
Symbolic Systems Biology: Theory and Methods, Jones and Bartlett Publishers 2010 
 

On Statecharts for Biology 
 

Jasmin Fisher and David Harel 
 

 

 

Biology as Reactivity 

 
One of the central issues in software and system engineering over the last couple 
of decades has been to develop languages, methods and tools for the reliable 
construction of reactive systems, those whose complexity stems not necessarily 
from complicated computation but from complicated reactivity over time (Harel 
and Pnueli, 1985).  Such systems are usually highly concurrent and time-
intensive, and can exhibit hybrid behavior that is predominantly discrete in 
nature but has continuous and stochastic aspects too. The structure of these 
systems consists of many interacting, often distributed, components. Very often 
the structure itself is dynamic, with its components being repeatedly created and 
destroyed during the system’s life span. The heart of the problem is the need for 
good approaches to modeling and analyzing the dynamic behavior of such 
systems. 

In the last decade or so, we and others have carried out work on viewing 
biological systems as reactive systems, and on modeling and analyzing a variety 
of sample pieces of biology. This approach is based on three premises (Harel, 
2003): (i) that satisfactory frameworks exist in software and systems engineering 
for reactive system modeling and design; (ii) that biological research is ready for 
an extremely significant transition from analysis (reducing experimental 
observations to elementary building blocks) to synthesis (integrating the parts 
into a comprehensive whole), a transition that requires mathematics and 
computation; and (iii) that the true complexity of biological systems --- 
specifically multi-cellular living organisms --- stems from their reactivity. 

As far as the third of these goes, biological systems exhibit the 
characteristics of reactive systems remarkably, and on many levels; from the 
molecular, via the cellular, and all the way up to organs, full organisms, and even 
entire populations. It doesn’t take much to observe within such systems the heavy 
concurrency, the event-driven discrete nature of the behavior, the chain-reactions 
and cause-effect phenomena, the time-dependent patterns, etc. From these three 
premises there follows a thesis, prompting much of our own work in this area: 
that biological systems can be modeled beneficially as reactive systems, using 
languages and tools developed in computer science for the construction of man-
made systems. One of the main languages we have used to do the modeling is 
that of Statecharts (Harel, 1987; Harel and Gery 1997), and the present paper is 
aimed at discussing some of this work and its ramifications. 

Our claim is that biological systems, just like many engineered systems, 
are complex reactive systems – interacting and responding to the environment 
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and to other components of the system (Harel, 2003).  The main efforts on 
modeling reactive biological systems with the aid of Statecharts include the 
following: Kam et al. (Kam et al., 2001) have modeled T-cell activation, and 
Efroni et al. (Efroni et al., 2003) have modeled T-cell development in the thymus. 
Following work on a model of cell fate determination during C. elegans vulval 
development in Kam et al. (Kam et al., 2003), which used a somewhat different 
language (live sequence charts), statecharts were used to model certain advanced 
aspects of that system in Fisher et al. (Fisher et al., 2005; Fisher et al., 2007) and 
Sadot et al. (Sadot et al., 2008). Swerdlin et al.  have modeled the dynamics of 
the lymph node (Swerdlin et al. , 2008), and Setty et al. have modeled the 
morphogenisis of the pancreas (Setty et al., 2008).  

To help see how reactivity is indeed relevant, here is how the reactivity of 
biology has been described recently: 

A reactive system, in contrast to a transformational system, does not 
behave according to a pre-programmed chain of linked instructions. Rather, such 
a system reacts in parallel to many concurrent inputs, and its behaviors, outputs 
and effects, are not just a function of the values of its inputs but also of their 
variety, of the order in which they arrive, of their timing, of their arrival speeds 
and so forth. A biological system expresses a dynamic narrative in which the DNA 
code is one of the many formative inputs. Structural proteins, enzymes, 
carbohydrates, lipids, intracellular signals, hormones and other molecules play 
key roles in forming and informing the system. The environment of the living 
system is a most critical source of information (Cohen 2006). True, DNA serves 
as a special repository of information because it is replicated and transmitted 
across generations, but DNA is meaningless without the proteins and other 
molecules that selectively activate segments of the DNA sequence in variable and 
alternative ways to create genes. The activation of specific genes emerges from 
the dynamic state of the cell. One could argue that DNA is just as much a servant 
of the cell’s state as it is the cell’s master; there is no hierarchical master plan 
(Cohen & Atlan 2006).  

Note that, unlike a transformational system, a reactive system does not 
seek equilibrium, has no set point and no state of rest. A reactive system holds 
itself together as a system just by reacting. A reactive system succeeds not by 
reaching homeostasis; a brain in homeostasis is clinically dead. A reactive system 
succeeds by being both robust and resilient. The reactive system responds to 
simultaneous perturbations and continues to survive, thanks to its reactive 
dynamics. It is true that organisms feature sub-systems that can be described 
nicely by homeostatic principles; some examples are the thermoregulatory 
system that maintains our internal temperature at 37ºC, our water balance 
system and blood glucose regulation. But these systems act only like the 
transformational systems when viewed as a whole; internally, each of these 
systems is fashioned by collectives of concurrently reactive, never-resting cells 
(Cohen 2000). 
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Visual Languages for Reactivity 

We should emphasis from the start that dynamic reactive behavior is the main 
issue of concern in this paper, and we will have nothing much to say about how 
the structural non-dynamics aspects of a biological system are to be captured.     

One of the most widely used ideas that have proven relevant to the process of 
specifying the dynamic behavior of reactive systems, is that of visual formalisms 
(Harel 1988). These are languages that are both graphically intuitive and 
mathematically rigorous, and many are supported by powerful tools that enable 
full model executability, and code generation. The models they give rise to are 
linkable to GUIs and other structural descriptions of the system under 
development. This enables realistic simulation prior to actual implementation. At 
present, such languages and tools --- recently many of these are based on the 
object-oriented paradigm --- are being strengthened by verification modules, 
making it possible not only to execute and simulate the system models (test and 
observe) but also to verify dynamic properties thereof (prove). They are also 
being linked to tools for dealing with the system’s continuous aspects in a full 
hybrid fashion. Most of the tools are state-based, encouraging intra-object style 
specification, and within these the language of choice for reactive behavior is 
most often Statecharts (Harel 1987).  One of the most powerful and versatile of 
these tools is Rhapsody (Harel & Gery 1987). 

We should add that the fact that we concentrate in visual formalisms does not 
mean that there are no other approaches.  There has been, for example, a 
tremendous amount of extremely interesting work done on using non-visual 
approaches to modeling reactive systems, among which are temporal logic, 
process calculi and process algebras, etc. In many cases these have also been used 
successfully in modeling biology; see, e.g., (Cardelli, 2004; Kwaitkowska et al., 
2006; Priami and Quaglia, 2004; Regev, Silverman and Shapiro, 2001). 

 Another important point when we consider computational tools for modeling 
biology is that they must support ways to represent models and data that are 
natural and can become standard. User friendliness, flexibility and visuality are 
critical to integrating computational tools into experimental biology research. 
Biologists are not expected to become engineers, so that one of the challenges 
facing computer scientists is to design modeling languages and software tools 
that are more accessible to non-experts.  

 

On Statecharts  

There are actually two dual approaches to modeling reactivity, intra-object and 
inter-object, and in the realm of visual formalisms they manifest themselves in 
the form of two families of languages, state-based and scenario-based (Damm 
and Harel, 2001; Harel and Marelly 2003). We will use Statecharts and Live 
Sequence Charts (LSCs) as representatives of these. They are both visual 
languages with clear and rigorously defined syntax and semantics, and which 
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enable the construction and execution of formal models. Statecharts specify the 
full state-based behaviours of each object in the system (e.g., a cell), whereas 
LSCs specify the multimodal (e.g., possible, necessary and forbidden) scenarios 
that link together the objects by their possible sequences of behaviour. 

In this paper we concentrate on statecharts, and on the intra-object approach. 
The main reason is in the fact that the use of states, or modes, appears to be a 
very natural way to view biological dynamics.  In a state, part of the system (e.g., 
a cell) stays put, remains, dwells for some non-zero amount of time, to move on 
only as a result of the occurrence of some event (arrival of a signal, change in 
some relevant quantity or value, etc.). Using scenarios or pathways does not 
necessarily have an explicit notion of staying put, being, dwelling, residing, etc.  

Statecharts define behavior using a hierarchy of states with transitions, 
events, and conditions (Harel, 1987). Classical finite-state machines (FSMs) and 
their state transition diagrams are extended by a semantically meaningful 
hierarchical sub-stating mechanism and by a notion of orthogonal simultaneity. 
Both of these are reflected in the graphics themselves, the hierarchy by 
encapsulation and the orthogonality by adjacent portions separated by a dashed 
line. Orthogonal components can cooperate and know about each other by 
several means, including direct sensing of the state status in another component 
or by actions. The cooperation mechanism ― within a single statechart ― has a 
broadcasting flavor. It helps to note that capsulated sub-states represent OR 
(actually this is XOR; exclusive or), and orthogonality is AND.  

Transitions become far more elaborate and rich than in conventional 
FSMs. They can start or stop at any level of the hierarchy, can cross levels, and in 
general can be hyperedges, since both sources and targets of transitions can 
contain sets of states. At any given point in time a statechart will be in a vector, or 
combination, of states, whose length is not fixed. Exiting and entering orthogonal 
components on the various levels of the hierarchy continuously changes the size 
of the state vector. Default states generalize start states, and they too can be level-
crossing and of hyperedge nature. And the language has history connectors, 
conditions, selection connectors, and more. A transition can be labeled with an 
event and optionally also with a parenthesized condition, as well as with Mealy-
like outputs, or actions. (Actions can also occur within states, as in the Moore 
style.)  

Using Rhapsody (or other similar tools) a Statechart model can be compiled 
into executable reactive code (for example, in Java or C++). At run-time, one 
state in each orthogonal component is active – which is the current state of this 
component. Thus, the state of an object is identified by the set of active states of 
all of its components. As the simulation advances, various events move the active 
state in each orthogonal component from one state to another. Concurrent 
execution is naturally captured by the running of the model, or alternatively in 
the executable code that is generated from it. 

When using the object-oriented version of Statecharts (e.g., as supported 
by Rhapsody) the underlying structure of the objects gives them too a measure of 
modularity and hierarchy. One can add or remove objects, connections, states 
and transitions at any level. Statecharts also have ample means to specify rich 
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kinds of behavior, such as concurrency, stochasticity, chain reactions and time-
dependent or time-constrained actions.  
 

Statecharts for Biology 

Starting in the mid-1980s the second-listed author has often claimed that 
biological systems should be viewed as systems the way we know them in the 
world of computing and software engineering, and that biological modeling 
should be attempted using languages and tools constructed for developing 
reactive systems. As mentioned in the previous section, one obvious approach is 
to use states. State-based models define the behavior of objects (or other 
elements of the system under description) over time, based on the various states 
that an object can be in over its lifetime.  In other words, states are abstract 
situations in an object's life cycle. Interacting state machines can specify causal 
relationships between state changes in different machines. These models describe 
both how objects communicate and collaborate, and how they behave under 
different circumstances. Interacting state machine models are particularly 
suitable for describing mechanistic models of biological systems that are well 
understood qualitatively. Such models do not require much quantitative data 
relating to the number of molecules and reaction rates. They allow the creation of 
abstract high-level models and the application of strong analysis tools such as 
model checking.  

Usually, the state of an object is determined in part by the states of its sub-
objects. For example, significant portions of the state of a cell would be 
determined by the states of the various genes and proteins comprising it. Each 
gene or protein would then have its own reaction to the presence or absence of 
some other molecules, and the change in the state of the cell would be influences 
greatly by the inter-dependent state changes of all parts. A hierarchical structure 
allows one to view a system at different levels of detail, and hierarchy in the 
behavioral description itself is no exception. Now, while there are many different 
languages to express interacting state machine models, Statecharts stand out, 
among other things, because of their support of hierarchy. In fact, a large part of 
the appeal of the language has been its hierarchical description capabilities. The 
possibility of hierarchical structuring is extremely useful in cases where the 
behavior is distributed over many cells, and where multiple copies of the same 
process are executed in parallel.  

Another advantage of Statecharts compared to other state-based 
formalisms, such as Reactive Modules (Alur & Henzinger 1996), is the fact that it 
is visual. The user can draw states and state changes, and good supporting tools 
will be able to execute the resulting models, enabling relatively easy and intuitive 
programming even for non-specialists. Using the visual language of Statecharts, 
Kam et al. developed a model that described the various stages in the life span of 
a T-cell, and the transitions between these stages (Kam et al., 2001). The initial T-
cell model was followed by a more extensive animated model of T-cell 
differentiation in the thymus, carried out by Efroni et al. (Efroni et al., 2003, 
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Efroni et al., 2007). That project introduced an idea called reactive animation 
(RA) (Efroni et al., 2005), where a reactive system (e.g., built using Statecharts) 
drives the display of animation software to visualize the model. At run-time, the 
front-end displays the simulation continuously and provides the means to 
interact with it. Initially, RA was implemented in an ad-hoc fashion, that is, one 
reactive system engine to one animation tool. Recently, the technique has been 
upgraded, resulting in a generic platform that enables interaction between 
various tools such as multiple reactive engines, 3D animation, real-time analysis 
and more (Setty et al., 2008). 

Reactive systems, especially when used in modeling biology, call our 
attention to their emergent properties. These are properties of the behavior of 
the system, taken as whole, which are not expressed by any one of the lower-scale 
components that comprise it. Life, for example, is an emergent property; none of 
the component molecules of a cell are alive, only a whole cell lives.  

Following an argument made in (Cohen and Harel, 2007), one notices that 
emergence is difficult to define in biological terms. It is a matter of scale. A cell 
emerges from the structured interactions of the molecules that comprise the cell. 
But the cell is orders of magnitude larger than its component molecular 
interactions. Obviously, you cannot see a cell from the inside at the molecular 
scale. The cell emerges only when you step back—zoom out—and look at the 
cellular system at a scale appropriate to seeing an entire cell. The cell emerges 
from its component interactions at the scale at which the cell functions as an 
object, with its own capabilities, and its own interactions with other cells and 
molecules.  

 
Actual Modeling Efforts 

In some modeling projects carried out over the last few years, mainly in the Harel 
group at the Weizmann Institute of Science, we have illustrated the usefulness of 
statecharts to reason about various biological processes. We briefly describe these 
models, not necessarily in their chronological order.  
 
Pancreatic organogenesis in the embryonic mouse 
The Statechart model of pancreatic organogenesis in the embryonic mouse (Setty 
et al., 2008), consists of a concurrent execution of pancreatic cells, which leads to 
the formation of the unique 3D structure of the organ (Figure 1). The model was 
studied by comparing simulations against relevant experimental data, and it 
reproduced some genetic ablation experiments in silico. As an example, Figure 2 
shows a histological cut of the pancreas (left) and the emerging structure in the 
model at approximately the same day (middle). On the right, the figure shows the 
result of an in silico experiment, in which the aorta was disabled, leading to a 
complete lose of structure. During the analysis of the pancreas model, concurrent 
execution of pancreatic cells was shown to give rise to a property that 
corresponds well with endocrinic clusters that appear early in the developing 
organ in vivo (Setty et al., 2008). 
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Figure 1.  (From Setty et al., 2008)  Pancreatic organogenesis in the embryonic mouse consists 
of a concurrent execution of pancreatic cells, which leads to the formation of the unique 3D 
structure of the organ. 
 
 

 
Figure 2.  (From Setty et al., 2008)  A histological cut of the pancreas (left) and the emerging 
structure in the model at approximately the same day (middle), and the result of an in silico 
experiment, in which the aorta was disabled, leading to a complete lose of structure (left). 
 
Cell fate specification during C. elegans development 
Following the LSC model of vulval fate specification in Kam et al. (Kam et al., 
2003), Fisher et al. (Fisher et al., 2005) created a Statecharts model of vulval fate 
specification based on the proposed mechanistic model of Sternberg and Horvitz 
from 1989 (Sternberg & Horvitz 1989) This work revealed that state-based 
mechanistic modeling is well-suited to developmental genetics and can provide 
new insights into the temporal aspects of cell fate specification during C. elegans 
vulval development. More recent work (Fisher et al., 2007) was based on the 
more sophisticated understanding of vulval fate specification that we have today. 
Model checking allowed us to test the consistency of the current conceptual 
model for vulval precursor cell fate specification with an extensive set of observed 
behaviors and experimental perturbations of the vulval system. The analysis of 
this model predicted new genetic interactions between the signaling pathways 
involved in the patterning process, together with temporal constraints that may 
further elucidate the mechanisms underlying precise pattern formation during 
animal development. These predictions were also validated experimentally. 
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T cell activation and differentiation in the thymus 
The other models relate to the immune system and simulate the development and 
function of T cells in the thymus (Efroni et al., 2003; Efroni et al., 2007). Figure 3 
shows analysis of the thymus model; microscopy images of knockout (A) and wild 
type (B) thymus (left column), compared with the same area in the model (right 
column). On the right, Figure 3A shows an in silico experiment, in which the 
knockout of a single gene leads to a major change in the behavior of the cell 
population.  

 
 

 
 
Figure 3. (From Efroni et al., 2007)  The thymus model: microscopy images of knockout (A) 
and wild type (B) thymus (left column; from Plotkin et al., 2003), compared with the same area in 
the model (right column).  
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Analysis of the models also revealed several interesting emergent 

properties, which correspond well with biological phenomena. For example, the 
concurrent execution of T-cell development in the thymus led to the emergence of 
competitive behavior between the cells (Efroni et al., 2007). These properties 
were analyzed and studied, and were used to suggest some insights into the 
phenomena. 

 
Development and function of B cells in the lymph node  
This work consists of a Statechart and RA model of the lymph node; see Swerdlin 
et al. (Swerdlin et al., 2008).  The effects of the amount of antigen, as well as the 
actual size of the lymph nod, on the emergent properties of lymphocyte dynamics 
were studied. The model emphasized differentiation and anatomic localization. 
The dynamic organization of the lymph node visualized by RA sheds new light on 
how the immune system transforms antigen stimulation into a highly sensitive, 
yet buffered response.  
 
Generic Cell model 
The most recent modeling work in the Harel group has resulted in a system call 
ed GemCell. (Amir-Kroll et al., 2008). It contains a generic statechart model of 
cell behavior, which captures the five main aspects of cell behavior (proliferation, 
death, movement, import and export). This generic model is coupled with a 
database of biological specifics (DBS), which holds the information about the 
specific cellular system, and which is expected to be filled in by biologists with the 
relevant expertise. Modeling a particular segment of biology involves setting up 
the DBS to contain data about the specific behaviors and responses of the kinds 
of cells in the system under description. During execution, statecharts read in the 
specific data and the combination runs just as described in the particular models 
above. 
 

 
Exercise 

Construct a statechart model for the Delta-Notch decision, as follows. 
 
Consider a cell that is about to take a decision to adopt one of two fates ― A or B. 
The decision is made according to the competition between two signalling 
pathways operating inside the cell and between neighbouring cells. The following 
proteins are of interest: Notch receptor and its ligand Delta, which signify the 
level of the two signalling pathways.  
 
Here is how the cell behaves. The Notch pathway encourages the cell to adopt fate 
A while the Delta pathway encourages the cell to adopt fate B. In a normal cell, 
Notch starts in a low level which gradually increases. When Notch reaches a 
certain level (threshold) it forces the cell to adopt fate A. At the same time, Delta 
encourages the Notch in the neighbouring cells (via the Notch receptor on 
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neighbouring cells) and inhibits the Notch in the same cell. Delta starts on a low 
level and if not encouraged it decreases until it disappears. Delta may be 
encouraged by the level of Notch in the neighbouring cell (sensed by Delta). If 
Delta reaches a certain threshold it inhibits the Notch and causes the cell to adopt 
fate B. 
 
The following behaviours are observed: 
1. When a cell is run in isolation, the Notch should prevail and the cell should 
assume fate A. 
2. When two cells are run in parallel either of them can assume fate A, in which 
case the other assumes fate B. There are rare cases where both cells assume fate 
A. 
3. When one of the cells gets an external boost to the pathway, it is always the 
case that this cell adopts fate A and the other fate B. 
 
Test your model on varying numbers of cells and see what configurations of fate 
(A and B) your model yields. 
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