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C
omputer science (CS) education at the high 
school level has received increasing attention in 
recent years. Although high school programs 
vary considerably among different countries, it’s 

commonly agreed by CS educators that high school pro-
grams, like undergraduate ones, should teach fundamen-
tal CS ideas and present CS as a science (of computing), 
rather than as a technical subject that’s mainly about pro-
gramming (www.computingatschool.org.uk/data/uploads 
/internationalcomparisons-v5.pdf). An example of a high 

school curriculum that realized such principles is the semi-
nal work of Judith Gal-Ezer and colleagues,1 who described 
the implementation of this program’s essentials in an Israeli 
CS high school course that has been in use, with routine 
updates, for almost two decades.

One of the underlying principles of this curriculum 
is that students should be exposed to more than one pro-
gramming paradigm (a principle referred to as the second 
programming paradigm). This article describes a course 
that implements that principle. Here are the core issues 
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upon which the course is based (a detailed descrip-
tion can be found in the previous issue of this 
magazine2):

■■ A second programming paradigm. Gal-Ezer and 
colleagues suggested that students should be 
introduced, in addition to the main language 
that they learn (in Israel, this is currently Java 
or C#), to “another language, of radically dif-
ferent nature, that suggests alternative ways 
of algorithmic thinking. This emphasizes the 
fact that algorithmics is the central subject of 
study.”1 Live sequence charts (LSC) is a lan-
guage that’s “radically different” from the con-
ventional languages used in the introductory 
courses. Besides being declarative and high-
level, it’s also a visual language. These charac-
teristics render LSC a very interesting choice 
for the second paradigm.

■■ Nondeterminism (ND). The topic of ND usu-
ally isn’t included in high school programs,3 
but as a fundamental idea of CS,4 we believe 
it should be included. ND is also one of the 
essential characteristics of concurrency, which 
is a central issue in modern computing. It is 
typically introduced through nondeterministic 
finite automata; however, several studies have 
indicated that the kind of ND that appears in 
automata theory is hard to teach and learn.5 As 
LSC is a nondeterministic programming lan-
guage, teaching it inherently involves teaching 
ND but of the kind that appears in nondeter-
ministic and concurrent programming, not 
that of automata. We term this kind of ND 
operative ND. At its core lies the idea of “true 
don’t care,” which means that there’s a priori 
no preference of which possible continuation 
of the computation to follow, all of them being 
equally good.

■■ System design and abstract thinking. Abstraction 
is a fundamental idea of CS,6 and introduc-
ing students to system design and developing 
abstract thinking skills are primary objectives 
of the advanced programming module of the 
Israeli high school program. As LSC is a high-
level, declarative programming language, its 
learning naturally supplies opportunities for 
dealing with system design and abstraction.

Course Structure and Setting
The methodology of the course followed two prin-
ciples: the zipper principle1 and project-based learn-
ing. The former means that theoretical lectures are 

interwoven with hands-on experience in the lab, 
in which students exercise the learned concepts on 
a small scale and in a controlled setting. The first 
half of the course was arranged according to this 
principle. The second half was project-based, with 
students working in small teams, each implement-
ing a project in LSC.

The course was given to a standard class of 19 
12th-grade high school students majoring in CS. 
Their previous experience included mainly pro-
gramming courses in (180  hours in total). Our 
course was 45 hours long, and it replaced the sec-
ond half of a 90-hour course on computational 
models. The assessment was based on pen-and-
paper exams and projects. It served two very dif-
ferent purposes: grading the students, as required 
for every high school course, and evaluating the 
course. In the exams, the students were required to 
create, modify, and comprehend LSC systems.

The course was given to high school stu-
dents, but we believe the results are also appli-
cable to achieving similar goals in the context of 
undergraduates. An undergraduate course can 
delve deeper, for example, by comparing different 
paradigms and connecting the learned subjects to 
advanced topics such as synthesis. A description of 
an advanced course for graduate students on visual 
languages, which included LSC, can be found 
elsewhere.7

Live Sequence Charts
The language of LSC was originally introduced8 as 
an extension of message sequence charts and was 
later extended significantly9,10 as a visual program-
ming language for reactive system development. 
It’s supported by the Play-Engine9 development 
environment, which we used in the course, and the 
later tool, PlayGo,11 which is a more mature envi-
ronment. LSC introduces a new paradigm, called 
scenario-based programming. In the abstract sense, 
a scenario describes a series of actions that consti-
tute a certain system functionality. Collectively, 
these scenarios define system behavior.

The Play-Out Method
LSC has an operational semantics that defines how 
the execution engine should combine all the sce-
narios. This operational semantics is implemented 
by the play-out method.9,10 Play-out makes the 
specification defined by the collection of scenarios 
directly executable/simulatable, thus making LSC 
a high-level programming language (other than 
merely a specification language).
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The Play-In Method
LSC is supplemented with a method for build-
ing the scenario-based specification over a real or 
a mock-up GUI of the system called the play-in 
method.9,10,12 With play-in, users specify the sce-
narios in a way that’s close to how real interaction 
with the system occurs.

Course Evaluation
Assessment of the course as a pilot was based on 
evaluating the pedagogic outcomes that were 
achieved. This evaluation involves four dimensions: 
the effect of learning LSC on the use of abstrac-
tion, the effect of learning LSC on students’ under-
standing of nondeterminism, meaningful learning 
of LSC and scenario-based programming, and 
students’ attitudes toward the language and the 
course.

Developing Abstract Thinking
In previous work,13 we presented findings suggest-
ing that learning LSC and scenario-based pro-
gramming scaffolds the development of abstract 
thinking. In particular, based on an analysis of 
final projects and interviews with a sample of stu-
dents, we showed that the students exhibited a 
high level of abstraction. They worked with black 
boxes, used symbolic instances (a feature of LSC 
that makes it possible to define a common behavior 
for sets of objects belonging to the same class), were 
able to move between levels of abstraction, and 
demonstrated metacognitive processes.

Other findings obtained for graduate students 
strengthened the connection between abstract 
thinking and working in LSC and scenario-based 
programming. These findings can be grouped into 
the following two categories.

Functionality first, integration later. The high-level, 
declarative, and incremental nature of LSC led 
graduate students to adopt a kind of program-
ming style in which the order of concerns is differ-
ent than in object-oriented programming (OOP). 
In LSC, when adding new functionality to the 
system under development, the students first con-
centrated on the new functionality and its imple-
mentation, only later considering integration with 

the rest of the system (we referred to this as “func-
tionality first, integration later”). When working 
with object-oriented languages, these concerns 
were executed in reverse order. First, the students 
considered the integration of the new function-
ality with the rest of the system (the objects), 
and only later did they turn to implementing it 
(referred to as “integration first, functionality 
later”). In a way, this difference can be thought 
of as bottom-up programming (with LSC) ver-
sus top-down programming (with OOP). Note 
that by bottom-up programming we aren’t refer-
ring to a Bricolage.14 Interestingly, a study of 
novices working with Scratch found that the 
students decomposed the system in a “scenario-
based” way without any guidance to do so, and 
used this as evidence that scenario-based, bot-
tom-up decomposition is cognitively easier than 
top-down decomposition.15 While this argument 
requires further study, these studies highlight 
a substantial way in which LSC leads program-
mers to practice a different way of programming  
problem-solving.

Holding a less detailed mental model. The findings 
classified under this category illustrate how the 
incremental, declarative programming style that 
LSC fosters allowed the graduate students to hold 
a less detailed mental model of the program they 
developed. We believe that this decreases the work-
ing memory load involved in adding a new feature 
to the system, thus reducing the total cognitive 
load associated with this task.

Overall, our findings implied the following 
connection: LSC leads programmers to adopt a 
kind of programming that requires holding a less 
detailed mental model of the system. Working 
with a less detailed mental model allows divert-
ing cognitive resources to high-level tasks, which 
scaffolds high-level thinking. To some extent, this 
argument might be applicable to other languages 
that support incremental development (declarative 
languages such as Prolog or aspect-oriented pro-
gramming [AOP] languages such as AspectJ), but 
this requires further study.

We note that working with a less detailed men-
tal model might interfere with programming tasks 

Other findings obtained for graduate students strengthened 
the connection between abstract thinking and working in 
LSC and scenario-based programming.
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such as debugging, which requires working on a 
lower level of abstraction to understand the lower-
level details. Interestingly, this serves as another 
opportunity to use this course as a platform for 
discussing higher-level concepts. In LSC, this issue 
can be addressed in part by a feature called forbid-
den scenarios, which lets us correct several kinds 
of program errors (bugs) in a nonintrusive way, by 
forbidding the scenario that leads to them. In addi-
tion to the practical matter of correcting the pro-
gram, this feature exposes students to a different 
bug-fixing strategy.

Learning Nondeterminism
ND is inherent to LSC. In a previous work,3 we 
used the term operative ND to denote the kind of 
ND that appears in concurrent and nondetermin-
istic programming. The main difference between 
operative ND and the kind of ND that appears in 
automata theory is that the former has universal 
semantics, whereas the latter has existential seman-
tics (a detailed review of the historical development 
of the concept of ND in computer science, which 
also refers to the way that different computer scien-
tist captured the difference between the two types 
of ND, can be found elsewhere4). Thus, this course 
offers an opportunity to expose the students to 
another facet of ND, hence to a wider and more 
general perspective of it, in line with Schwill’s ver-
tical characteristic of fundamental ideas. The find-
ings that we presented suggested that learning LSC 
and scenario-based programming promotes the 
understanding of operative ND. These findings 
also show that after learning LSC, high school stu-
dents were capable of understanding ND on a level 
that allowed them to mentally simulate systems 
that included nondeterministic and concurrent 
behavior, and create systems that included nonde-
terministic and concurrent characteristics.

The part of the findings that dealt with the 
creation of ND was the most interesting, first, 
because it indicated that a high level of learning 
was achieved (in Bloom’s revised taxonomy,16 cre-
ating is considered the highest level of learning), 
and second, because this result contrasted the find-
ings of several studies that dealt with the learning 
of nondeterministic automata and reported that 

students had special difficulties with creating this 
kind of ND.17,18

We believe that our relatively encouraging find-
ings on students’ ability to create nondeterministic 
programs are strongly related to the kind of ND 
that was taught and presented. Regarding the kind 
of ND, we believe that operative ND is much more 
intuitive and easy to understand than the kind of 
ND that appears in automata theory. Regarding 
the way that it’s presented, this refers mainly to two 
issues: the project-based learning approach that we 
took, the advantages of which we already discussed, 
and the fact that in LSC, ND is an intrinsic part of 
the language and appears in multiple ways and in 
different levels of complexity. The fact that ND is 
present from the beginning helps students get used 
to it and allows a gradual learning curve.

We found this to be exemplified in the coffee-
machine project. In an interview held with the 
representative of that group, the student referred to 
the fact that several charts in the project can run 
simultaneously, yielding a nondeterministic behav-
ior. The student said that the group programmed 
each of the charts independently, and that they 
were aware of the fact that there are several possible 
executions. To verify, the student was requested 
to enumerate the possible execution paths. She 
responded promptly, indicating that she already 
possessed this knowledge (at least partially), dem-
onstrating how the fact that ND is integral to LSC 
facilitated its use. Among other things, we believe 
this scaffolds more advanced, deliberated use of the 
concept. The default nature of ND in LSC is in 
contrast to the way ND appears in automata the-
ory, as an extension to the basic model, of which 
it isn’t an intrinsic part. This can yield both cogni-
tive and attitudinal issues with regard to the con-
cept. For example, it can explain, at least partially, 
findings reporting that students learning automata 
theory perceived ND as a non-legitimate solution 
and thus abstained from using it.

To conclude, we believe that LSC yields a 
learning environment that scaffolds the learning 
and use of operative ND. It’s a question for further 
study whether learning this kind of ND has a posi-
tive influence on the learning of ND in automata 
theory.

We believe that our relatively encouraging findings on students’ 
ability to create nondeterministic programs are strongly related 
to the kind of ND that was taught and presented.
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Learning LSC and Scenario-Based 
Programming
A main objective of the pilot phase was to exam-
ine whether the 45-hour course that we developed 
is enough to achieve meaningful learning of the 
language and its concepts. To measure this, we 
evaluated whether the students reached a satisfac-
tory level of understanding of the course topics. 
The evaluation was based on the results of exams 
and projects. During the course, students were sub-
jected to three exams (midterm, final, and matric-
ulation) that covered the main concepts of the 
language, as defined by the syllabus. Each concept 
was measured by several items, measuring vari-
ous levels of complexity. The operationalization of 
complexity level was based on Bloom’s taxonomy.

The grading process was conducted as follows. 
First, a grading scheme that we all agreed on was 
developed and then tested on a sample of five test 
forms before being modified to include new kinds 
of errors. Then, the modified scheme was used 
to grade all the forms. In the midterm and final 
exams, the grading (in both the testing and final 
grading phases) was conducted by the first author. 
In the matriculation exam, the grading (in both 
phases) was conducted independently by the first 
and third authors, with the grade taken to be the 
mean of the score given by the two graders. The 
intention was to discuss and resolve substantial 
differences (defined as 10 points or more) between 
the two graders in both phases, but since no such 
differences were found, there was no need for such 
cross-rate agreement phase.

Table 1 shows the results of the exams. They 
indicate that the students reached a satisfac-
tory level of understanding with respect to the 
measures defined by the pedagogic and research 
team. While exams yield a standard, less subjec-
tive measurement, the kind of knowledge that 
they can measure is limited. The projects com-
plete the picture, capturing another aspect of the 
learning by illuminating students’ ability to apply 

their knowledge in a real-world context, taking a 
significant programming task and dealing with 
all aspects of it. Their evaluation was qualitative, 
mainly aiming at getting an overall picture of the 
level of projects that can be created by a typical CS 
high school class in such a time frame, to identify 
major difficulties, and so on.

As described in the last issue,2 out of five 
groups, four completed their projects and submit-
ted them; one group didn’t submit its project due 
to issues unrelated to the course. The quality of the 
projects varied, but all of them reached a satisfac-
tory level. By satisfactory, we mean that the students 
took a core functionality of the system, formalized 
it as requirements, and implemented these require-
ments. For example, the core functionality of the 
Simon project was randomizing a sequence of col-
ors, asking the user to repeat it, and verifying that 
the user sequence matches the original one.

The projects were also used to evaluate the 
learning of concepts that weren’t included in the 
exams. One of these concepts was forbidden sce-
narios, a novel programming concept that LSC 
introduces that’s used mainly for capturing safety 
properties and that doesn’t exist in conventional 
languages. Thus, we were interested to see how 
students adopt and use it. Such usage was dem-
onstrated by the project of the group that mod-
eled an elevator, in which forbidden scenarios were 
used to represent safety requirements. The idea of 
using forbidden scenarios for this specific purpose 
came from the students after this concept was very 
briefly mentioned by the teacher to prepare the 
ground for delving into it later. Another example 
of using an advanced concept that wasn’t included 
in the exam was found in the project of the group 
that modeled the Simon memory game. This group 
used symbolic elements in its existential semantic 
mode to achieve randomization (the course cov-
ered symbolic instances in their universal seman-
tic mode). This was a very sophisticated use, and 
in fact, the students got it so well that they even 
found a bug in the implementation of this feature 
in the development environment.

Another aspect was the kind of systems and 
software engineering concepts the students dealt 
with. The high-level, declarative nature of LSC 
allowed the students to focus on the high-level 
behavior of the systems they developed. This 
enabled them to create interesting systems and to 
experience dealing with issues related to specifi-
cation, requirements, and usability. In a previous 
work,19 we studied the effect of working with LSC 

Table 1. Students’ grades.

Exam Success (%) Std N

Midterm 89 10 17

Final 92 12 19

Matriculation 90 6 19
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on graduate students’ attitudes toward usability 
issues. Specifically, we analyzed the influence of 
LSC on the way programmers perceive their role 
with respect to the system they develop. Our expe-
rience with the pilot high school course provided 
collaborative evidence—for example, in an inter-
view with a student who represented the coffee-
machine group, she said that when programming 
the machine she perceived herself as a user more 
than as a programmer. However, when asked the 
same question regarding the project in the Assem-
bly course, her answer then was that she felt more 
like a programmer.

Attitudes
Revealing students’ attitudes served two differ-
ent yet complementary goals. One was evaluating 
the course as a pilot and the other was research-
oriented, revealing attitudinal issues involved in 
learning the language. For the former, the focus is 
the course, whereas for the latter, the focus is the 
language and its learning. In both aspects, our 
approach was exploratory in nature, and the focus 
was mainly on revealing attitudes and classify-
ing them according to various dimensions (posi-
tive/negative sentiment is an example of such an 
important dimension). The findings were based 
mainly on a qualitative analysis of the postinter-
views. The criterion for selecting the students to be 
interviewed was ensuring one student per project 
team (total of four students). Within the team, the 
representative student was picked based on avail-
ability (during the 12th-grade final exams period, 
students have many constraints, so availability 
became a primary concern).

The findings presented here relied on students’ 
response to both direct, reflective questions and to 
other parts of the interview that didn’t deal directly 
with attitudes but either revealed interesting atti-
tudes or backed up attitudes that were reported by 
the students.

In the first part of the interview, students 
were asked about their attitude regarding the 
course and the language: “What did you like/ 
dislike about the course?” “What was easy/hard for 
you?” “What was missing in the course?” “What did 
you like/dislike about LSC?” “What did you find 
easy/difficult in LSC?” Of course, subjective feel-
ings should be taken with a grain of salt, but they’re 
valuable when combined with other sources of data, 
yielding what’s called in qualitative research a tri-
angulation of the results. Another issue that should 
be considered is students’ previous programming 

experience, which they used as a reference point 
when asked about the course and the language. This 
experience included mainly Java (3 units, total of 
270 hours) and Assembly (1 unit, total of 90 hours). 
The teaching method of the Java courses was based 
mainly on the zipper principle, and the teaching 
method of the Assembly course combined the zip-
per principle with project-based learning. Below we 
describe attitudinal categories emerging from the 
interviews that were found to be significant and 
were triangulated from several viewpoints.

Visuality. This aspect was mentioned very often as 
a motivating factor and as something that’s very 
different from the previous languages that the 
students studied. Indeed, Marian Petre20 men-
tioned attractiveness as a prominent characteris-
tic of visual languages. On the other hand, some 
students complained that it takes a lot of time to 
draw the charts and that even fixing a small error 
requires erasing and starting from scratch. This was 
raised even though we allowed students to make 
changes on their drawings. However, some stu-
dents (the issue was raised only by female students) 
couldn’t tolerate the idea of submitting a drawing 
that isn’t neat and clear. One solution was allowing 
students to use pencils in the matriculation exam, 
though typically this isn’t allowed.

The play-in method. The through-interface pro-
gramming that the Play-Engine offers was men-
tioned by students as engaging, and they said it 
makes programming sort of “playing.”

An experimental language. Another issue that stu-
dents mentioned as intriguing was the fact that 
the language is in its experimental phase, mean-
ing, according to them, that they’re on the cutting 
edge, maybe gaining some advantage for the future 
and having the opportunity to affect research 
(they were told that their feedback will be used to 
improve the language).

Project-based learning. This was another factor that 
came up quite often. For example, in the interview, 
one student said that she liked projects because they 
allowed her to be creative, which was motivational. 
In this context, an interesting connection between 
project-based learning and high-level programming 
was made by the student who represented the group 
that modeled the elevator. The student compared 
the project that he developed in the LSC course 
with the project that he developed in the Assembly 
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course, and mentioned that the kind of things that 
LSC deals with (high-, system-level programming) 
allows him to create more interesting and complex 
projects. An external indication of the projects as 
a motivational factor was the fact that two of the 
groups continued to work on their projects even 
after the course ended, though they knew that this 
work wasn’t going to be graded.

High-level abstraction. One of the things that 
was very interesting for us was comparing the 
high school students’ attitudes toward high-level 
abstraction with attitudes found in the course 
given to graduate students. In a previous work,21 
we reported that some of the graduate students who 
had significant experience with low-level languages 
referred to the high-level, visual programming 
in LSC as “not really programming,” and that in 
some cases this even led to a negative attitude that 
affected performance. Such an attitude toward 
high-level programming wasn’t observed in the 
high school course. We believe that, among other 
things, it indicates that less experienced students 
can be more ready to accept new programming 
concepts. We believe that one way to maintain this 
desired flexibility is by introducing students to dif-
ferent programming approaches on early stages.

The results of the course indicate that high 
school students can reach a significant under-

standing of LSC. Also, students find the visual 
nature of the language, the through-interface pro-
gramming (play-in), and the kind of systems that it 
allows them to develop attractive and motivating. 
We believe that this renders LSC a good choice for 
teaching a second programming paradigm, a cen-
tral pedagogic principle that underlies the CS high 
school curriculum suggested earlier.1

Furthermore, learning the language fosters the 
development of abstract thinking and the under-
standing of ND, making it an effective platform for 
teaching these fundamental CS ideas in a way that 
follows Jerome Bruner’s philosophy of teaching fun-
damental ideas in a spiral, scaffolded manner.22

A new course that introduces a whole new 
technology obviously presents a substantial over-
load. Our course is no exception. Some may argue 
that such an overload (especially on the K–12 level) 
outweighs the additional knowledge gained by 
students, which in this particular case includes a 
new language, a new programming paradigm, and 
a corresponding technologic platform supporting 

the two. However, this is a narrow—though not 
uncommon—view of the kind of knowledge 
taught by a specific course, and hence of curricular 
goals. A curriculum design that implements such 
a point of view is typically organized by units of 
knowledge that constitute a set of learning objec-
tives. A development process that corresponds to 
such a curriculum involves the definition of an 
appropriate set of knowledge units and a list of 
courses covering the set, such that the courses form 
a partition thereof, that is, each unit is covered by 
one course. This approach can be exemplified by 
early CS curricula.23,24

We argue that a more appropriate perspective 
is to organize any curriculum, including a K–12 
one, around habits of mind (as suggested, for 
example, by Al Cuoco25) and fundamental ideas 
(as suggested by Bruner). By definition, a set of 
courses corresponding to such a curriculum is not 
a partition of the set of knowledge units. Rather, 
this set can be represented by a multilayer struc-
ture, in which the units on the higher level are con-
ceptual units, representing ideas. A unit of this sort 
is necessarily present in several courses, as derived 
from its horizontal characteristic. It’s also present 
in multiple levels of difficulty and age levels, as 
derived from its vertical characteristic. From this 
point of view, the new context isn’t a disadvan-
tage. On the contrary, it serves as an opportunity 
to expose students to another facet of the idea in a 
different context. This exposure promotes the per-
ception of such an idea in its general sense, which 
can lead to a meaningful learning of it and to non-
specific transfer. Non-specific transfer was consid-
ered by Bruner as the ultimate goal of a learning 
process. Thus, achieving non-specific transfer of a 
fundamental idea is certainly a goal that justifies 
such an overload. 
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