablishing the signaling
capacities of the TCR system”.

2.2 Logical Description

The first stage of constructing the logical model was establishing
an interaction diagram, consisted of “a series of events, each
requiring a characteristic time to be realized”. The model shown in
Fig. 1 uses three graphical notations: rectangles represent events,
solid arrows marked with a plus sign represent interaction between
events (i.e., one event favors or activates the other) and dashed
arrows marked with a minus sign represent negative interactions
between events (i.e., one event suppresses the other). According to
this interaction diagram, the event of Free ligand (f) favors the
event of Bound TCRs (b) which by its own activates the PTK. PTK
activity (k) accelerates itself, activates the Inhibitory pathway (x)
and gets suppressed by Positive signaling (s). Positive signaling is
favored by PTK activity and Costimulation, and suppressed by the
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Figure 1: Schematic interaction diagram (adopted from [15])

Logical variables and logical equations:

Four logical variables, which represent four of the above described
events, define the state of the system. The variables are b, k, x and
s, representing Bound TCRs, PTK activity, Inhibitory pathway and
Positive signaling, respectively (Free ligand and Costimulation
are not accounted for explicitly). Assigning the value of 1 to a
variable means that the event that it represents is taking place.
Thus b=1 means that the TCR is bound to a ligand, otherwise b=0.
Similarly, x=1 means the Inhibitory pathway is active, otherwise
x=0.

The dynamics of the system is governed by four logical functions,
B, K, X and S, attached to each of the four logical variables b, k, x
and s, respectively. These functions describe the transition rules
that reflect the “evolution of the state variables under the influence
of the signaling interactions”. A logical function gives, at any time,
the future value toward which its associated variable will tend as a
function of the present state of the system. For example, the
function B=0 implies that no matter what is the current value of the
variable b, at the next step it will receive the value 0. Similarly, the
function X=k implies that the future value of the variable x is
determined by the current value of the variable k.



The following logical functions were defined for the model (x
denotes NOT x, z.y denotes z AND y, and z + y denotes z OR y):
[1] B=0

2] K=b+ks
[B] X=k
[4] S =bkx
State table:
Table 1. State table for Eqgs. 14
b k b'd s B K X S
© 0 0 0) 0 0 0 0
0 0 1 0 0 0 0
0 0 1 1 0 0 0 0
0 0 1 0 0 0 0 0
© 1 1 0) 0 1 1 0
0 1 1 1 0 0 1 0
0 1 i} i 0 0 1 0
0 1 i} 0 0 1 1 0
1 1 i} ] 0 1 1 1
1 1 [} 1 0 1 1 1
1 1 1 1 0 1 1 0
1 1 1 0 0 1 1 0
1 [ 1 0 0 1 0 0
1 i 1 T 0 1 0 0
1 [} 0 T 0 1 0 0
T [} 0 0 0 1 0 0

Equations 1-4 make it possible to compute a state table (Table 1)
that provides the values of the logical functions (right half of the
table) for each of the 2* possible combinations of the state
variables (left half of the table). For example, at the last line of the
table b=1, and k=x=s=0. The logical functions' values
corresponding to this state of the system are K=1, B=X=S=0. This
implies that at the next step two logical variables would be
commanded to change there values: b should shift from 1 to 0

(with time delay tE ), and k should shift from 0 to 1 (after a time
delay of ty).

Transition diagram:

From the state table one can derive all the possible temporal
sequences of logical states, starting from any initial state (Fig. 2)°.
Continuing with the last line of the table (marked in Fig. 2 as 'time
0"), the asynchronous updating strategy adopted for this model
implies that b and k will change their values one at a time.
Therefore, after these two variables are commanded to shift their
values, the system can transform in to one of two possible

% A plus or minus sign over a logical value indicates that that
variable is being driven upward (0 to 1) or downward (1 to 0),
respectively. Parentheses indicate a stable state.

3 An asterisk indicates stages corresponding to T cell activation

(s=1).

conformations: if £ <f, (ie, the time delay for ligand

dissociation is shorter than the time delay for PTK activation), the
system will adopt the steady state b=k=x=s=0 (path 1), since b
will change its value before k gets the chance of doing so. If

tZ > t, , the next state of the system will be 1100, from which the

dynamic behavior can drive the system through three different
branches. Following this kind of analysis, one can derive all
possible scenarios that may evolve in the system, starting from any
initial conditions. These scenarios are defined in terms of relations
between time delays that characterize the various transitions the

system can take.
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Figure 2: Transition diagram (adopted from [15])

3. THE STATECHART-BASED MODEL*

The model presented in this section is based on the same
assumptions that were presented by Kaufman et al [15]. Therefore,
no re-binding of ligands is assumed, and co-stimulation is not dealt
with explicitly.

3.1 Object Model Diagram

The system, as described by Kaufman et al, consists of four object
classes (Fig. 3): Tcell’, TCR, PTK and Ligand.

Three different relationships are defined in the model:

1. TCR and PTK are components of the Tcell composite object.

2. Ligand and TCR are associated by the ‘Bind’ relationship.

3. TCR and PTX are associated by the ‘Interact’ relationship.
The attributes of each of the simple classes are also shown. These
attributes represent the characteristic time delays of each class:
binding and association delays in the case of Ligand and TCR, and
activation and inactivation delays in the case of PTK. Similarly,
the Tcell composite class carries with it attributes that represent
time delays having to do with the activation and suppression of the

* A detailed description of the modeling approach we used will
appear in [8]. Meanwhile, such a description can be found at
[17].

5 Actually, the T cell does not appear explicitly either in the model
diagram (Fig. 1) or in the logical analysis. Yet, it is definitely
part of the system described by the model.



positive and inhibitory signaling pathways (see also in the relevant
statecharts described below). Instance multiplicities, as well as
relationship multiplicities, are in accordance with original model
(see also parallel discussion in [8]).

3.2 Statecharts

Each of the four objects has an attached statechart describing its
dynamic behavior. We will describe each of these statecharts
separately.

3.2.1 Statechart of Ligand

In the model described by Kaufman et al, a free ligand will
eventually bind to a free TCR. This is represented in the Ligand’s
statechart (Fig. 4) by a timeout transition that takes place after a
time delay defined by the attribute ‘BindingDelay’. When taking
the transition from Free to Bound, the Ligand generates an event
(‘evBindLigand’) on izsTCR. After remaining in the Bound state
for a time period defined by the ‘DissociationDelay’ attribute, the
Ligand object will terminate (since no re-binding is allowed in the
original model).

3.2.2 Statechart of TCR

Receiving the event ‘evBindLigand’ from its Ligand while being in
the Free state causes the TCR to take the transition from Free to
Bound (Fig. 5). While doing so, the TCR also informs itsPTK
about entering the Bound state. After a time delay defined by the
‘Dissociation delay’ attribute, the TCR will return to its Free state,
sending the appropriate messages to itsPTK and to itsTcell.

3.2.3 Statechart of PTK

Binding of the TCR by its Ligand triggers the activation of the
PTK (Fig. 6). However, in order to become fully activated, the
‘ActivationDelay’ of the PTK should not exceed the
‘DissociationDelay’ of its TCR. Therefore, only if the timeout
defined by °ActivationDelay’ expires while the TCR is still bound,
will the PTK enter the Active state; otherwise, it will return to
Inactive.

Once in the Active state, the PTK will remain there as long as the
TCR is still bound. However, even when the TCR dissociates from
its Ligand, the PTK can remain active (due to its
autophosphorylative activity), as long as the positive signaling was
not evoked. Therefore, the transition from Active to
becominglnactive takes place when the ‘evICRfree’ event is
generated, only if the Tcell is in its PositiveSigna]ing_On6 state.
Yet, the inactivation process will not run into completion unless
the timeout defined by ‘InactivationDelay’ will expire before the
positive signaling is turned off.

® This notation means that within the PositiveSignaling
super-state, the PTK enters the On sub-state.

3.2.4 Statechart of Tcell

The Tcell’s statechart (Fig. 7) is divided into two orthogonal
components’: ActivationState and SignalTrunsduction. The
SignalTransduction component is further divided into two
orthogonal components - InhibitoryPathway and
PositiveSignaling, each representing a distinct signaling pathway.
The event ‘evPTKactive’ is responsible for driving 3 different
transitions within the Tcell’s statechart: from Resting to standBy
in the ActivationState component, from Off to On in the
InhibitoryPathway component, and from Off to On in the
PositiveSignaling component (only if izsTCR is in the Bound
state).

The SignalTransduction component:

Both signaling pathways have time delays. When a signaling
pathway enters its On_Full state, a timeout event is triggered
within this state (using the ‘reaction in state’ mechanism, as shown
in Fig. 8 for the InhibitoryPathway_On_Full state). Only after
this timeout expires, an appropriate event is generated
(‘evPositiveSignal’ in the PositiveSignaling On_Full state,
‘evInhibitorySignal’ in the InhibitoryPathway_On_Full state).
This implies that if the On_Full state of a signaling pathway is left
before the relevant timeout expires, no signal is produced.

Signal decay: once the PTK becomes inactive, both signal
pathways — the inhibitory as well as the positive — receive
messages that trigger their decay (in the case of the
PositiveSignaling components, there are two additional events
that may trigger this transition). According to Kaufman et al, such
a decay signal is a “one way ticket” (for both signaling pathways):
since the model assumes no rebinding between the TCR and its
Ligand, the PTK cannot become re-activated after returning to its
Inactive state. Yet, we included transitions leading from the two
Decay states back to the Full states, by this allowing the Tcell to
respond also to events triggered by TCR rebinding (see further
discussion in section 4).

The ActivationState component:

The transitions within the ActivationState component are
dependent on the timing of the signals that are produced by the
SignalTransduction component. From the standBy state the Tcell
can go either to the Anergie state or to the Active state, depending
on the received signal. From the Active state, it can either return to
Resting or go the Anergic, depending on the activity state of
itsPTK. The Anergic state is a ‘dead end’, while returning to
Resting enables the Tcell to become re-activated in the future.

7 Orthogonal components represent independent substates that an
object can occupy simultancously (see [7] or [8]). Thus, a given
state of Tcell is actually a combination of three substates: one
substate from the ActivationState component, one substate from
the InhibitoryPathway component and one substate from the
PositveSignaling component.
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3.3 Model Execution

Figures 9 and 10 include snapshots from a real-time animation
session that was executed using the Rhapsody tool [3]. In both
cases, the Tcell’s statechart went through the Active state. Figure
9 (a-b) corresponds to a situation in which the positive signal is
turned off before the PTK returns to its Inactive state. In the
described scenario (Fig. 9-a), this is due to the fact that even
though the time delay for the onset of the positive signal was
shorter than the corresponding time delay of the inhibitory signal
(as reflected by the fact that from the standBy state the Tcell went
to the Active state), eventually the inhibitory signal was generated,
driving the transition of the PositiveSignaling component from
Full to Decay (as could be seen from the olive coloring on this
transition). After another time delay (defined by ‘PosSigDecay’)
the PositiveSignaling component took the transition from Decay
to Off (Fig. 9-b). Since during all this time period the PTK did not
become inactive (Fig. 9-c), as reflected by the fact that the
InhibitoryPathway remained in the On state, the generation of the
‘evPosSigOff” event drove the Tcell to the Anergic state. In Figure
10, the ‘evPosSigOff’ event was generated when the PTK was
already in its Inactive state. Therefore, when reaching the
condition connector within the ActivationState, the left branch
was activated (notice the
olive color), leading back
to the Resting state. This
figure reflects positive
signaling with recovery of
responsiveness — the PTK

Reactions In State

Transition Features

Trigger : ]tm(lnhibitPathDelay)

is inactive, and the Tcell | Guad: |

is Resting, both its signal it

transduction pathways — ;

being tummed off after IGEN {evInhibitory3ignal);
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4. DISCUSSION

Since the models presented in the two previous sections rely on the
same assumptions and concepts, a comparison between them
should be helpful in pointing out some differences between the two
modeling approaches. Indeed, it seems that several such points can
be indicated:

Model construction. In the work presented by Kaufman et al, the
model was constructed in three phases: (i) drawing a schematic
diagram, (ii) computing a state table, (iii) constructing a transition
diagram. This construction process includes a transition from a
relatively clear graphical diagram into a highly nested collection of
binary strings. In the statecharts-based model, all the modeling of
states in their relationsips is done using diagrammatics.

Model analysis. All the analysis work presented by Kaufman et al
was carried out manually (this includes calculating the state table,
constructing the transition diagram and figuring out the various
conditions leading to activation vs. anergy). With the
statecharts-based approach, once the model was constructed all
the analysis was carried out by running simulations using the

Rhapsody tool. Furthermore, the Rhapsody tool was used not only
to analyze the behavior of the valid model, but also to check its
validity (in principle, a proper computational tool could be
designed to support the logical analysis approach as well).

Model extension. The logical analysis method developed by
Thomas & D’Ari [14] implies that the number of entries in the
state table, as well as the number of branches in the transition
diagram, grows exponentially with the number of parameters. For
example, the model described by Kaufman et al is based on four
logical variables. Yet, the schematic diagram presenting the basic
concepts of the model (Fig. 1) includes two extra parameters —
Free ligand and Costimulation. Adding these two parameters to the
logical model would result in a state table that is four times larger
than the current one (64 entries instead of 16). Furthermore, not
only would the model become far more complex, but the whole
construction process (i.c., computing the state table and the
transition table) would have to start from scratch. Actually, not
only the addition of parameters, but even slight changes in the
model’s assumptions might require reconstruction of the Boolean
analysis. For example, it was already mentioned that one of the
assumptions in the original model [15] was that no ligand
rebinding is allowed. If, however, one wants the model to include
rebinding, this could be achieved by replacing the original logical

equation B=0 with the new equation B = b.f , where fis an input
variable, representing the presence (f=1) or absence (f=0) of free
ligand. Yet, replacing the equation is not enough. The authors state
that with this new equation replacing the original one, “one can
again compute the temporal state transitions”, implying that the
most laborious part of the modeling would have to begin from
scratch.

With statecharts, however, the picture is completely different.
Relating to the last example (allowing rebinding of the TCR to its
Ligand), the only change that need be introduced into the model is
in the Ligand’s statechart (Fig. 11): instead of leading to a
termination  connector, the  transition triggered by
‘tm(DissociationDelay)’ should lead back to the Free state
(another possibility is to add continuously new Ligand instances
into the system). The same holds for adding costimulation
explicitly to the model, as was shown in the model described in
[8]. In the static view of the model (Fig. 3), it only requires adding
the relevant Receptor object as a component of the Tcell (CD28 in
the case of costimulation) and defining the appropriate Ligand
object (in this case, B7). Since the Receptor and Ligand
super-classes are already defined, the addition of new sub-classes,
which inherit the structural and behavioral properties of their
parent classes, is relatively simple. As for the dynamic behavior of
the system, here things might become more complicated:
complicated behavior requires complicated models. Yet, due to the
special features of statecharts (zooming-in/zooming-out
capabilities, clustering of states, the ability to divide a statechart
into orthogonal components), much of this complexity can be
reduced. Thus, for example, adding a new signal transduction
pathway to a Tcell model can be achieved using orthagonality —
the new pathway can be added as a new orthogonal component
into the existing SignalTransduction component.
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No less important is the fact that in the object-oriented approach,
complexity is added only where justified, i.e., within the newly
added object, and perhaps within other objects that interact with it
(this can result in a chain reaction that will influence the whole
system, but again — if the real system is complicated the model
cannot hide this complexity). The methodology used by Kaufman
et al, however, doesn’t support modularity: the whole system is
modeled as one big entity; any small change requires re-evaluation
of the entire model.

Model results. The Boolean formalism used by Kaufiman et al
seems to have some advantage over statecharts concerning the
‘bottom line’ of the model. Once the logical analysis is completed,
one ends up with a Boolean formula that sums up all the
possibilities for achieving a given scenario (e.g., positive signaling
followed by recovery of responsiveness). With statecharts,
however, there is no built-in mechanism that assures that all the
possibilities have actually been checked. For example, it is
reasonable to assume that one would check the model for a
situation in which the time delay for the activation of the positive
signaling pathway is shorter than the corresponding time delay of
the inhibitory pathway. Yet, it is not trivial to assume that the

modeler will check what happens when tIS <ttt + tE - tE .

The issue of carrying out an extensive analysis of all possible
play-out scenarios of the model can be addressed using temporal
logic or live sequence charts (LSC’s) [18], but this is beyond the
scope of this work.

It should be mentioned, however, that the results received from the
Boolean-formalism-based model relate only to one kind of
analysis: how different relationships between time delays influence
the behavior of the system. Yet, if one wants to examine, for
example, how different orderings of events influence the system’s
behavior, the Boolean formalism does not seem to be unhelpful.
This point is crucial for the question under investigation. If the
model was designed to include co-stimulation (like in [8]), then the
order of signals would have played a critical role: proper TCR
binding followed by a co-stimulatory signal leads to full activation,
while a TCR binding with no co-stimulation to follow will lead to
anergy (co-stimulatory signal by its own has no effect on the T

cell) [12]. With the statechart-based model, these kinds of things
are quite simple: the same model could be run for a wide range of
scenarios (see further discussion in Section 5; for more detailed
examples see [8]).

Model clarity. Note in Figure 1 that there are several drawbacks
with the representation of the system:

Semantics: the authors of [15] present Figure 1 as describing “a
series of events”, but later on use the notation “state variables” to
describe the logical variables attached to these “events”. This
point is not raised here as a criticism, but rather as an anecdote
that reflects an inherent problem in their methodology: there is no
clear distinction between states and events. Bound TCR is a state
and not an event, while for Costimulation it is the other way
around. The logical model indeed describes transitions between
states as a consequence of a series of events, but the modeling
methodology provides no clear distinction between these various
terms.

Hierarchy: Figure 1 contains six rectangles that represent states or
events. Three of these rectangles refer explicitly to precise objects
(Ligand, TCR and PTK), but the other three seem “objectless”.
Object model diagrams provide such organization by defining
relationships and hierarchy between objects. Thus, the relatively
simple object model diagram associated with this model (Fig. 3)
expresses quite clearly the hierarchy between the Tcell composite
object and its two component objects, as well as the different
relationships among the various objects. Hierarchy and
organization are also essential features of statecharts, as expressed
by the clustering of sub-states into super-states.

The statecharts-based object-oriented modeling approach deals
with the issues of semantics and hierarchy in a relatively intuitive
manner. This observation is relevant for biologists, who deal, as a
matter of routine, with decomposing a biological system into its
cellular and molecular compartments, examining the relationships
between them and analyzing their dynamic behavior.

5. SUMMARY

We recently reported the application of visual formalisms, which
were developed for constructing computerized reactive systems, to
the modeling of biological systems [8]. In this work, we have
illustrated some of the advantages of this modeling approach by
using the language of statecharts to represent a logical model for T
cell activation and anergy, which was originally constructed in
[15] using a Boolean formalism. In closing, we would like to raise
another issue regarding the kinds of models that can be
constructed using these different approaches.

The model presented by Kaufiman et al. involves three stages that
characterize the traditional quantitative modeling of biological
systems:

1. Identifying a biological problem that should be addressed
using mathematical tools. In [15], the motivating question was:
what are the conditions leading to alternative T cell behavior in
response to a given signal? Additional examples for such
problems are: how sensitive is the functioning of a given
protein network to variations in its biochemical parameters
[19]? Under which conditions will a given system adopt



oscillatory behavior and what is the purpose of the oscillations
[20]?

2. Isolating a few key components in the system, which are
believed to be responsible for the phenomenon under
investigation.

3. Constructing a model that relates these key components to
each other, attempting at exploring the dynamics of the system.

Such models are usually based on a relatively small number of
parameters. Thus, in the three examples mentioned above
([191,[20] and [15]), the models take into account six, three and
four parameters, respectively. Hence, the biological questions
studied with these models tend to be limited to systems that are
indeed governed by a very small number of parameters, or require
neglecting (at least as a first approximation) most of the
parameters that constitute the real biological system.

As further discussed in [8], when constructing a statechart-based
model of a biological system we need not necessarily limit the
study to some specific problem such as robustness or oscillations.
Rather, in the first stage, we can organize (almost) everything we
know about the biological system of interest into a formal,
well-structured model.

In the second stage, we can test whether the formal representation
of the model fulfills our requirements (based on the existing
biological data). This is done both by model simulation (see
Section 3.3 and [8]) and by formal verification methods (to be
discussed in a future paper).

We would like to stress that the advantages of statechart-based
modeling are not merely arguments for preferring one modeling
technique over the other. Rather, we are dealing with a totally
different conceptual modeling approach. As further discussed in
[8], statechart-based object-oriented modeling appears to be a
natural language for describing biological systems. Describing
biological systems as a collection of objects that communicate
between them fits the way we think about them, it fits the way
experimental data are collected and it seems suitable for coping
with the challenge of understanding how biological objects
collaborate to establish a system.
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