
SECTION TITLE
Editors: Konrad Hinsen, hinsen@cnrs-orleans.fr | Konstantin Läufer, laufer@cs.luc.edu

64	 Computing in Science & Engineering	 1521-9615/17/$33.00 © 2017 IEEE	 Copublished by the IEEE CS and the AIP� November/December 2017

EDUCATION
Editors: Rubin Landau, rubin@physics.oregonstate.edu | Scott Lathrop, lathrop@illinois.edu

Teaching Scenario-Based Programming:
An Additional Paradigm for the High School
Computer Science Curriculum, Part 2

Giora Alexandron and Michal Armoni | Weizmann Institute of Science
Michal Gordon | Holon Institute of Technology
David Harel | Weizmann Institute of Science

C
omputer science (CS) education at the high
school level has received increasing attention in
recent years. Although high school programs
vary considerably among different countries, it’s

commonly agreed by CS educators that high school pro-
grams, like undergraduate ones, should teach fundamen-
tal CS ideas and present CS as a science (of computing),
rather than as a technical subject that’s mainly about pro-
gramming (www.computingatschool.org.uk/data/uploads
/internationalcomparisons-v5.pdf). An example of a high

school curriculum that realized such principles is the semi-
nal work of Judith Gal-Ezer and colleagues,1 who described
the implementation of this program’s essentials in an Israeli
CS high school course that has been in use, with routine
updates, for almost two decades.

One of the underlying principles of this curriculum
is that students should be exposed to more than one pro-
gramming paradigm (a principle referred to as the second
programming paradigm). This article describes a course
that implements that principle. Here are the core issues

www.computer.org/cise			 	� 65

upon which the course is based (a detailed descrip-
tion can be found in the previous issue of this
magazine2):

■■ A second programming paradigm. Gal-Ezer and
colleagues suggested that students should be
introduced, in addition to the main language
that they learn (in Israel, this is currently Java
or C#), to “another language, of radically dif-
ferent nature, that suggests alternative ways
of algorithmic thinking. This emphasizes the
fact that algorithmics is the central subject of
study.”1 Live sequence charts (LSC) is a lan-
guage that’s “radically different” from the con-
ventional languages used in the introductory
courses. Besides being declarative and high-
level, it’s also a visual language. These charac-
teristics render LSC a very interesting choice
for the second paradigm.

■■ Nondeterminism (ND). The topic of ND usu-
ally isn’t included in high school programs,3
but as a fundamental idea of CS,4 we believe
it should be included. ND is also one of the
essential characteristics of concurrency, which
is a central issue in modern computing. It is
typically introduced through nondeterministic
finite automata; however, several studies have
indicated that the kind of ND that appears in
automata theory is hard to teach and learn.5 As
LSC is a nondeterministic programming lan-
guage, teaching it inherently involves teaching
ND but of the kind that appears in nondeter-
ministic and concurrent programming, not
that of automata. We term this kind of ND
operative ND. At its core lies the idea of “true
don’t care,” which means that there’s a priori
no preference of which possible continuation
of the computation to follow, all of them being
equally good.

■■ System design and abstract thinking. Abstraction
is a fundamental idea of CS,6 and introduc-
ing students to system design and developing
abstract thinking skills are primary objectives
of the advanced programming module of the
Israeli high school program. As LSC is a high-
level, declarative programming language, its
learning naturally supplies opportunities for
dealing with system design and abstraction.

Course Structure and Setting
The methodology of the course followed two prin-
ciples: the zipper principle1 and project-based learn-
ing. The former means that theoretical lectures are

interwoven with hands-on experience in the lab,
in which students exercise the learned concepts on
a small scale and in a controlled setting. The first
half of the course was arranged according to this
principle. The second half was project-based, with
students working in small teams, each implement-
ing a project in LSC.

The course was given to a standard class of 19
12th-grade high school students majoring in CS.
Their previous experience included mainly pro-
gramming courses in (180 hours in total). Our
course was 45 hours long, and it replaced the sec-
ond half of a 90-hour course on computational
models. The assessment was based on pen-and-
paper exams and projects. It served two very dif-
ferent purposes: grading the students, as required
for every high school course, and evaluating the
course. In the exams, the students were required to
create, modify, and comprehend LSC systems.

The course was given to high school stu-
dents, but we believe the results are also appli-
cable to achieving similar goals in the context of
undergraduates. An undergraduate course can
delve deeper, for example, by comparing different
paradigms and connecting the learned subjects to
advanced topics such as synthesis. A description of
an advanced course for graduate students on visual
languages, which included LSC, can be found
elsewhere.7

Live Sequence Charts
The language of LSC was originally introduced8 as
an extension of message sequence charts and was
later extended significantly9,10 as a visual program-
ming language for reactive system development.
It’s supported by the Play-Engine9 development
environment, which we used in the course, and the
later tool, PlayGo,11 which is a more mature envi-
ronment. LSC introduces a new paradigm, called
scenario-based programming. In the abstract sense,
a scenario describes a series of actions that consti-
tute a certain system functionality. Collectively,
these scenarios define system behavior.

The Play-Out Method
LSC has an operational semantics that defines how
the execution engine should combine all the sce-
narios. This operational semantics is implemented
by the play-out method.9,10 Play-out makes the
specification defined by the collection of scenarios
directly executable/simulatable, thus making LSC
a high-level programming language (other than
merely a specification language).

EDUCATION

66	 � November/December 2017

The Play-In Method
LSC is supplemented with a method for build-
ing the scenario-based specification over a real or
a mock-up GUI of the system called the play-in
method.9,10,12 With play-in, users specify the sce-
narios in a way that’s close to how real interaction
with the system occurs.

Course Evaluation
Assessment of the course as a pilot was based on
evaluating the pedagogic outcomes that were
achieved. This evaluation involves four dimensions:
the effect of learning LSC on the use of abstrac-
tion, the effect of learning LSC on students’ under-
standing of nondeterminism, meaningful learning
of LSC and scenario-based programming, and
students’ attitudes toward the language and the
course.

Developing Abstract Thinking
In previous work,13 we presented findings suggest-
ing that learning LSC and scenario-based pro-
gramming scaffolds the development of abstract
thinking. In particular, based on an analysis of
final projects and interviews with a sample of stu-
dents, we showed that the students exhibited a
high level of abstraction. They worked with black
boxes, used symbolic instances (a feature of LSC
that makes it possible to define a common behavior
for sets of objects belonging to the same class), were
able to move between levels of abstraction, and
demonstrated metacognitive processes.

Other findings obtained for graduate students
strengthened the connection between abstract
thinking and working in LSC and scenario-based
programming. These findings can be grouped into
the following two categories.

Functionality first, integration later. The high-level,
declarative, and incremental nature of LSC led
graduate students to adopt a kind of program-
ming style in which the order of concerns is differ-
ent than in object-oriented programming (OOP).
In LSC, when adding new functionality to the
system under development, the students first con-
centrated on the new functionality and its imple-
mentation, only later considering integration with

the rest of the system (we referred to this as “func-
tionality first, integration later”). When working
with object-oriented languages, these concerns
were executed in reverse order. First, the students
considered the integration of the new function-
ality with the rest of the system (the objects),
and only later did they turn to implementing it
(referred to as “integration first, functionality
later”). In a way, this difference can be thought
of as bottom-up programming (with LSC) ver-
sus top-down programming (with OOP). Note
that by bottom-up programming we aren’t refer-
ring to a Bricolage.14 Interestingly, a study of
novices working with Scratch found that the
students decomposed the system in a “scenario-
based” way without any guidance to do so, and
used this as evidence that scenario-based, bot-
tom-up decomposition is cognitively easier than
top-down decomposition.15 While this argument
requires further study, these studies highlight
a substantial way in which LSC leads program-
mers to practice a different way of programming
problem-solving.

Holding a less detailed mental model. The findings
classified under this category illustrate how the
incremental, declarative programming style that
LSC fosters allowed the graduate students to hold
a less detailed mental model of the program they
developed. We believe that this decreases the work-
ing memory load involved in adding a new feature
to the system, thus reducing the total cognitive
load associated with this task.

Overall, our findings implied the following
connection: LSC leads programmers to adopt a
kind of programming that requires holding a less
detailed mental model of the system. Working
with a less detailed mental model allows divert-
ing cognitive resources to high-level tasks, which
scaffolds high-level thinking. To some extent, this
argument might be applicable to other languages
that support incremental development (declarative
languages such as Prolog or aspect-oriented pro-
gramming [AOP] languages such as AspectJ), but
this requires further study.

We note that working with a less detailed men-
tal model might interfere with programming tasks

Other findings obtained for graduate students strengthened
the connection between abstract thinking and working in
LSC and scenario-based programming.

www.computer.org/cise			 	� 67

such as debugging, which requires working on a
lower level of abstraction to understand the lower-
level details. Interestingly, this serves as another
opportunity to use this course as a platform for
discussing higher-level concepts. In LSC, this issue
can be addressed in part by a feature called forbid-
den scenarios, which lets us correct several kinds
of program errors (bugs) in a nonintrusive way, by
forbidding the scenario that leads to them. In addi-
tion to the practical matter of correcting the pro-
gram, this feature exposes students to a different
bug-fixing strategy.

Learning Nondeterminism
ND is inherent to LSC. In a previous work,3 we
used the term operative ND to denote the kind of
ND that appears in concurrent and nondetermin-
istic programming. The main difference between
operative ND and the kind of ND that appears in
automata theory is that the former has universal
semantics, whereas the latter has existential seman-
tics (a detailed review of the historical development
of the concept of ND in computer science, which
also refers to the way that different computer scien-
tist captured the difference between the two types
of ND, can be found elsewhere4). Thus, this course
offers an opportunity to expose the students to
another facet of ND, hence to a wider and more
general perspective of it, in line with Schwill’s ver-
tical characteristic of fundamental ideas. The find-
ings that we presented suggested that learning LSC
and scenario-based programming promotes the
understanding of operative ND. These findings
also show that after learning LSC, high school stu-
dents were capable of understanding ND on a level
that allowed them to mentally simulate systems
that included nondeterministic and concurrent
behavior, and create systems that included nonde-
terministic and concurrent characteristics.

The part of the findings that dealt with the
creation of ND was the most interesting, first,
because it indicated that a high level of learning
was achieved (in Bloom’s revised taxonomy,16 cre-
ating is considered the highest level of learning),
and second, because this result contrasted the find-
ings of several studies that dealt with the learning
of nondeterministic automata and reported that

students had special difficulties with creating this
kind of ND.17,18

We believe that our relatively encouraging find-
ings on students’ ability to create nondeterministic
programs are strongly related to the kind of ND
that was taught and presented. Regarding the kind
of ND, we believe that operative ND is much more
intuitive and easy to understand than the kind of
ND that appears in automata theory. Regarding
the way that it’s presented, this refers mainly to two
issues: the project-based learning approach that we
took, the advantages of which we already discussed,
and the fact that in LSC, ND is an intrinsic part of
the language and appears in multiple ways and in
different levels of complexity. The fact that ND is
present from the beginning helps students get used
to it and allows a gradual learning curve.

We found this to be exemplified in the coffee-
machine project. In an interview held with the
representative of that group, the student referred to
the fact that several charts in the project can run
simultaneously, yielding a nondeterministic behav-
ior. The student said that the group programmed
each of the charts independently, and that they
were aware of the fact that there are several possible
executions. To verify, the student was requested
to enumerate the possible execution paths. She
responded promptly, indicating that she already
possessed this knowledge (at least partially), dem-
onstrating how the fact that ND is integral to LSC
facilitated its use. Among other things, we believe
this scaffolds more advanced, deliberated use of the
concept. The default nature of ND in LSC is in
contrast to the way ND appears in automata the-
ory, as an extension to the basic model, of which
it isn’t an intrinsic part. This can yield both cogni-
tive and attitudinal issues with regard to the con-
cept. For example, it can explain, at least partially,
findings reporting that students learning automata
theory perceived ND as a non-legitimate solution
and thus abstained from using it.

To conclude, we believe that LSC yields a
learning environment that scaffolds the learning
and use of operative ND. It’s a question for further
study whether learning this kind of ND has a posi-
tive influence on the learning of ND in automata
theory.

We believe that our relatively encouraging findings on students’
ability to create nondeterministic programs are strongly related
to the kind of ND that was taught and presented.

EDUCATION

68	 � November/December 2017

Learning LSC and Scenario-Based
Programming
A main objective of the pilot phase was to exam-
ine whether the 45-hour course that we developed
is enough to achieve meaningful learning of the
language and its concepts. To measure this, we
evaluated whether the students reached a satisfac-
tory level of understanding of the course topics.
The evaluation was based on the results of exams
and projects. During the course, students were sub-
jected to three exams (midterm, final, and matric-
ulation) that covered the main concepts of the
language, as defined by the syllabus. Each concept
was measured by several items, measuring vari-
ous levels of complexity. The operationalization of
complexity level was based on Bloom’s taxonomy.

The grading process was conducted as follows.
First, a grading scheme that we all agreed on was
developed and then tested on a sample of five test
forms before being modified to include new kinds
of errors. Then, the modified scheme was used
to grade all the forms. In the midterm and final
exams, the grading (in both the testing and final
grading phases) was conducted by the first author.
In the matriculation exam, the grading (in both
phases) was conducted independently by the first
and third authors, with the grade taken to be the
mean of the score given by the two graders. The
intention was to discuss and resolve substantial
differences (defined as 10 points or more) between
the two graders in both phases, but since no such
differences were found, there was no need for such
cross-rate agreement phase.

Table 1 shows the results of the exams. They
indicate that the students reached a satisfac-
tory level of understanding with respect to the
measures defined by the pedagogic and research
team. While exams yield a standard, less subjec-
tive measurement, the kind of knowledge that
they can measure is limited. The projects com-
plete the picture, capturing another aspect of the
learning by illuminating students’ ability to apply

their knowledge in a real-world context, taking a
significant programming task and dealing with
all aspects of it. Their evaluation was qualitative,
mainly aiming at getting an overall picture of the
level of projects that can be created by a typical CS
high school class in such a time frame, to identify
major difficulties, and so on.

As described in the last issue,2 out of five
groups, four completed their projects and submit-
ted them; one group didn’t submit its project due
to issues unrelated to the course. The quality of the
projects varied, but all of them reached a satisfac-
tory level. By satisfactory, we mean that the students
took a core functionality of the system, formalized
it as requirements, and implemented these require-
ments. For example, the core functionality of the
Simon project was randomizing a sequence of col-
ors, asking the user to repeat it, and verifying that
the user sequence matches the original one.

The projects were also used to evaluate the
learning of concepts that weren’t included in the
exams. One of these concepts was forbidden sce-
narios, a novel programming concept that LSC
introduces that’s used mainly for capturing safety
properties and that doesn’t exist in conventional
languages. Thus, we were interested to see how
students adopt and use it. Such usage was dem-
onstrated by the project of the group that mod-
eled an elevator, in which forbidden scenarios were
used to represent safety requirements. The idea of
using forbidden scenarios for this specific purpose
came from the students after this concept was very
briefly mentioned by the teacher to prepare the
ground for delving into it later. Another example
of using an advanced concept that wasn’t included
in the exam was found in the project of the group
that modeled the Simon memory game. This group
used symbolic elements in its existential semantic
mode to achieve randomization (the course cov-
ered symbolic instances in their universal seman-
tic mode). This was a very sophisticated use, and
in fact, the students got it so well that they even
found a bug in the implementation of this feature
in the development environment.

Another aspect was the kind of systems and
software engineering concepts the students dealt
with. The high-level, declarative nature of LSC
allowed the students to focus on the high-level
behavior of the systems they developed. This
enabled them to create interesting systems and to
experience dealing with issues related to specifi-
cation, requirements, and usability. In a previous
work,19 we studied the effect of working with LSC

Table 1. Students’ grades.

Exam Success (%) Std N

Midterm 89 10 17

Final 92 12 19

Matriculation 90 6 19

www.computer.org/cise			 	� 69

on graduate students’ attitudes toward usability
issues. Specifically, we analyzed the influence of
LSC on the way programmers perceive their role
with respect to the system they develop. Our expe-
rience with the pilot high school course provided
collaborative evidence—for example, in an inter-
view with a student who represented the coffee-
machine group, she said that when programming
the machine she perceived herself as a user more
than as a programmer. However, when asked the
same question regarding the project in the Assem-
bly course, her answer then was that she felt more
like a programmer.

Attitudes
Revealing students’ attitudes served two differ-
ent yet complementary goals. One was evaluating
the course as a pilot and the other was research-
oriented, revealing attitudinal issues involved in
learning the language. For the former, the focus is
the course, whereas for the latter, the focus is the
language and its learning. In both aspects, our
approach was exploratory in nature, and the focus
was mainly on revealing attitudes and classify-
ing them according to various dimensions (posi-
tive/negative sentiment is an example of such an
important dimension). The findings were based
mainly on a qualitative analysis of the postinter-
views. The criterion for selecting the students to be
interviewed was ensuring one student per project
team (total of four students). Within the team, the
representative student was picked based on avail-
ability (during the 12th-grade final exams period,
students have many constraints, so availability
became a primary concern).

The findings presented here relied on students’
response to both direct, reflective questions and to
other parts of the interview that didn’t deal directly
with attitudes but either revealed interesting atti-
tudes or backed up attitudes that were reported by
the students.

In the first part of the interview, students
were asked about their attitude regarding the
course and the language: “What did you like/
dislike about the course?” “What was easy/hard for
you?” “What was missing in the course?” “What did
you like/dislike about LSC?” “What did you find
easy/difficult in LSC?” Of course, subjective feel-
ings should be taken with a grain of salt, but they’re
valuable when combined with other sources of data,
yielding what’s called in qualitative research a tri-
angulation of the results. Another issue that should
be considered is students’ previous programming

experience, which they used as a reference point
when asked about the course and the language. This
experience included mainly Java (3 units, total of
270 hours) and Assembly (1 unit, total of 90 hours).
The teaching method of the Java courses was based
mainly on the zipper principle, and the teaching
method of the Assembly course combined the zip-
per principle with project-based learning. Below we
describe attitudinal categories emerging from the
interviews that were found to be significant and
were triangulated from several viewpoints.

Visuality. This aspect was mentioned very often as
a motivating factor and as something that’s very
different from the previous languages that the
students studied. Indeed, Marian Petre20 men-
tioned attractiveness as a prominent characteris-
tic of visual languages. On the other hand, some
students complained that it takes a lot of time to
draw the charts and that even fixing a small error
requires erasing and starting from scratch. This was
raised even though we allowed students to make
changes on their drawings. However, some stu-
dents (the issue was raised only by female students)
couldn’t tolerate the idea of submitting a drawing
that isn’t neat and clear. One solution was allowing
students to use pencils in the matriculation exam,
though typically this isn’t allowed.

The play-in method. The through-interface pro-
gramming that the Play-Engine offers was men-
tioned by students as engaging, and they said it
makes programming sort of “playing.”

An experimental language. Another issue that stu-
dents mentioned as intriguing was the fact that
the language is in its experimental phase, mean-
ing, according to them, that they’re on the cutting
edge, maybe gaining some advantage for the future
and having the opportunity to affect research
(they were told that their feedback will be used to
improve the language).

Project-based learning. This was another factor that
came up quite often. For example, in the interview,
one student said that she liked projects because they
allowed her to be creative, which was motivational.
In this context, an interesting connection between
project-based learning and high-level programming
was made by the student who represented the group
that modeled the elevator. The student compared
the project that he developed in the LSC course
with the project that he developed in the Assembly

EDUCATION

70	 � November/December 2017

course, and mentioned that the kind of things that
LSC deals with (high-, system-level programming)
allows him to create more interesting and complex
projects. An external indication of the projects as
a motivational factor was the fact that two of the
groups continued to work on their projects even
after the course ended, though they knew that this
work wasn’t going to be graded.

High-level abstraction. One of the things that
was very interesting for us was comparing the
high school students’ attitudes toward high-level
abstraction with attitudes found in the course
given to graduate students. In a previous work,21
we reported that some of the graduate students who
had significant experience with low-level languages
referred to the high-level, visual programming
in LSC as “not really programming,” and that in
some cases this even led to a negative attitude that
affected performance. Such an attitude toward
high-level programming wasn’t observed in the
high school course. We believe that, among other
things, it indicates that less experienced students
can be more ready to accept new programming
concepts. We believe that one way to maintain this
desired flexibility is by introducing students to dif-
ferent programming approaches on early stages.

The results of the course indicate that high
school students can reach a significant under-

standing of LSC. Also, students find the visual
nature of the language, the through-interface pro-
gramming (play-in), and the kind of systems that it
allows them to develop attractive and motivating.
We believe that this renders LSC a good choice for
teaching a second programming paradigm, a cen-
tral pedagogic principle that underlies the CS high
school curriculum suggested earlier.1

Furthermore, learning the language fosters the
development of abstract thinking and the under-
standing of ND, making it an effective platform for
teaching these fundamental CS ideas in a way that
follows Jerome Bruner’s philosophy of teaching fun-
damental ideas in a spiral, scaffolded manner.22

A new course that introduces a whole new
technology obviously presents a substantial over-
load. Our course is no exception. Some may argue
that such an overload (especially on the K–12 level)
outweighs the additional knowledge gained by
students, which in this particular case includes a
new language, a new programming paradigm, and
a corresponding technologic platform supporting

the two. However, this is a narrow—though not
uncommon—view of the kind of knowledge
taught by a specific course, and hence of curricular
goals. A curriculum design that implements such
a point of view is typically organized by units of
knowledge that constitute a set of learning objec-
tives. A development process that corresponds to
such a curriculum involves the definition of an
appropriate set of knowledge units and a list of
courses covering the set, such that the courses form
a partition thereof, that is, each unit is covered by
one course. This approach can be exemplified by
early CS curricula.23,24

We argue that a more appropriate perspective
is to organize any curriculum, including a K–12
one, around habits of mind (as suggested, for
example, by Al Cuoco25) and fundamental ideas
(as suggested by Bruner). By definition, a set of
courses corresponding to such a curriculum is not
a partition of the set of knowledge units. Rather,
this set can be represented by a multilayer struc-
ture, in which the units on the higher level are con-
ceptual units, representing ideas. A unit of this sort
is necessarily present in several courses, as derived
from its horizontal characteristic. It’s also present
in multiple levels of difficulty and age levels, as
derived from its vertical characteristic. From this
point of view, the new context isn’t a disadvan-
tage. On the contrary, it serves as an opportunity
to expose students to another facet of the idea in a
different context. This exposure promotes the per-
ception of such an idea in its general sense, which
can lead to a meaningful learning of it and to non-
specific transfer. Non-specific transfer was consid-
ered by Bruner as the ultimate goal of a learning
process. Thus, achieving non-specific transfer of a
fundamental idea is certainly a goal that justifies
such an overload.

Acknowledgments
We would like to thank Avi Cohen, Ronit Ben-Bassat
Levy, Nir Eitan, and Zehava Levin for their help in con-
ducting this research. This research was partially sup-
ported by an Advanced Research Grant to DH from the
European Research Council (ERC) under the European
Community’s FP7 Programme and by the Israel Science
Foundation. The work of the first author was supported
by a grant from the Azrieli Foundation.

References
	 1.	 J. Gal-Ezer et al., “A High School Program in

Computer Science,” Computer, vol. 28, no. 10,
1995, pp. 73–80.

www.computer.org/cise			 	� 71

	 2.	 G. Alexandron et al., “Teaching Scenario-Based
Programming: An Additional Paradigm for the
High School Computer Science Curriculum, Part
1,” Computing in Science & Eng., vol. 19, no. 5,
2017, pp. 58–67.

	 3.	 G. Alexandron et al., “On Teaching Programming
with Nondeterminism,” Proc. 8th Workshop Primary
and Secondary Computing Education, 2013, pp. 71–74.

	 4.	 M. Armoni and M. Ben-Ari, “The Concept of
Nondeterminism: Its Development and Implica-
tions for Teaching,” SIGCSE Bull., vol. 41, no. 2,
2009, pp. 141–160.

	 5.	 M. Armoni, N. Lewenstein, and M. Ben-Ari,
“Teaching Students to Think Nondeterministi-
cally,” SIGCSE Bull., vol. 40, no. 1, 2008, pp. 4–8.

	 6.	 M. Armoni, “On Teaching Abstraction in CS to
Novices,” J. Computers in Mathematics and Science
Teaching, vol. 32, no. 3, 2013, pp. 265–284.

	 7.	 D. Harel and M. Gordon-Kiwkowitz, “On Teach-
ing Visual Formalisms, IEEE Software, vol. 26,
no. 3, 2009, pp. 87–95.

	 8.	 W. Damm and D. Harel, “LSCs: Breathing Life
into Message Sequence Charts,” Formal Methods
System Design, vol. 19, no. 1, 2001, pp. 45–80.

	 9.	 D. Harel and R. Marelly, Come, Let’s Play:
Scenario-Based Programming Using LSCs and the
Play-Engine, Springer-Verlag, 2003.

	10.	 D. Harel and R. Marelly, “Specifying and Execut-
ing Behavioral Requirements: The Play-In/Playout
Approach,” Software and Systems Modeling, vol. 2,
no. 2, 2003, pp. 82–107.

	11.	 D. Harel et al., “PlayGo: Towards a Comprehen-
sive Tool for Scenario Based Programming,” Proc.
IEEE/ACM Int’ l Conf. Automated Software Eng.,
2010, pp. 359–360.

	12.	D. Harel, “From Play-In Scenarios to Code: An
Achievable Dream,” Fundamental Approaches to
Software Engineering, LNCS 1783, T. Maibaum,
ed., Springer, 2000, pp. 22–34.

	13.	 G. Alexandron et al., “Scenario-based Program-
ming: Reducing the Cognitive Load, Fostering
Abstract Thinking,” Proc. 36th Int’ l Conf. Software
Eng., 2014, pp. 311–320.

	14.	 M. Ben-Ari, “Constructivism in Computer Science
Education,” J. Computers in Mathematics and Sci-
ence Teaching, vol. 20, no. 1, 2001, pp. 45–73.

	15.	 M. Gordon, A. Marron, and O. Meerbaum-Salant,
“Spaghetti for the Main Course? Observations on
the Naturalness of Scenario-Based Programming,”
Proc. 17th ACM Ann. Conf. Innovation and Technol-
ogy in Computer Science Education, 2012.

	16.	 L.W. Anderson, D.R. Krathwohl, and B.S. Bloom,
A Taxonomy for Learning, Teaching, and Assessing: A

Revision of Bloom’s Taxonomy of Educational Objec-
tives, Longman, 2001.

	17.	 M. Armoni and J. Gal-Ezer, “On the Achievements
of High School Students Studying Computational
Models,” SIGCSE Bulletin, vol. 36, no. 3, 2004,
pp. 17–21.

	18.	 M. Armoni and J. Gal-Ezer, “Non-Determinism:
An Abstract Concept in Computer Science Stud-
ies,” Computer Science Education, vol. 17, no. 4,
2007, pp. 243–262.

	19.	 G. Alexandron, M. Armoni, and D. Harel, “Pro-
gramming with the User in Mind,” Proc. Psychology
of Programming Interest Group Annual Conf., 2011;
www.ppig.org/papers/23/20%20Alexandron.pdf.

	20.	M. Petre, “Why Looking Isn’t Always Seeing:
Readership Skills and Graphical Programming,”
Comm. ACM, vol. 38, no. 6, 1995, pp. 33–44.

	21.	 G. Alexandron et al., “The Effect of Previous Pro-
gramming Experience on the Learning of Scenario-
Based Programming,” Proc. 12th Koli Calling
Int’ l Conf. Computing Education Research, 2012,
pp. 151–159.

	22.	J.S. Bruner, The Process of Education, Harvard Univ.
Press, 1960.

	23.	W.F. Atchison et al., “Curriculum 68: Recom-
mendations for Academic Programs in Computer
Science: A Report of the ACM Curriculum Com-
mittee on Computer Science,” Comm. ACM,
vol. 11, no. 3, 1968, pp. 151–197.

	24.	R.H. Austing et al., “Curriculum ’78: Recommen-
dations for the Undergraduate Program in Com-
puter Science: A Report of the ACM Curriculum
Committee on Computer Science,” Comm. ACM,
vol. 22, no. 3, 1979, pp. 147–166.

	25.	 A. Cuoco, E.P. Goldenberg, and J. Mark, “Habits
of Mind: An Organizing Principle for Mathematics
Curricula,” J. Mathematical Behavior, vol. 15, no. 4,
1996, pp. 375–402.

Giora Alexandron is a principal data scientist at the
Center for Educational Technology. Contact him at
Gioraa@cet.ac.il.

Michal Armoni is a senior scientist at the Weizmann
Institute of Science. Contact her at michal.armoni@
weizmann.ac.il.

Michal Gordon is a senior lecturer at Holon Institute of
Technology. Contact her at michalgor@hit.ac.il.

David Harel is a professor at the Weizmann Institute of
Science and vice president of the Israel Academy of Sciences
and Humanities. Contact him at dharel@weizmann.ac.il.

