Journal of Computer and System Sciences 78 (2012) 970-980

Contents lists available at ScienceDirect

JOURNAL or
COMPUTER

&'° SYSTEM

Journal of Computer and System Sciences Sarnces

www.elsevier.com/locate/jcss

Synthesis from scenario-based specifications ™

David Harel *, Itai Segall **

Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel

ARTICLE INFO ABSTRACT
Article history: We consider the problem of the automatic generation of reactive systems from specifica-
Received 5 April 2010 tions given in the scenario-based language of live sequence charts (LSCs). We start by

Received in revised form 20 December 2010
Accepted 5 August 2011
Available online 17 August 2011

extending the language so that it becomes more suitable for synthesis. We then translate
a system specification given in the language into a two-player game between the system
and the environment. By solving the game, we generate a winning strategy for the system,
Dedicated to the dear memory of Amir which corresponds to a correct implementation of the specification. We also define two
Pnueli: Friend, colleague, and a truly notions of system correctness, and show how each can be synthesized.

towering figure in computer science © 2011 Elsevier Inc. All rights reserved.

Keywords:

Synthesis

Live sequence charts

LSC

Specification

Scenario-based programming

1. Introduction

Implementation of systems, especially reactive systems, is an error-prone task. Very strong and sophisticated verifica-
tion algorithms have been developed over the years for comparing an implementation with its specification, thus verifying
correctness. Automatic synthesis of a system directly from its specification would have been even better. Given a specifica-
tion in some rich and expressive language, a synthesis process would automatically generate a system that adheres to the
specification [27].

In this paper, we introduce an approach for synthesis from live sequence chart (LSC) specifications. LSCs constitute a
visual and intuitive language for scenario-based specification of reactive systems [5]. Syntactically, LSCs extend message
sequence charts (MSCs) [14] by adding hot and cold modalities, standing for things that must or may happen, respectively.
An operational semantics for the language, termed play-out, is defined in [12]. A version thereof that plans its steps ahead,
thus reducing violations, is smart play-out [9]. However, since its lookahead is limited to a single superstep (a series of events
by the system, encapsulated between two consecutive events by the environment), even smart play-out does not guarantee
that violations will never be encountered. In order to ensure that regardless of the environment actions the system will
indeed satisfy the specification, full synthesis appears to be required.

* This research was supported by the John von Neumann Minerva Center for the Development of Reactive Systems at the Weizmann Institute of Science,
and by an Advanced Research Grant from the European Research Council (ERC) under the European Community’s 7th Framework Programme (FP7/2007-
2013).

* Corresponding author.

** Principal corresponding author.
E-mail addresses: dharel@weizmann.ac.il (D. Harel), itai.segall@weizmann.ac.il (I. Segall).

0022-0000/$ - see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.jcss.2011.08.008


http://dx.doi.org/10.1016/j.jcss.2011.08.008
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcss
mailto:dharel@weizmann.ac.il
mailto:itai.segall@weizmann.ac.il
http://dx.doi.org/10.1016/j.jcss.2011.08.008

D. Harel, I. Segall / Journal of Computer and System Sciences 78 (2012) 970-980 971

Controller

iy
< @:}Down() :

Elevator.Floor=Three ;
-— 9_ — — — —
@set Floor(Two)
' < EIe}Qrﬂog:Iwo b
H @set Floor(One)
Controller : ‘
1 bo| <FALsE >

< ;'4'_'_'_]CIose() :

; Forbidden Elements
%ﬂt}dose [MaIN  [FDown()
E MAIN  [Eup()

(a) The CloseDoors LSC (b) The FloorDown LSC

Fig. 1. Two charts from the elevator specification. (For interpretation of colors in this figure, the reader is referred to the web version of this article.)

Given a specification in the language of LSCs, we first translate it into a two-player game (specifically, a GR(1) game),
solvable in time polynomial in the size of the state space [21]. A winning strategy in the game, if one exists, represents an
implementation of a system that adheres to the given specification. If no such strategy exists, the specification is unrealiz-
able; i.e., there is no system that satisfies it.

Following some preliminary material (Section 2), we slightly extend and adapt certain features in the language to be
better suited for the synthesis process (Section 3). We introduce an example specification of a three-story elevator (Sec-
tion 4), and then turn to formally defining the problem of synthesis from LSC specifications (Section 5). In Section 6 we
introduce the translation of the specification into a game structure solvable by the GR(1) algorithm, and in Section 7 we
give additional examples and review experimental results. Finally, we discuss related and future work (Sections 8 and 9).

2. Preliminaries
2.1. Live sequence charts

Live sequence charts (LSCs) [5,12] are an extension of message sequence charts (MSCs) [14]. An LSC consists of a prechart
and a main chart, with the intended semantics that whenever the prechart is satisfied in a run, the main chart must also
be satisfied. The prechart and main chart are denoted by a dashed blue hexagon and a solid black rectangle, respectively.
As in MSCs, objects in LSCs are denoted by vertical lines, termed lifelines. Messages between objects are denoted by hor-
izontal arrows between two lifelines (or from a lifeline to itself). Conditions are denoted by hexagons. Most constructs in
the language, including messages and conditions, may be either hot or cold, denoted by solid red and dashed blue lines,
respectively. A hot construct must be satisfied, while a cold one may be satisfied. Failing to satisfy a cold construct is thus
a legal part of the execution.

For example, consider the LSC in Fig. 1(a). It has two lifelines, representing the objects Controller and Elevator
(for now, ignore the lightning icon on the Controller object, which will be discussed later). The prechart and main chart
consist of a single message each. This LSC states that whenever the Controller sends itself the Close message, the Elevator
must eventually also send itself a Close message (representing the action of the elevator closing its doors). Note that the
latter message is hot, thus the elevator doors must eventually be closed. A run in which the controller sends itself Close
(thus satisfying the prechart), but in which the elevator doors never close, is illegal. Moreover, a run in which the controller
sends itself another Close message before closing the doors is also illegal, as it violates the partial order dictated by the
chart. In other words, each chart, in addition to requiring messages to be sent according to the partial order in which they
appear, also forbids them from being sent in any different order.

Any object taking part in the specification is either controlled by the system, or by the environment. A message is said
to be a system (resp. environment) message, i.e., controlled by the system (resp. environment), if it is sent from an object
controlled by the system (resp. environment). We assume here that the main chart does not contain environment messages.

Some of the more advanced constructs in the language can be found in the LSC FloorDown in Fig. 1(b). Its prechart
contains one message, Down, sent from the Controller object to itself. Its main chart consists of a switch-case construct
with cases for the elevator being on floors three and two, and a default case if none of the others hold. The default case
consists of a FALSE hot condition, representing a scenario that is not allowed to happen (since the FALSE condition can never
be satisfied). The bottom of the chart contains two forbidden messages. They are hot, as denoted by the solid red frame, and



972 D. Harel, I. Segall / Journal of Computer and System Sciences 78 (2012) 970-980

state that the messages Down and Up sent from the controller to itself are forbidden as long as the main chart has not been
satisfied. The scope of this prohibition is the main chart, as denoted by the word MAIN.

To summarize, the LSC FloorDown in Fig. 1(b) states that whenever the controller sends itself the Down message, the
current floor of the elevator is checked: if it is three it moves to two, and if it is two it moves to one. Any other case (i.e., in
a three-story elevator, the case where it is on the first floor) is considered a violation of the specification. Until the elevator
moves, the controller may not send itself a Down or Up message.

2.2. Play-out and smart play-out

Play-out [12] is an operational semantics for the language, enabling a specification (typically, a set of LSCs) to be executed
directly, without generating intermediate code. A cut is maintained for each LSC, showing where execution is at the moment
along each lifeline. A configuration is a snapshot of the state of the specification, including the cuts of all LSCs and the values
of all object properties. A chart is considered to be active in a configuration if its cut is in the main chart. A message is
enabled in a cut of a chart if it appears immediately after the cut in the chart. A message is violating in a cut of a chart if it
appears in the chart, but is not enabled in it. Play-out is carried out in steps. At each step, a single message is executed.

Different appearances of the same message are unified at runtime. Thus, if a message is executed, all its appearances
are considered. If it is enabled in several places, all the corresponding cuts are updated. A message might also be violating
in some chart when executed (by appearing in the chart but not being enabled in the current cut of this chart). In some
cases (e.g., when this chart is inactive, or if all enabled messages are cold), this is considered a legal step, and the cut will
be updated accordingly (for example, the chart may be closed; i.e. its cut reset to the initial location before the prechart).
This is termed a cold violation. In other cases, however (when a hot message is enabled), sending a violating message is
considered a violation of the specification, and must be avoided.

At each step, play-out chooses a single system message that is enabled in some active LSC and that does not violate the
specification, and executes it. Play-out does not guarantee that no violations will occur (or rather that at each step there
will exist an enabled message that is not violating). Violations might happen since play-out makes its choices arbitrarily,
without considering their future consequences. Stronger play-out mechanisms are those of smart play-out [9] and planned
play-out [13]. These are initiated following each environment step, and look for a sequence of system steps to perform in
response (termed a superstep), that will lead the system to a state where no LSC is active (a stable state), in preparation
for the next environment step. During this superstep, these algorithms guarantee that no violations will occur. However,
looking only one superstep, or any finite number of supersteps, ahead is not sufficient either, as shown in [7]. This leads
to the synthesis problem, i.e., given an LSC specification, find a reactive system that always adheres to the specification, or
prove that one does not exist.

2.3. Game structures

A two-player game structure is a tuple G: (V, X, Y, ©, ps, pe, ¢), where V represents the set of state variables, X is the set
of system-controlled variables, and Y is the set of environment-controlled variables (for a set of variables T, or for a single
variable t, we denote a valuation of T or t by ). @ is the initial condition, and p; and p, represent the transition relations
of the system and the environment, respectively. Since in this formalism the system is the first player, its transition relation
may depend only on the current state, whereas that of the environment may also depend on the system’s transition. More
formally, ps is a relation ps € X x Y x X, where (%, ¥, X) € ps represents the fact that from the state (X, y), the system may
set its variables to X’ in the next state. Similarly, pe € X x Y x X x Y, where (%, y,X,y’) € pe represents the fact that from
the state (X, y), if the system sets its variables to X, the environment may set its variables to ¥’. Finally, ¢ is the winning
condition.

A strategy is a partial function mapping a series of states to the next system action, or a possible set thereof. A run is
compliant with a strategy if each step taken by the system is allowed by the strategy. A strategy is winning for the system if
any run, in which the environment takes only legal steps (i.e., ones allowed by its transition relation) and is compliant with
the strategy, is winning for the system, i.e., it satisfies ¢. Finally, a game structure is realizable if there exists a strategy that
is winning for the system from any initial state (one satisfying the initial condition @).

A GR(1) game is defined in [21] as a two-player game with a winning condition of the form ¢ = AL, 0Cp; —
/\'}1:1 0<q;. Here, the p;s represent assumptions on the environment, and the g;s requirements from the system (both
are boolean combinations of atomic propositions over the state variables), and the condition states that the system wins if
in every run in which each of the assumptions is satisfied infinitely often, each of the requirements is also satisfied infinitely
often. An algorithm for solving such games, i.e., for finding the set of winning states for the system, and for synthesizing
a winning strategy for it (or proving that none exists), is given in [21] as well. The algorithm runs in time polynomial in
the size of the state space. In this paper, we adopt this algorithm, with a slight modification for games in which the system
plays first (this modification is for convenience of notation, and the games are equivalent; implementing the modification is
quite straightforward and is not detailed here). In fact, in our case, the generalized Biichi winning conditions of /\T:1 0<q;
suffice (they are easily reducible to GR(1) conditions by taking empty assumptions).



D. Harel, I. Segall / Journal of Computer and System Sciences 78 (2012) 970-980 973

2 o] o]
N i

< :...F;!'FK B
. e
i(Floor1Btn=False>
& ; : /
:qtﬂ’l‘ue : | FlooriBtn | I Elevator |
: : :’”"-True\
. (i
: /
Forbidden Elements : =
MAIN [set Floor(One) (F) Elevator.floor=0ne ;
s | Elevator=0pen
MAIN ?Jset Fioolr(Two) =l et
MAIN Hjset Floo:r(Three) :qtlFalse

(a) The Btnlon LSC (b) The Btnloff LSC

Fig. 2. Two LSCs from the elevator specification, using the Yield construct and both types of conditions.

3. Adapting LSCs for synthesis

In order to adapt the LSC language to be better suited for synthesis, we introduce some modifications to the syntax and
semantics of the language, as follows.

3.1. The yield construct

We adopt the superstep approach, first introduced in [9]: following an environment step, the system is allowed to
perform any finite number of steps (a superstep) before yielding control back to the environment. In order to ease this,
we add a Yield construct to the language, denoted by a concave hexagon. A Yield may be synchronized on any number of
lifelines, and is advanced only when the system yields control to the environment. Using this construct, the specifier can
force the system to stop at a certain point and listen to an environment event, rather than continuing its superstep for as
long as it wishes. For example, consider Fig. 2(a). Whenever the prechart is satisfied in this chart, the object Floor1Btn
will send itself the message True, and then the system must yield control.

Note that when yielding control, the environment may send any message it wishes, including ones that appear elsewhere
in the chart. This is not considered a violation of the partial order of the chart. In other words, a Yield may be considered
as a wildcard for all environment messages: it allows any one of them to be sent at this point without violating the chart.
For example, consider again the LSC in Fig. 2(a). When the system yields control due to the main chart Yield construct,
the environment may send any message, including the message C1lick from the user to Floor1Btn. Since this message
appears elsewhere in the chart, this could have been considered a violation of the partial order, but since the Yield also
acts as a wildcard for all environment messages, this is not the case, and this message is considered enabled at this point
in time.

3.2. Spontaneous objects

In the operational semantics of [12], the system may send a message only when it is enabled in some main chart. In
other words, in order for a message to be sent, the specifier must explicitly state so in some chart. When treating LSCs as
a language for synthesis, the specifier often does not wish to explicitly state that a message must be sent, but rather leaves
this choice to the synthesized system.

For this purpose, we introduce spontaneous objects. These are objects with the property that messages sent from them
may be sent by the synthesized system whenever it is deemed necessary. For non-spontaneous objects, the standard play-
out semantics holds; i.e., a message from them may be sent only if it is enabled in some main chart. A lifeline representing
a spontaneous object is denoted by a small lightning icon below the object name. We say that a message is spontaneous iff
its sender is a spontaneous object.

For example, consider Fig. 1(a), whose LSC has two lifelines - one for the Controller object, which is spontaneous,
and the other for the Elevator object, which is not spontaneous. The message Close from Elevator to itself may be
sent only when it is enabled in some main chart (since its sender, the Elevator, is not spontaneous). The message Close
from the Controller to itself, on the other hand, may be sent spontaneously by the synthesized system.



974 D. Harel, I. Segall / Journal of Computer and System Sciences 78 (2012) 970-980

i

< i Iset Floor(Two) \
g o — — =%

Conroller < FL.QOEBL”ﬂEUE N //
ST T T T TN :
< t-1Down()! \ ;QtIOpen ;

< EEaEr:OEEn s/
A R / Forbidden Elements

e [ay_feet Foonone) |
: : [fset Floor(Three) |

[MAIN

(a) The DownDoorsClosed (b) The DontSkipFloor2 LSC
LSC

Fig. 3. The safety and user-experience charts of the elevator specification.

3.3. Types of conditions

In the original play-out mechanism of [12], the decision as to when a condition is evaluated is rather complicated. In
order to ease our translation into a formal model, we propose two kinds of conditions: immediate and eventual ones.

An immediate condition is evaluated as soon as it becomes enabled. If it is hot, then it must hold at that moment, and
if it is cold, it may hold (i.e., if it does not hold, then the rules of a cold violation are followed). For example, consider the
prechart of the LSC in Fig. 2(a). The condition in it is an immediate one (it does not contain an “(F)” symbol), and thus
will be evaluated immediately upon being enabled. Therefore, whenever the user sends Click to Floor1Btn, the state of
FloorlBtn is checked (representing the button’s light). If it is off (represented by False), the prechart is satisfied and the
main chart becomes enabled. Otherwise, the prechart is closed.

The evaluation of an eventual condition, on the other hand, is deferred until the condition holds. As soon as it does hold,
it will be evaluated (i.e., the cut will progress beyond it). Note that an eventual condition will never cause violations (either
cold or hot ones), since it is simply not evaluated unless it holds. It may prevent the chart from progressing, however.
Therefore a synthesis algorithm that wishes to cause the chart to terminate must eventually satisfy it. For example, the
condition in the main chart of the LSC in Fig. 2(b) is eventual (indicated by the “(F)” symbol), and it states that eventually
the elevator must be on the first floor with its doors open.

4. Completing the example

We now complete the introduction of the example specification for the three-story elevator. It will serve as a running
example throughout the paper.

The example considers a single environment object (the User), and five system objects: the Elevator, a Controller,
and three floor buttons, Floor1Btn, Floor2Btn and Floor3Btn, one for each floor. The Controller is the only spon-
taneous object. Messages from the Controller represent decisions that the system should be able to make spontaneously;
e.g., to move the elevator one floor up. The other objects respond to the decisions, and to user events, and are thus not
spontaneous.

The LSCs in Fig. 2(a) and (b) represent three charts each, in which the Floor1Btn lifeline is replaced by Floor1Btn,
Floor2Btn and Floor3Btn. These charts are the essence of the specification. LSC Btnlon (and its copies) in Fig. 2(a)
handles turning on the button light whenever the button is pressed, and LSC Btnloff in Fig. 2(b) (and its copies) makes
sure that the elevator reaches all requested floors.

The LSCs in Fig. 1(a) and (b) specify how the system may close the elevator doors, and move a floor down. Similar charts
exist for opening the doors and moving a floor up, respectively.

Finally, the charts in Fig. 3(a) and (b) capture safety and user-experience requirements. LSC DownDoorsClosed in
Fig. 3(a) states that the Controller may not send itself the message Down while the elevator doors are open (thus
forcing the synthesized system to close its doors before moving the elevator down). A similar chart exists for the message
Up. LSC DontSkipFloor2 states that if the elevator gets to the second floor while the light for that floor is on, it must
open its doors, and must not move before doing so. Similar charts exist for the first and third floors.

Note that in most previous work on execution and synthesis from LSC specifications, the specifier would have had to
explicitly specify, for example, that if a user presses the first floor button, the elevator closes its doors, gradually moves to
the first floor, and then opens its doors. Here, especially thanks to the notion of spontaneous objects, the specification can
be made much more declarative. Ours merely states that the elevator must get to that floor with its doors open, states how
an elevator moves and handles its doors, and adds some safety rules (e.g., that it is not allowed to move while the doors
are open). The rest is taken care of automatically by the synthesis algorithm. For example, if the system wishes to close the
doors, it may send the controller’s close message spontaneously, which will eventually cause the elevator doors to close.



D. Harel, I. Segall / Journal of Computer and System Sciences 78 (2012) 970-980 975

5. The problem definition

Synthesis is about the automatic generation of a system that satisfies a given specification. In order to formalize this
notion, we have to define what it means to satisfy a specification. We give two slightly different definitions for this.

We start by defining a run, which corresponds to a trace of messages, and which captures the series of configurations
that the specification takes when monitoring the trace. The definition of legal traces captures the notion of non-spontaneous
messages, and ensures that they are sent only when allowed.

Definition 1 (Specification). A specification is a set of LSCs, and an initial configuration.

Definition 2 (Trace). Given a specification S, let X¢ (resp. Xs) be the set of environment (resp. system) messages in S.
A trace is an infinite sequence of the form (Xp(Xs)*)®.

Note that we adopt the superstep approach of [9]: following each environment step, the system may perform a finite
series of steps before yielding control back to the environment.

Definition 3 (Run). Given a specification S and a trace oo - - -, where Vi «; € XU Xs, the corresponding run is a sequence
of configurations cg, c1, c2, ..., where cq is the initial configuration of the specification and for all i, cj;1 is the state of the
specification after sending «; from configuration c;.

Definition 4 (Legal trace). Given a specification S, a trace g - - -, and its corresponding run co, c1, C2, ..., the trace is legal
in S if for all i, at least one of the following holds:

1. «; is an environment message,
2. «; is a spontaneous system message,
3. «; is enabled in some main chart in configuration c;_q.

We want a run to satisfy a specification if it satisfies all of its charts infinitely often, where a chart is satisfied when it
is inactive. By requiring that each chart is satisfied infinitely often, we make sure that whenever a chart becomes active it
also eventually becomes inactive. The difference between the two definitions of satisfaction below is in whether all charts
need to be satisfied simultaneously or not.

Definition 5 (Global justice satisfaction). Given a specification S, consider the set C of all possible configurations of S. Let
GJ(S) C C be the set of configurations s.t. all LSCs of S are inactive: GJ(S) = {c € C: VI € LSCs(S) [ is inactive in c}. A run p
satisfies the specification S in the global justice sense if inf(p) N GJ(S) # @, where inf(p) is the set of states visited infinitely
often in p.

Thus, in order for a run to satisfy a specification in the global justice sense, it must infinitely often reach a state in which
all charts are inactive. This definition is a direct extension of the smart play-out approach [9]: following each environment
step, the system strives to reach a stable state, in which all charts are inactive and the system has no more obligations.

A weaker definition is that of local justice, where the LSCs have to be infinitely often satisfied (i.e., inactive), but not
necessarily simultaneously.

Definition 6 (Local justice satisfaction). Given a specification S, consider the set C of all possible configurations of S. Let
1 € LSCs(S), and Lj;(S) < C be the set of configurations s.t. | is inactive: LJ;(S) = {c € C: | is inactive in c}. A run p satisfies the
specification S in the local justice sense if VI € LSCs(S) inf(p) N LJ;(S) # ¥, where inf(p) is the set of states visited infinitely
often in p.

For both satisfaction definitions, we say that a trace satisfies a specification iff its corresponding run does.

In order to define a system that satisfies a specification, we first define an environment and a system. An environment
is merely an infinite sequence of environment messages, and a system maps finite prefixes of the environment to finite
sequences of system messages (supersteps). The trace generated by a system in an environment is an alternation between
environment steps and corresponding system supersteps.

Definition 7 (Environment). Given a specification S, let X't be the set of environment messages in S. An environment env is
an infinite sequence env e X¢.

Definition 8 (System). Given a specification S, let Xr and Xs be the sets of environment and system messages in S,
respectively. A system sys is a function sys: Xj — X¢.



976 D. Harel, I. Segall / Journal of Computer and System Sciences 78 (2012) 970-980

| vent | Iventswitch’
%]ventSwitch” vent | _L _l_

| '
L: == ——\ < 4_ Horlzontal \
ion & A
< 320 . < ventSWItCh = o /"’

:@ Horizontal Z_| Vertical

' "
' ' '

(a) The Vent1 LSC (b) The Vent2 LSC

| vent | IventSwitch|

-

< 4_ Wertical !

< ventSW|tch @n p /

\ : /
@Horwzontali

"

(¢) The Vent3 LSC

Fig. 4. Charts for the vent system, unrealizable in the global justice sense.

Definition 9 (Generated trace). Let sys and env be a system and an environment, respectively. Assume env = o1 - - -, where
for all i, n; € Xg. The trace generated by system sys in environment env, denoted tr(sys, env) is: tr(sys, env) = sys(€) - no - sys(no) -
n - sys(mon1) - - -

We now define a system satisfying a specification and a realizable specification.

Definition 10 (System satisfaction). Given a system sys, we say that sys satisfies a specification S in the global (resp. local)
justice sense, if for every environment, env, the trace tr(sys, env) is legal and satisfies S in the global (resp. local) sense.

Definition 11 (Realizability). A specification S is realizable in the global (resp. local) justice sense if there exists a system
that satisfies S in the global (resp. local) justice sense. Otherwise, it is unrealizable.

The local justice definition is strictly weaker. If a specification is realizable in the global justice sense, then it is also
realizable in the local justice sense. The other way around does not hold, i.e., there are specifications that are unrealizable
in the global justice sense but realizable in the local justice one. For example, consider adding the three LSCs from Fig. 4
to the elevator example. These LSCs add a vent to the elevator, that must keep spinning (by switching between horizontal
and vertical) as long as the switch is on. In an environment that turns the switch on and leaves it that way forever, there is
no system that can satisfy the two LSCs from Fig. 4(a) and (b) simultaneously, thus this specification is unrealizable in the
global justice sense. Obviously, it is realizable in the local justice sense, since the system may rotate the vent continuously,
thus satisfying each of the charts infinitely often.

Note that even if a specification is realizable in both senses, there may be systems that satisfy it in the local justice
sense but not in the global justice one. Moreover, our synthesized systems work by setting intermediate goals (in general,
a requirement from the set of requirements in the winning condition of the game, or in our case, making a specific chart
inactive). Whenever such a goal is set, our systems try to satisfy it as early as possible. In each step they choose an event
that necessarily gets them closer to their current goal (where the distance from a goal is the minimum number of steps
required in order to achieve it). However, once a goal is reached, for one step they are less strict. In the step immediately
following the goal, more events are allowed, even ones that get the system further away from its next goal (as long as the
next goal will still be achievable). Therefore, a system synthesized in the local justice setting may be more responsive to
the environment, since whenever it satisfies some LSC it may consider a goal achieved and for a single step it will be less
eager to continue, thus allowing the environment to step in. An example for this is given in Section 7.

6. The LSC game structure

In this section, we represent a given LSC specification S as a GR(1) game structure G(S) = (V, X,Y, O, ps, pe, ). The
variables in the structure should capture the configuration of the specification (including all its cuts and the values of



D. Harel, I. Segall / Journal of Computer and System Sciences 78 (2012) 970-980 977

all relevant object properties). Their transition relation updates them according to the LSC semantics, given the choice of
messages sent at each time step. The transition relation should also capture the superstep approach. The winning condition
is derived from the definition of a system satisfying a specification, as discussed in Section 5.

6.1. The state variables

We adopt the general framework of the state variables from [16]. In this framework, the system controls a single variable,
ms, which represents the message sent by a system object in the current step. The environment controls a variable me,
which represents the message sent by an environment object in the step, and a set of variables C that represent the current
configuration. At every turn, the system may do one of three things: send a single system message, do nothing (by using
the special no-op symbol, L) or yield control for this step (by using the special symbol T). In a step in which the system
chooses to yield control, the environment may choose a message of its own to send, or use its own no-op symbol, L, for
doing nothing. Given the choices of mg and m, for the next step, updating the variables of C is deterministic, and follows
the operational semantics of [12] directly (with the additions and modifications introduced in Section 3).

In [16], as in [9], C (denoted L there) captures cuts by introducing a variable for each lifeline, ranging over its locations.
Here, we take a slightly different approach. For each chart, we build an automaton (termed a cut-automaton), in which a
state represents a possible cut. The current state of the automaton can then be represented by a single variable, ranging
over its states. By building the automaton in a BFS-like manner, starting from the minimal cut, we may consider only the
reachable cuts in each chart. This representation is therefore much more efficient for charts that are highly “ordered”, but
much less efficient for very unordered charts (since in such charts the number of reachable cuts is relatively large, hence
explicitly enumerating them becomes inefficient). The exact analysis of these two possibilities, and heuristics for choosing
between them, are out of scope of this paper.

More formally, the sets V, X and Y of G(S) are as follows:

e The variables are V = {mg, m.} U C, where:
o mg ranges over the set of system messages appearing in S, plus the symbols | and T.
o m, ranges over the set of environment messages appearing in S, plus the symbol L.
o C={c: 1€LSCs(S)} U {cp: p object property appearing in S}, where:
- for an LSC I, ¢; ranges over the states in the cut-automaton of [;
- for an object property p, ¢, ranges over the possible values of p.
e There is only one system variable, X = {m;}.
e The environment variables are Y = {m,} UC.

6.2. The transition relations

The transition relations ps and p. should capture the following: (1) the restrictions on when messages may be sent;
(2) the superstep approach; (3) the semantics of updating a configuration in LSCs.

Intuitively, message restrictions are captured by requiring non-spontaneous messages to be enabled in order to be sent.
The superstep approach is represented by the fact that in any step in which the system takes a step other than yield (T),
the environment must take a no-op step (.L).

The LSC semantics is captured by the transitions of the cut-automaton that update its state (representing the cut of the
chart) according to the taken steps. Each automaton also has a sink hot-violated state capturing the fact that a hot violation
has occurred and the chart can no longer be satisfied. Note that this reduces a safety condition to a liveness one, since
violations are allowed by the transition relation, but will cause the liveness conditions to be unsatisfiable. To ensure this,
the chart is considered active in this sink state.

More formally, the transition relations ps and p, of G(S) are defined as follows:

e (M, Me, C,M,) € ps iff M} is a spontaneous message or m, is enabled in the configuration C.
o (M, Me, C, m,, m,,¢') € pe iff the following conditions hold:
Lm, AT >m, =1
2. ¥¢ € C §(¢, mj,m}) = E;, where §; is the transition function of the cut-automaton of [, mapping a state, a system
step and an environment step to the next state.
3. Vcp € C €}, is the value of the property p after performing m; and m, from a state in which the value of p is c;.

6.3. The winning condition

The winning condition formulates the condition for the system to be winning in a run. It is thus influenced directly by
the definition of satisfaction of a specification. For global justice, we require the system to infinitely often yield control from
a state in which all LSCs are inactive. For local justice, we require for each LSC that infinitely often a state in which it is
inactive is visited, and also that infinitely often the system yields control (thus ensuring finite supersteps).



978 D. Harel, I. Segall / Journal of Computer and System Sciences 78 (2012) 970-980

More formally, the winning condition ¢ in G(S) for global justice synthesis is defined as ¢ = OOC[Ajcfseys) (1 s
inactive) A Omg = T]. Note that this is not strictly a GR(1) formula, due to the usage of the “next” operator (denoted
by a circle), but can clearly be transformed into a GR(1) formula by introducing a boolean variable Previnactive s.t.
Previnactive’ =1 <> /\ ;¢ scs(s) (! is inactive) and setting ¢ = OO [Previnactive A ms = T].

For local justice synthesis, we define the winning condition as ¢ = /\¢/scss) OC (I is inactive) A OOms =T.

6.4. Synthesis and correctness

Once a specification is translated into a game structure, the only step left in order to generate a satisfying system is to
find a winning strategy in the game structure. The GR(1) synthesis algorithm from [21] can be used for this. The resulting
finite-memory strategy actually stands for a correct implementation of a system.

Roughly, given an environment, the sequence of messages produced by playing the winning strategy against this environ-
ment represents the generated trace. The trace is legal since the winning strategy necessarily follows the system transition
relation. The trace satisfies the specification since it is generated by a winning strategy, and the winning condition is a
direct translation of the satisfaction definition.

Note that the synthesis algorithm of [21] runs in time polynomial in the size of the state space. In our case, the state
space is of size exponential in the size of the specification.

7. Results and further examples

We have implemented the language modifications in the Play-Engine tool [12]. The cut-automata generation and formal
algorithms were implemented in JTLV, a Java framework for developing formal algorithms [23]. The experiments were per-
formed on a 2.2 GHz Linux PC with 32 GB memory. Screencasts of all the results mentioned here can be viewed online
at [26].

Consider the three-story elevator example given in Figs. 1, 2 and 3, and described above. The example consists of 18 LSCs.
The state machine of the system synthesized for this specification, for the global justice setting, consists of 81 states, and
was synthesized in 54 seconds. The resulting system acts as follows. Following a floor button press, it turns the light in
the button on and waits (this is due to the Yield constructs). Once the environment performs a no-op (represented by the
user clicking a no-op button), the elevator visits all floors for which the buttons have been pressed. When moving between
floors it closes its doors, and it opens them at each required floor before turning off the corresponding light. Only once it
has visited all the floors and has turned off all the button lights, will it listen again for environment events. This is due to
the eagerness of the synthesized system to reach its global justice goal as early as possible.

A more responsive system may be synthesized by using local justice. The same example, but in the local justice setting,
results in a state machine with 4071 states, synthesized in 62 seconds. This system is more responsive, and often upon
reaching a floor and turning a light off it yields control and lets the user press more buttons before continuing to other
floors (even if more floor lights are on). This is due to the fact that each local justice condition is considered a different
goal, and the system plays by setting itself one of the goals at a time. Upon reaching it, for one step, it is less eager and
may let the environment play, even if that will cause the system to distance itself from the next goal (as long as the next
goal is still reachable).

An extension of this example, which is unrealizable in global justice but realizable in local justice, is given in Fig. 4 and
is described in Section 5. This example adds three LSCs for the vent of the elevator, which under certain circumstances
(when the user leaves the vent switch on) cannot be simultaneously inactive. This specification, which consists of 21 LSCs,
is proven to be unrealizable in the global justice sense in 10 seconds. In local justice, a state machine with 29 890 states is
generated in 147 seconds. This system is similar to the local justice system described above, with the addition that as long
as the vent switch is on, the vent occasionally moves from horizontal to vertical or vice versa (often more than once in a
superstep).

One advantage of synthesis over smart play-out, which is already evident from this example, is the notion of local
justice. Smart play-out can support only global justice, since it foresees only one superstep into the future. However, in
global justice too, smart play-out might cause violations that synthesis avoids. For example, consider adding the LSC of
Fig. 5 to the original specification (without the vent charts). It states that if the environment makes a step (represented
by the Yield construct in the prechart) in a state where all button lights are off, then necessarily at that point in time
the elevator is on the second floor (both conditions are immediate). In other words, the chart sets the second floor to be
a default floor at which the elevator must be before yielding control when all floor lights are off. However, in order to
“understand” this, the system must plan more than one superstep ahead, and see that it needs to go to the second floor in
order to avoid a violation in the next superstep.

Indeed, for this specification, smart play-out fails (it does not go to the second floor at the end of its superstep, thus
reaching a violation in the following superstep), while the synthesized system avoids it by going to the second floor before
yielding control back to the environment. This specification, consisting of 19 LSCs, is synthesized in global justice in 95
seconds and uses 120 states. In global justice, the state machine consists of 10709 states and is synthesized in 83 seconds.



D. Harel, I. Segall / Journal of Computer and System Sciences 78 (2012) 970-980 979

|Floor18tn || F\oorthn” FloorBBtn| | Elevator |

G = —
FlooriBtn=False;FloorzBtn=False)
FloorsBtn=False _ _ . _/

: : i < Elevator.Floor=Two

; i qilclose

\

Fig. 5. The DefaultFloor2 LSC. When this chart is added to the specification, smart play-out fails.

Table 1
Summary of experimental results.
Vent LSCs Default floor LSCs # LSCs Global/local justice Synthesis time # States
_ B 18 Global 54 81
Local 62 4071
" B 21 Global 10 unrealizable
Local 147 29890
Global 95 120
- + 19 Local 83 10709
Global 12 unrealizable
+ + 2 Local 188 75742

Finally, combining all of the above, we get a specification consisting of 22 LSCs, which is unrealizable in the global justice
sense, a fact that is proven in 12 seconds. In local justice, a state machine consisting of 75743 states is synthesized in 188
seconds. Table 1 summarizes these experimental results.

8. Related work

The problem of automatic synthesis of a system from its requirements goes back to Church [4], and was first tackled
in [3,24]. Synthesis from a temporal logic specification has also been studied heavily, both for closed systems (ones that do
not interact with the environment) [19,6], and for open ones [22,1,28]. Synthesis from scenario-based specifications using
variants of message sequence charts has also been studied. For a survey of these, see [18].

Synthesis from live sequence charts was first studied in [8], and is tackled there by defining consistency, showing equiv-
alence of consistency and satisfiability (realizability, in this paper), and then synthesizing a satisfying system from the proof
of consistency. In [8] a subset of the language is considered, consisting only of messages, but the algorithm is not imple-
mented. A game theoretic approach to synthesis from LSCs, involving a reduction to parity games is described in [2], but
the experimental results are described there as negative. Synthesis from LSCs using a reduction to CSP is described in [25].

The basis for the work described here is [16], which uses GR(1) games in a way similar to ours. It focuses on com-
positional synthesis, and supports only fully spontaneous specifications with only messages, and also only global justice
synthesis. The problem is similarly tackled in [15], which supports global justice for a larger subset of the language con-
structs. Finally, in [17], a variant of the language, inspired by timed automata, is defined, and a system is synthesized from
a specification in this variant using timed game automata and the UPPAAL-TIGA tool. The superstep approach is not taken
in [17], but rather a totally uncontrollable environment is considered (thus many specifications become unrealizable). Also,
only fully spontaneous specifications with only messages and time constraints are considered in [17].

9. Future work

While the experimental results given here are promising, we are still far from being able to handle large and complicated
specifications. Finding ways to improve efficiency and scale of the algorithms is crucial in order to render our work practical
and usable.

We currently support many of the constructs in the language, e.g. conditions and forbidden messages, but some impor-
tant features of the language are still missing. Two prominent ones are symbolic instances and time. In symbolic instances,
a lifeline may represent a class rather than a concrete object [20]. For example, the three charts stating that each floor
button should turn on after being pressed could have been specified in a single chart with a symbolic lifeline for the “floor
button” class. A naive approach to symbolic instances would be to create their concrete instantiations before synthesizing,



980 D. Harel, I. Segall / Journal of Computer and System Sciences 78 (2012) 970-980

but a more efficient approach, taking advantage of the succinctness of symbolic charts would be a great step forward in
usability.

Time is supported in play-out and smart play-out by introducing a global clock, with discrete clock tick events for
advancing it [11,10]. Support of time in the synthesis algorithm, either in this form or in some other more advanced form
(e.g., using the timed automata approach introduced in [17]) is also a major open issue.

The composition algorithm in the recent compositional synthesis work [16] considers fully spontaneous specifications,
and also only global justice winning conditions. Extending it to the constructs introduced here is left as future work. Also,
the algorithm of [16] is not sound and complete; i.e. for some specifications it might fail to deliver a correct system, or to
prove none exists. Finding an efficient sound and complete compositional synthesis algorithm is another important open
question.

Acknowledgments

We would like to thank Hillel Kugler, Shahar Maoz, Assaf Marron and Moshe Vardi for their very helpful comments on
this work, and on early drafts of the paper. We would also like to thank the referees of this paper, for their very helpful
remarks.

References

[1] M. Abadi, L. Lamport, P. Wolper, Realizable and unrealizable specifications of reactive systems, in: Proc. 16th Int. Collog. on Automata, Languages and
Programming (ICALP'89), in: Lecture Notes in Comput. Sci., vol. 372, Springer-Verlag, 1989, pp. 1-17.
[2] Y. Bontemps, P. Heymans, P.Y. Schobbens, From live sequence charts to state machines and back: A guided tour, IEEE Trans. Softw. Eng. 31 (12) (2005)
999-1014.
[3] J. Biichi, L. Landweber, Solving sequential conditions by finite-state strategies, Trans. Amer. Math. Soc. 138 (1969) 295-311.
[4] A. Church, Logic, arithmetic and automata, in: Proc. 1962 Int. Congr. Math., Uppsala, 1963, pp. 23-25.
[5] W. Damm, D. Harel, LSCs: Breathing life into message sequence charts, J. Formal Methods Syst. Des. 19 (1) (2001) 45-80; Preliminary version in: Proc.
3rd IFIP Int. Conf. on Formal Methods for Open Object-Based Distributed Systems (FMOODS'99), Kluwer Academic Publishers, 1999, pp. 293-312.
[6] E. Emerson, E. Clarke, Using branching time temporal logic to synthesize synchronization skeletons, Sci. Comput. Programming 2 (1982) 241-266.
[7] D. Harel, A. Kantor, S. Maoz, On the power of play-out for scenario-based programs, in: D. Dams, V. Hanneman, M. Steffen (Eds.), Concurrency,
Compositionality and Correctness: Essays in Honor of Willem-Paul de Roever, in: Lecture Notes in Comput. Sci., vol. 5930, Springer-Verlag, 2010,
pp. 207-220.
[8] D. Harel, H. Kugler, Synthesizing state-based object systems from LSC specifications, Internat. J. Found. Comput. Sci. 13 (1) (February 2002) 5-51.
[9] D. Harel, H. Kugler, R. Marelly, A. Pnueli, Smart play-out of behavioral requirements, in: Proc. 4th Int. Conf. on Formal Methods in Computer-Aided
Design (FMCAD’02), in: Lecture Notes in Comput. Sci., vol. 2517, Springer-Verlag, 2002, pp. 378-398.
[10] D. Harel, H. Kugler, A. Pnueli, Smart play-out extended: Time and forbidden elements, in: Proc. 4th Int. Conf. on Quality Software (QSIC 2004), IEEE
Computer Society, 2004, pp. 2-10.
[11] D. Harel, R. Marelly, Playing with time: On the specification and execution of time-enriched LSCs, in: Proc. 10th Int. Workshop on Modeling, Analysis,
and Simulation of Computer and Telecommunication Systems (MASCOTS 2002), IEEE Computer Society, 2002, pp. 193-202.
[12] D. Harel, R. Marelly, Come Let’s Play: Scenario-Based Programming Using LSCs and the Play-Engine, Springer-Verlag, 2003.
[13] D. Harel, I. Segall, Planned and traversable play-out: A flexible method for executing scenario-based programs, in: Proc. 13th Int. Conf. on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS’07), in: Lecture Notes in Comput. Sci., vol. 4424, Springer-Verlag, 2007, pp. 485-499.
[14] ITU, International Telecommunication Union Recommendation Z.120: Message Sequence Charts, Technical report, 1996.
[15] H. Kugler, C. Plock, A. Pnueli, Controller synthesis from LSC requirements, in: Proc. 12th Fundamental Approaches to Software Engineering (FASE'09),
in: Lecture Notes in Comput. Sci., vol. 5503, Springer-Verlag, 2009, pp. 79-93.
[16] H. Kugler, 1. Segall, Compositional synthesis of reactive systems from live sequence chart specifications, in: Proc. 15th Int. Conf. on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS'09), in: Lecture Notes in Comput. Sci., vol. 5505, Springer-Verlag, 2009, pp. 77-91.
[17] K.G. Larsen, S. Li, B. Nielsen, S. Pusinskas, Scenario-based analysis and synthesis of real-time systems using Uppaal, in: Proc. 13th Conf. on Design,
Automation, and Test in Europe (DATE’'10), IEEE, 2010, pp. 447-452.
[18] H. Liang, ]. Dingel, Z. Diskin, A comparative survey of scenario-based to state-based model synthesis approaches, in: Proc. 5th Int. Workshop on
Scenarios and State Machines: Models, Algorithms, and Tools (SCESM’06), ACM, 2006, pp. 5-12.
[19] Z. Manna, R. Waldinger, A deductive approach to program synthesis, ACM Trans. Prog. Lang. Syst. 2 (1980) 90-121.
[20] R. Marelly, D. Harel, H. Kugler, Multiple instances and symbolic variables in executable sequence charts, in: Proc. 17th Conf. on Object-Oriented
Programming, Systems, Languages and Applications (OOPSLA’02), ACM, 2002, pp. 83-100.
[21] N. Piterman, A. Pnueli, Y. Sa’ar, Synthesis of reactive(1) designs, in: Proc. Verification, Model Checking, and Abstract Interpretation (VMCAI'06), in:
Lecture Notes in Comput. Sci., vol. 3855, Springer-Verlag, 2006, pp. 364-380.
[22] A. Pnueli, R. Rosner, On the synthesis of a reactive module, in: Proc. 16th Symp. on Principles of Programming Languages (POPL'89), ACM, 1989,
pp. 179-190.
[23] A. Pnueli, Y. Sa’ar, L.D. Zuck, JTLV: A framework for developing verification algorithms, in: 22nd Intl. Conf. on Computer Aided Verification (CAV'10),
in: Lecture Notes in Comput. Sci., vol. 6174, Springer-Verlag, 2010, pp. 171-174.
[24] M. Rabin, Decidability of second order theories and automata on infinite trees, Trans. Amer. Math. Soc. 141 (1969) 1-35.
[25] J. Sun, J.S. Dong, Synthesis of distributed processes from scenario-based specifications, in: Proc. 13th Int. Symp. on Formal Methods Europe (FM'05),
in: Lecture Notes in Comput. Sci., vol. 3582, Springer-Verlag, 2005, pp. 415-431.
[26] http://[www.wisdom.weizmann.ac.il/~itais/Synthesis/.
[27] M.Y. Vardi, From verification to synthesis, in: Proc. 2nd Int. Conf. on Verified Software: Theories, Tools, Experiments (VSTTE'08), in: Lecture Notes in
Comput. Sci., vol. 5295, Springer-Verlag, 2008, p. 2.
[28] H. Wong-Toi, D. Dill, Synthesizing processes and schedulers from temporal specifications, in: Proc. 2nd Int. Workshop on Computer Aided Verification
(CAV’90), 1990, pp. 272-281.


http://www.wisdom.weizmann.ac.il/~itais/Synthesis/

	Synthesis from scenario-based speciﬁcations
	1 Introduction
	2 Preliminaries
	2.1 Live sequence charts
	2.2 Play-out and smart play-out
	2.3 Game structures

	3 Adapting LSCs for synthesis
	3.1 The yield construct
	3.2 Spontaneous objects
	3.3 Types of conditions

	4 Completing the example
	5 The problem deﬁnition
	6 The LSC game structure
	6.1 The state variables
	6.2 The transition relations
	6.3 The winning condition
	6.4 Synthesis and correctness

	7 Results and further examples
	8 Related work
	9 Future work
	Acknowledgments
	References


