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1. SYNAPSES

‘‘Multidisciplinary Approaches to Theory in Medicine’’ is the name of this

book. Multidisciplinary is easy to understand; medicine encompasses differ-

ent academic disciplines that investigate the organism at many scales of

enquiry: genetic, molecular, cellular, systemic, pathological, behavioural,

social, and historical. The use of the term multidisciplinary here, however,

refers specifically to the synapse between bio-medical scientists and applied

mathematicians and physicists aimed at understanding the complexity of the

organism. This multidisciplinarity is characterised by the use of mathematics

and computer science to explicate biology. Here, we discuss concepts of

theory, complexity, and understanding, and describe a visually dynamic way

to represent and study complex biologic data: Reactive Animation (RA).

2. THEORY

What is the meaning of theory in medicine? The Oxford English Dictionary

provides various definitions of theory, including this one:

4. a. A scheme or system of ideas or statements held as an explanation

or account of a group of facts or phenomena . . . the general laws,

principles, or causes of something known or observed.

So a theory is an explanation based on laws, principles, or causes.
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The word theory, however, does not derive from law, principle or cause;

theory is derived from the Greek �"!���, which means to look at or view

(Oxford English Dictionary, 1989). The etymology of theory makes the

point that a theory is basically a way of looking at the world. Usually we

make theories about things that we cannot actually see with our bare eyes;

despite its etymology, a theory usually aims to explain a reality behind

appearances. A theory is a way a mind eyes the world. A theory, from this

point of view, is a representation of what cannot be seen, but only surmised.

(Parenthetically, note that the word representation, like the word theory,

is a paradox; just as a theory visualises the invisible, a representation

presents the absent.)

So, ‘‘Theory in Medicine’’ refers to what our view of the organism –

in health, disease, and experiment – can teach us about the core laws,

principles, or causes that form and animate the organism. Theory

thus contributes to understanding: We look at a complex piece of

the world and our theory expresses the way our minds understand the

spectacle.

3. COMPLEXITY

A complex system, such as an organism, is a system composed of many

different interacting parts. The attribute we call emergence distinguishes a

complex system from a simple system (Cohen, 2000). The solar system is

a simple system because, however complicated, the solar system boils down

to the bodies in the system (sun, planets, moons, etc.) and the laws of

gravity that connect their masses. For example, knowledge of the masses of

the earth and the moon (and the sun too) and the law of gravity is good

enough to put a man on the moon (provided you have a proper rocket

ship). Understanding the component parts of a simple system is sufficient

to understand the system, viewed as a whole system.

Just as the solar system is formed by a fundamental interaction

between masses (the laws of gravity and motion), the organism is formed

by the fundamental interactions of its component molecules (the laws

of chemical reactions). However, the organism is more complex than is

the solar system because cataloguing the chemistry of all the individual

molecules that make up the body does not suffice for understanding the

organism as a whole. We cannot readily see how the component parts of the

body generate the behaviour of the organism, so we need theory; we need a

representation of the inside – the microscopic components – of the organism

that will account for the emergence of the visible – macroscopic – properties

of the organism.
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4. PARTS CATALOGUE

An automobile is composed of thousands of parts, many of which

move and mutually interact, while they also interact with the road and the

driver. But an automobile, compared to a cell, is not really a complex

system because a good mechanic can fix one or even build one using the

parts and the parts catalogue; quite simply, each part of an automobile

has a defined place and a defined function. Your living body differs

fundamentally from your automobile in relation to its component

parts: body parts, unlike automobile parts, are pleiotropic, redundant,

degenerate, and apt to learn new tricks. Many (probably most) biologically

important molecules perform more than one function (bio-molecules

are pleiotropic); different molecules can perform similar functions

(important cells and molecules are redundant); interacting ligands and

receptors are hardly ever exclusively specific (molecular interactions are

degenerate); and a molecule’s structure and function (allosteric effects, post-

translational modifications, and the like) are responsive to the environment

and the history of past interactions (Cohen, 2000). One cannot predict

the behaviour of an organism based on a list of its component molecules

and their possible interactions. The structure – function relationship of

your automobile has a simple one-to-one arrangement between parts

and performance: not so your body.

Consider, for example, the role of interferon gamma (IFN�) in

autoimmune diseases. IFN� is the prototypic Th1-type cytokine respon-

sible for destructive inflammation in autoimmune diseases, clinically

and experimentally (Liblau et al., 1995). Any treatment that down-regulates

the expression of IFN� will turn off the disease (Cohen, 1997; Elias et al.,

1997).

So, IFN� is an undisputedly essential agent in the disease process. But it

is very difficult to visualise exactly what IFN� does that is so essential;

IFN� is a molecule that, among its own many direct activities, activates

at least 220 other genes (Boehm et al., 1997); IFN� is very pleiotropic

(but probably not more so than other cytokines). Strangely, some of the

effects of IFN� can be carried out by a molecule called tumor necrosis

factor alpha (TNF�) (Sullivan, 2003). Thus IFN� and TNF� are somewhat

redundant. IFN� is also degenerate; it can interact as a ligand for more

than one receptor (Dinarello, 2002).

How frustrating to knock out key genes in a mouse, only to discover

that the knock-out mouse manifests an unpredicted phenotype, or no

noticeable change in its wild-type phenotype. IFN� is a frustrating

example; mice with their IFN� gene knocked out still can develop

autoimmune diabetes (Serreze et al., 2000) or experimental autoimmune
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encephalomyelitis (Glabinski et al., 1999). But remember, treatments that

inactivate IFN� do block these diseases (Liblau et al., 1995; Cohen, 1997;

Elias et al., 1997). So how can knocking out the gene itself leave the disease

phenotype intact? We may suppose that the mammalian immune system

is sufficiently complex to self-organise an effective immune response in the

absence of IFN� by implementing other programmes. Your automobile,

unfortunately or not, simply cannot learn to make do.

5. SIMPLICITY BELIED

Classically it was assumed that the organism, however complicated, could

be reduced, like an automobile, to a collection of individually simple

functional sequences, each sequence characterised by a one-to-one

relationship between a gene, its encoded protein, and a specific function

(Mayr, 1961). Immunologists, like other biologists, have attempted, and

attempt even today, to represent the immune system using the simplest

theory imaginable – not without controversy (Efroni and Cohen, 2002;

Langman and Cohn, 2002; Cohn, 2003; Efroni and Cohen, 2003).

The genome was thought to be the body’s blueprint; knowing the genome,

it was hoped, would allow us to understand the organism. But now we

realise that the genes are not enough (Cohen and Atlan, 2002); we have

to catalogue all the proteins too and decipher the proteome. And that too,

be assured, will not suffice. Pleiotropism, redundancy, ligand-receptor

degeneracy and epigenetic and post-translational modifications of the

organism’s component molecular and cellular parts thwart understanding

(Cohen, 2000). Indeed, the living organism is generated, not by parts, but

by process – a dynamic web of interactions generates the system; the

component cells and molecules and the laws of chemistry are mere

infrastructure. Life emerges. The organism and its states of being cannot

be reduced to the laws of chemistry and physics in the way that the solar

system can be reduced to the laws of chemistry and physics, or the

automobile to its parts.

6. UNDERSTANDING COMPLEXITY

Science grounds understanding on observation, measurement, and

repeatability. So understanding in biology (and in any science) is not

merely a state of mind; biological understanding must be a proficiency,

a competence (Cohen, 2000). Understanding the world amounts to

dealing well with the world. Understanding is active. Understanding is
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manifested by how we respond to what we see. Medicine illustrates this

well: The degree to which the doctor understands the patient’s illness is

demonstrated by the ability of the doctor to restore the patient to better

health. The patient, in fact, does not care much about the theories the

physician might have had in mind when he or she started the treatment;

the patient rightfully judges the physician’s understanding by the

physician’s performance: ‘‘Am I getting better’’?

What specific rules of competence demonstrate scientific understanding?

The doctor, for example, understands the illness by making a correct

diagnosis. The proper diagnosis allows the doctor to predict the patient’s

clinical course, and so make a prognosis. Diagnosis and prognosis are

abstractions, merely words; classifications of illnesses are merely represen-

tations of reality. Nevertheless, these representations can be translated into

significant actions. A diagnosis, for example, rests on a regularity of nature.

All cases of type 1 diabetes emerge from a lack of insulin. A diagnosis of

type 1 diabetes tells the doctor that the patient needs insulin. Thus, the

abstract nosological representation we call diabetes allows the physician

to predict the course of the illness, based on professional knowledge.

The abstract representations we call diagnosis and prognosis allow the

doctor to institute successful therapy. Correct therapy makes the patient

healthier – changes the world.

Science too measures understanding by performance: A scientist

understands his or her field to the degree to which he or she carries out

(or teaches others to carry out) productive research. Productive research

requires three proficiencies. Similar to diagnosis, prognosis, and therapy in

medicine, scientific understanding is tested by successful representation,

prediction, and utility.

7. REPRESENTATION

A complex system is complex precisely because we cannot reduce the data

to a simple basic law or single cause that can account for all the details we

have learned about the system through observation and experimentation.

We are confounded by the limitations of memory and mental computation.

In former days, when we had relatively little data, it was easy to formulate

theories that included all we knew. At the present state of biology,

however, we have learned too much; we suffer from a flood of information.

Now only the computer can supplement our weak memories and help

us compensate for our limited mental computation. The database is too

heavy for the mind alone to bear; we are confounded by the organism’s

basic pleiotropism, redundancy, degeneracy, and functional adaptation.
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Of course, an experimenter does not need a comprehensive and

integrated understanding of the field to continue with the reductionist

agenda of isolating and characterising each molecule, cell, connection, and

process in a system of study. Normal biologic science can go on and on

successfully accumulating data about the parts catalogue. But a more

comprehensive and integrated understanding of living systems seems to be

on the agenda. The present proliferation of ‘‘systems biology’’ programmes

arises from a general perception that reductionism alone (a completed parts

catalogue) will not suffice for understanding. At least some people will have

to keep track of the whole system, and inform the rest. Interdisciplinary

efforts will be needed to make good biological theory. Thus, the impact of

theory on biology and medicine will depend to some degree (probably to a

great degree) on how intelligently we use computers to represent in

comprehensible format the complexity of biological data. Apt representa-

tion is the key to comprehension.

But when is a representation ‘‘apt’’? How can we tell an appropriate

representation from an inappropriate representation? Is there, in fact, only

one true representation of a complex system? A representation, like any

idea, can be judged by its performance. As we shall now discuss, a good

representation will usefully engage our minds to formulate predictions,

think new thoughts, and undertake new experiments. Obviously, then, there

is no one true representation of a complex system. Different presentations

of the data can suit different purposes. In fact, different presentations of

the data constitute different theories about the meaning of the data.

8. PREDICTION

The value of prediction in science needs no elaboration. Science aims to

detect and characterise the regularities of nature, and prediction is a

functional test of regularity. If you cannot foresee the outcome of the

experiment, then your theory might be wrong. Fortunately, even complex

systems are predictable. In fact, a living system survives through its ability

to predict what its environment has to offer. A living system survives

by mining information and energy from its niche in the environment

(Cohen, 2000). A theory or a representation of a living system, like the

living system itself, survives by the success of its predictions.

9. UTILITY

Clearly, a most important feature of a theory is its usefulness. A theory is

manifestly useful when it solves a problem – achieves a goal, provides a
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technique, leads to a cure. But, a good theory not only solves a problem;

but also should engage minds to think new thoughts and undertake new

experiments.

James B. Conant (1951 p.25) has defined science as

‘‘an interconnected series of concepts and conceptual schemes that have

developed as a result of experimentation and observation and are fruitful

of further experimentation and observation’’.

Science, according to Conant, is a chain reaction: theory leads to

experiments that produce new data, and the new data, in turn, stimulate

new theories that trigger new experiments, that generate new data, and on

to more useful models of understanding.

10. THEORY FOR COMPLEXITY

The distinction between simple systems and complex systems sug-

gests that each type of system needs its own type of theory. A scientific

theory for a simple system boils down to a timeless list of immutable

laws or standing principles that explain the workings of the system

of interest. As we have discussed above, we can understand the solar

system by reducing the system to the unchanging laws of gravity

and motion. Discovering a fundamental law that governs the

behaviour of a simple system puts one’s mind to rest; the problem of

understanding the data seems to be solved. The data can be replaced

by the fundamental law that accounts for them. The laws behind a

simple system supersede the noisy details of the data. The fundamental

laws of a simple system represent the system as neatly and as efficiently

as possible.

Complex systems, in contrast to simple, can never get away from the

noisy details. The noisy details are the essence. Consider two well-studied

species: the round worm, C. elegans and the human, H. sapiens. A physicist

would note that both the creatures obey precisely the same basic laws of

matter, are composed essentially of the same molecules, and house the

same spectrum of chemical reactions. In fact, both creatures realise very

similar, if not identical principles of organisation. There is no essential

difference between the person and the worm, when we view both with

the tools of physical theory. The differences, for the mathematician and

physicist, and for the chemist too, between worm and us are in the

noisy details. But the noisy details between the species are exactly what we

want to understand as biologists, physicians, and citisens. Reduction

to fundamental laws fails to explain what we want to understand. Theory
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for a complex system cannot do away with the noisy details. A simple

theory for a complex system misses the system.

Actually, there is one simple theory that has proved to be of continuous

usefulness in biology, and in complexity generally: the theory of evolution.

The theory of evolution is the best – perhaps the one-and-only – basic

law in biology. The theory of evolution tells us to mind the noisy details;

evolution says nothing about any of the particular details that comprise

and distinguish species, only that they are likely to be essential.

11. REACTIVE ANIMATION: A PROTOTYPE

FOR COMPLEXITY

So, a theory for a complex system must live with the data; the theory does

not supersede the data. Complex system theory amounts to organising the

data and representing it in a way that engages the mind to see the data

anew and undertake new experiments. A theory for a complex system, then,

must pass two tests: the theory must simplify and compress the data to

the point where the system is rendered comprehensible, but the simplifica-

tion and compression must not go beyond the point at which the essence

of the complexity is lost. This principle sounds simple enough, but it

would require a book or two to present a full theory of complexity theory,

and we have only this brief chapter. Let us close then by describing

reactive animation (RA for short), our initial approach to organising

the data so as to engage the mind without over-simplifying the system.

12. ORGANISING THE DATA

We have used the visual formalism of Statecharts to capture and model

data related to the immune system. The Statecharts language was

developed originally as a language for aiding in the design and specification

of computerised, man-made systems (Harel, 1987). Statecharts captures

the states of a system and the transitions between them. Its most

popular version is applied within an object-oriented framework, where

the system is described as a collection of interacting objects and each object

is provided with a Statechart that captures its behaviour. Statecharts has

become widely used in system design in computer science and engineer-

ing (Harel and Gery, 1997), and we have only recently begun to apply

Statecharts to the immune system. Our first piece of work was a pilot

project on the activation of T cells (Kam et al., 2001). Now we have applied

Statecharts to the development of T cells in the thymus (Efroni et al., 2003).
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The objects in the immune system are molecules, cells, and organs,

individually and collectively; connections between objects include their

relationships and their interactions. The object-oriented version of

Statecharts suits biologists because biologists experiment with objects

(genes, molecules, cells, organs, organisms, and societies) and study their

connections (fig. 1). The visual formalism of Statecharts is also much less

daunting than are mathematical equations, and are more convenient for

most biologists who are used to representing data visually; open any

biological text. Indeed, biologists are no strangers to the notions that

objects exist in particular states and that the behaviour of a system may

involve the transitions of component objects to new states.

Figure 2 illustrates a Statecharts representation of some aspects of

thymocyte development (Efroni et al., 2003). In a Statechart the boxes

represent states, and may be nested to capture levels of detail. States can

also be related to each other concurrently (depicted by dashed separator

lines). The transitions between states are represented by arrows

labelled with the triggering event and possible guarding conditions. The

Statecharts themselves are used to represent the behaviour of each class

of objects. The Statecharts language is described in detail in the

literature (Harel, 1987; Harel and Gery, 1997; Harel and Politi, 1998);

here we shall only mention its attractive features for biological complexity.

Thymocyte System Analysis

Cells:

• Type

• Anatomical site

• Migration

• Receptor profile

• State markers

• Proliferation

• Apoptosis

Molecules:

Cytokines, etc.

Interactions:
Organ:

Cell type

DP DN

SP

Cell phase

G1

G2

S

M

Receptor Profile

Cell movement

Interactions

Expression

Apoptosis

Cell memory

CD44hi

CD44lo

Up

Down

Object 1

Object 2

TNF

IL1

Fig. 1. Thymocyte system analysis. Here is a general overview of the data incorporated into
the Statecharts analysis of thymocyte development. Note that the range of data covers scales

from molecules to the developing organ.
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Detailed data. The details of the database can all be included in the

Statechart description. Statecharts makes possible a ‘‘bottom–up’’

representation of the data about experimental objects.

Multi-scale. One can zoom out to look at cells and collectives of cells, or

zoom in to look at molecules inside cells, or cells inside organs, or at

combinations of scales, as long as these scales of the system have been

modelled too.

Mathematical precision. The visual formalism of Statecharts is mathe-

matically precise and semantically legible to computers.

Modular. Statecharts easily accommodates new data by allowing the user to

add to an existing model new kinds of objects as they are discovered and to

specify their behaviour using new Statecharts, or to add to, or modify the

Statecharts of existing objects as new facts about behaviour are discovered.

One does not have to redo all the equations when one wishes to integrate

new information into the representation of the system.

Cell Phase

Fig. 2. Thymocyte cell phase. Here is an example of one of many hundreds of charts that
comprise the Statecharts analysis.
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Executable and interactive. Systems represented in a Statecharts format

can be ‘‘run’’ on computers. Statecharts simulations are feasible and

are supported by powerful software tools, and so experiments can be

performed in silico. The user can see the simulated effects of adding or

removing molecules or cells, or of changing or manipulating interactions.

Thus, Statecharts makes it possible to experiment with complex systems

without simplifying or ignoring the known data. RA uses Statecharts

to organise and run the data, but RA adds animation to organisation.

Concept of RA

Fig. 3. The concept of reactive animation (RA). RA is based on the general idea that any
system has two functional components: the mechanisms that comprise the system and the
appearance of the system to our minds. RA separates the precise specifications of the
mechanisms that simulate the system from an animation of the simulation that engages our
minds. In this way, the data create a semantically precise representation of the system’s
behaviour that is translated into an interactive, moving representation that reveals emergent
properties, excites curiosity, motivates experimentation, fosters creativity and strengthens

understanding.
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13. ENGAGING THE MIND

A theory for complexity, as we have discussed above, should motivate

the mind to make new associations and propose new experiments.

Statecharts, with its diagrammatic visual formalism, is not the customary

way the minds of biologists (or of humans generally) represent systems.

Cell Motifs for Animation

+ + + +

=

Fig. 4. Motifs for making a T cell. In our present example of RA, we equip Flash with basic
components for making T cells, thymic epithelial cells (not shown here), and other motifs,

from which the animation is constructed.

Emergent anatomy of the thymic lobule.
The circles are developing thymocytes. The figure is a snapshot of an animated simulation.
Thymocytes are color-coded for each developmental stage.

Emergent Anatomy

Fig. 5. The emergence of thymus functional anatomy. The figure illustrates that a func-
tioning, anatomically correct thymus can emerge from the entry of a few stem cells and their

migration and differentiation according to molecular gradients and cell interactions.
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Cell Migration

Fig. 6. Migration of a single thymocyte. The blue line traces the cell’s migration from
its entry to the cortico-medulary junction as a stem cell to the subcortical zone (SCZ).
The red line traces the cell’s journey of differentiation to the medulla, from which it will exit
to serve the immune system outside the thymus. Note the control panel at the foot of the

thymus animation.

Zooming into the Thymus

Fig. 7. Zooming into the thymus. The thick blue line represents the extensions of the
thymus epithelial cells upon which the thymocytes interact, differentiate, proliferate or die.

Thymocytes are coded according to their state and expression profile.
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Humans draw pictures and respond to pictures that ‘‘resemble’’ the

prototypic objects they like to see, or have learned to see. We need not

discuss here the meaning of visual ‘‘resemblance’’, or why humans tend

to feel at home cognitively with visual objects. But it is clear that we are

captivated by visual representations. In fact, we are most responsive

to moving pictures. The cinema, TV, DVD, the computer screen, the

world of advertising, all demonstrate that moving pictures move minds

and generate returns. So we have built RA to connect the simulations

of Statecharts to traditional (textbook-type) representations of cells and

molecules in an animated format.

The RA animation is created by connecting the Statecharts language

and its support tool, Rhapsody, to the Flash system, a commonly used

software package for programming animation (Efroni et al., 2003).

We supply the Flash program with a repertoire of basic motifs representing

cells and key molecules. The simulation produced by Statecharts then

connects to Flash to create a moving picture of the simulation. Moving

pictures of biological systems are not our innovation; turn on any

educational TV channel and see moving cells, developing organs, bodies

mending. The innovation of RA is that here the moving representation

emerges from – indeed is driven by – the precise specification of the data

run on Statecharts. The moving pictures seen in RA are generated by the

Experimenting in silico

Fig. 8. Experimenting in silico. The RA format makes it possible to probe the animation
and experiment with various functional components of the system. Here is an example of

some of the things one can ask of a thymocyte, and see what happens to the cell.
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data themselves, bottom–up, and not by our imagination or preference,

top–down. The aim of RA is to represent the data in a way that does

not over-simplify its complexity (recording the data and simulating it

by Statecharts), but yet engineer the representation (by its connection

to Flash) to stimulate the mind with a moving and interactive picture of

the show. Seeing the cells move, differentiate, interact, proliferate, kill or

die excites curiosity and triggers associations. Thus, the Statecharts arm of

RA guarantees mathematical precision; the Flash arm of RA enhances

creativity.

RA, in other words, departs from the approaches to biological system

modeling developed till now; traditionally, modeling has focused on neat

concepts (top–down) rather than on messy data (bottom–up), or has

abandoned the data entirely to construct artificial and synthetic com-

putations aimed at ‘‘reproducing’’ in silico ersatz genomes, life-like patterns,

or evolving biomorphs (see Kumar and Bently, 2003). RA encourages

the user to experiment with the system, and not only to see it in action; is

that not the aim of any theory for biological complexity?
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