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Abstract. In his pioneering 1952 paper, ”The chemical basis of morphogenesis”, Alan Turing in-
troduced, perhaps for the first time, a model of the morphogenesis of embryo development. Central
to his theory is the concept of cells with chemical entities that interact with morphogens to drive
embryonic development through changes in what he termed ’the state of the system’. Turing’s con-
cepts have inspired many mathematical and computational models proposed since then. Here we
discuss the way Turing’s ideas inspired our approach to the state-based modeling of morphogene-
sis, which results in a fully executable program for the interactions between chemical entities and
morphogens. As a representative example we describe our modeling of pancreatic organogenesis,
a complex developmental process that develops from a flat sheet of cells into a 3D cauliflower-like
shape. We show how we constructed the model and tested the relations between morphogens and
cells, and illustrate the analysis of the model against experimental data. Finally, we discuss a variant
of the original Turing-Test for a machine’s ability to demonstrate intelligence as a future means to
validate computerized biological models, like the one presented here.
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1. Introduction

In his 1952 paper ”The chemical basis of morphogenesis” [1, 2], Alan Turing introduced a mathematical
model of the growing embryo. Turing considered three key factors that drive the development of an
embryo: cell, morphogen, and ’the state of the system’. Cells in Turing’s theory are elements that are
mostly characterized by their chemical properties. Turing recognized that the characteristic action of
genes is presumably chemical and thus the chemical basis is the most significant element in cellular
activity. Turing termed morphogens the substances that chemically react with the cells to produce form,
and defined the way the ’state of the system’ at each step emanates from the state it was in a short moment
earlier.

Many other mathematical models of embryological pattern formation have been developed since
Turing’s seminal work [3-5]. A different perspective of Turing’s theory focuses on behaviorally imple-
mented pattern forming processes, whereby patterns are created by computational agents that can take
actions depending on their local space-time environment [6]. As in Turing’s theory, pattern formation in
these models involves interacting chemical substances (e.g., cell extrinsic ligands) and chemical-based
moving entities (e.g., cells) [6-8].

In recent years, we have been developing a computational approach for the executable modeling of
morphogenesis. As a representative example, we describe here our computational model of pancreatic
organogenesis, first published in 2008 [9], a highly dynamic system that develops from a flat sheet of cells
to obtain a complex cauliflower-like structure. As in many developmental systems, pancreatic organo-
genesis maintains interplay between chemical interactions that drive changes in individual cells over time
and space. The approach has been further extended and applied to other developmental systems, namely,
germline development in the C. elegans nematode [10] and neuronal migration in the rodent cortex [11].

To a large extent, the underlying principles of our approach were inspired by Turing’s theory. Similar
to Turing’s work, cells in our model consist of chemical entities that interact with morphogens over time
and space. Interactions between the cells and morphogens, as well as intercellular interactions between
chemical entities, change the state of the system and drive the development. In our model, in contrast
with Turing’s definition, the state of the system changes after each chemical interaction of the cells.

To implement Turing’s theory in silico, we specified executable behavior for objects in a biological
system. As an execution (simulation) advances, instances of the model’s elements are created and the
behavior of the population emerges from concurrent execution of objects that have been endowed with
identical specification, but containing probabilistic parts. The end result is an executable program that
qualitatively simulates the dynamic behavior of the biological system over time. The simulations can
then be executed under any set of circumstances from among those that are supported by the model’s
basic elements. The components of the simulation represent biological entities, such as cells, which
react by various transformations to events involving neighboring components. By its executable na-
ture, this approach is different from classical mathematical models, which usually formulate behavior of
populations, rather than individual entities, using forms of differential equations.

We formalized the behavior of the biological entities using the visual formalism of Statecharts [12],
which allow us to define the dynamics using a hierarchy of possibly orthogonal (concurrent) states
with transitions, events, and conditions. Using the Rhapsody tool (http://www.ibm.com/software/
awdtools/rhapsody/), statecharts can be compiled into a fully executable program and can be linked
up with an animated front-end using the concept of reactive animation [13, 14], which is designed to
combine reactivity with animation to enable their interplay at run-time.
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We linked up our pancreas organogenesis model with an animated front-end that was built based on
what is depicted in the literature. Each of the participating components is represented as a 3D element
possessing attributes to represent change in location and behavior. For example, the cells are represented
in the front-end as spheres; at run-time, an instance of a cell directs its corresponding animated sphere
according to its active state. A differentiated cell might, for example, change its color to depict the new
stage. As the simulation advances, the cells dynamically act in concert to drive the morphogenesis of the
pancreas.

2. Biological Background: Pancreatic Organogenesis

In mice, pancreatic organogenesis initiates approximately at the 8th embryonic day, and is divided
roughly into two transitions, primary and secondary [15]. During the primary transition, cells at the
appropriate regions on the flat gut tube are specified as pancreatic and form a bud; during the secondary

Figure 1. Illustration of pancreatic organogenesis (adapted from [20]): The process of pancreatic organogenesis
in mice is roughly divided into two transitions, primary and secondary [15]. The primary transition starts with a
budding process at the oriented region on the flat gut and ends roughly when the tissue is specified as pancreatic and
develops the lobed structure (approximately embryonic day 8.5-12.5). The secondary transition lasts until natal
and consists of terminal exocrine/endocrine differentiation, formation of the islet of Langerhans and maturation
of the organ [16]. By the time of birth, the pancreas achieves its final pattern and increases the tissue mass in the
following early post natal days.
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transition, the bud evolves to form a lobulated structure (Figure 1). The organogenesis process termi-
nates when endocrine cells aggregate to form many sphere-like endocrine tissues, termed the islets of
Langerhans, which are embedded within the exocrine pancreas [16].

Molecular and morphogenetic mechanisms drive chemical interactions that act in concert to regulate
the development of the organ. The molecular mechanisms regulate the differentiation and development
of individual cells, whereas the morphogenic mechanisms gather the cells together to form a cauliflower-
shaped organ. These processes do not occur independently but, rather, decisively affect each other.
For example, the spatial location of a cell governs its chemical interactions and, vice versa, the state
of differentiation of a cell influences its spatial location [16, 17]. The extracellular matrix (ECM) that
surrounds the pancreatic tissue is essential to normal development. Experimental studies have shown
that mice lacking a normal ECM failed to develop the organ [18-20].

An example of such a signaling process is pancreatic specification, which directs endodermal cells
toward a pancreatic fate [18, 19]. Specification largely depends on two external signals from the noto-
chord, activinβ and FGF2. These signals inhibit expression of proteins that repress the expression of
the pancreatic marker, Pdx1. Hence, an endodermal cell will not commit to a pancreatic fate unless it
receives both signals from the notochord.

3. Implementation of Turing’s Theory

3.1. Chemical composition of a pancreatic cell as a computational agent

The chemical entities in our model (e.g., molecules and genes) are represented in the Cell object, which
consists of three elements, the nucleus, the membrane and the cell itself. The nucleus operates as an
internal signaling unit that expresses genes to drive cellular development, while the membrane acts as an
external signaling unit that senses the environment and alerts the cell. The cell itself changes states in
response to the various signals (Figure 2). Cells are considered to be the basic objects, and the progress
of the simulation/execution relies very much on their behavior. An execution of the model is initiated
with approximately 500 cells, which, with the aid of additional processes, proliferate and create new
instances. A typical execution ends with around 10,000 objects.

The Membrane object handles interactions between the cell and its environment. In particular, it
specifies the behavior of receptors, which are responsible for perceiving external signals. Each receptor
in the membrane recognizes a specific molecule, which binds to it and activates signaling pathways that
may regulate various mechanisms in the cell. To model the membrane, we defined each receptor as an
independent component that can be either in state Unbound or in state Bound. The membrane also
specifies more advanced behaviors, such as migration receptors, which sense the gradient of relevant
factors in the cell’s vicinity and acts accordingly.

The Nucleus object specifies the behavior of genes that regulate cell development. To model it,
we took a simplistic approach, defining each gene as an independent component that can be either in
state Expressed or in state Unexpressed. Some genes, even when expressed, can be non-active. The
statecharts of these contain two additional states, Present and Active, within the state Expressed.

The Cell object itself describes the behavior of the various molecular mechanisms in a cell during
its lifespan (e.g., differentiation, proliferation, death). We specified the mechanisms as independent
components, which act concurrently at run-time to drive the cell’s behavior. The Cell object also carries
the spatial 3D coordinates of the cell, updating their values at run-time as the simulation progresses.
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Figure 2. The model for a cell as an autonomous agent. The visualization is shown at the top left

3.2. Specifications of morphogens in the extra-cellular matrix

The morphogens in the surrounding environment were modeled as a 3D computational grid that overlies
the position of the cells. The grid contains data regarding the position of the cell and relevant tissue.
Thus, for example, the grid indicates the location of the notochord tissue according to where the model
positions it. A similar approach was employed to define the position of the Aorta, the Mesenchyme
and the Blood vessels (Figure 3, top). Four more grids indicate the concentrations of morphogens to
direct the proliferation, differentiation and motility of cells. These are ActivinBeta and FGF2, which
promote the specification of endodermal gut cells as pancreatic, and FGF10 and BMP4, which regulate
cell proliferation.

The model updates the concentrations of the factors in the ECM grid cubes as the source tissue de-
velops. For example, the notochord secretes several factors in the extracellular space. Accordingly, in
our model the notochord object regulates concentrations of relevant factors in the ECM grid next to its
specified location. The animated front-end visualizes these tissues; for example, the mesenchyme is rep-
resented by a tissue-like space that changes its color when the aorta is present. A long tube, representing
the endodermal gut, lies at the center of the ECM. The notochord, when it exists, is represented by a
transparent green tube that lies above the gut. The behavior of the gut is outside the scope of the model
and serves solely for visualization purposes (Figure 3, middle).

We assumed that there is no direct interaction between these objects but, rather, that the interaction is
carried out indirectly through the ECM object. For example, the notochord may interact with the ECM
but cannot interact directly with the mesenchyme (Figure 3, bottom). To be faithful to the biology, we
also prevented direct interaction between tissues and cells. Cells interact indirectly with the tissues when
they sense concentrations of factors in the ECM that were previously produced by a tissue.
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Figure 3. Modeling the extracellular space: illustration of the extracellular space (top), the 3D animated front
end (middle), and the interaction scheme between the objects (bottom).

4. Model Execution

4.1. Development of pancreatic organogenesis from chemical interactions between cells
and morphogens

As in the Turing’s theory, the development of our model progresses through ’changes in the system
state’. The changes of state in the model are a result of the activity of the chemical entities in the cells.
Once the model is executed, instances of the Cell object are created and appear in the front-end as a
sheet of red spheres at the proper location on the flat endodermal Gut. Once a Cell instance is created,
one state in each concurrent component of its statechart is set to be the active state. At this point, the
Cells are uniform and their active states are set to the initial states (designated by a stubbed arrow in the
statechart). In parallel, the environment is initiated and defines the initial concentrations of factors in the
extracellular space. As the simulation advances, cells respond to various events (e.g., the concentration
of factors in their close vicinity) by changing their active states accordingly. Hence, the cell sheet loses
uniformity at a very early stage of the simulation.

As the simulation advances, cells differentiate, proliferate and move, in response to various signals.
These processes are driven by many extracellular events (e.g., from the membrane) and intra-cellular
events (e.g., from the nucleus). The events, in turn, change the active states in orthogonal pieces of the
statechart specification, thus moving through the various stages of the cell’s life cycle. The cells as a
population act in concert to drive the simulation by promoting various decisions in individual cells.
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4.2. A detailed example of chemical interactions between morphogen and cells

To elucidate the way we have implemented Turing’s concepts, this section discusses in some detail how
the model handles the pancreatic specification process by which endodermal cells commit to a pancreatic
fate. This process implicates the two morphogens mentioned earlier, FGF2 and ActivinBeta, which are
secreted by the notochord tissue. The morphogens bind to receptors on the membrane of the cells and
trigger a signaling process that eventually leads to the expression of the pancreatic differentiation marker
PDX1. Figure 4 provides an illustration of the process as it appears in one of the related papers [19]. In
this process, the notochord, a tissue that lies above the endodermal gut, secretes the FGF2 and Activinβ.
When a cell comes in contact with these two factors, the corresponding receptors bind to them and initiate
a chain reaction of activities. Eventually, the cell activates the pancreatic marker Pdx1, and is specified
as a pancreatic cell. In parallel, the cell proliferates and migrates.

Figure 4. Illustration of the interactions between morphogens and cells in the pancreatic specification process
(adapted from [19])

In our model, we assumed that the concentrations of the two morphogens gradually decrease from
the central position of the notochord to the gut tube (see Figure 3). In the cell design, two statechart
components of the Membrane element (Figure 2 Left) were designed to represent the FGF2R and Ac-
tivinR receptors. Accordingly, the ActivinR receptor is represented by two states, Unbound and Bound,
and two transitions between them. The transition actbeta>actbetaTH goes from state Unbound to state
Bound, and the transition actBeta⇐actTH goes in the opposite direction. At runtime, the Membrane
continuously senses the factors in its vicinity until it determines that the concentration of ActivinR is
above a predefined threshold. This causes the transition to become enabled and the active state moves
from Unbound to Bound. When the opposite occurs, the other transition is enabled, and the active state
moves accordingly. The FGF2R receptor is implemented similarly as another independent component.

The genes are implemented in a similar manner, to specify their behavior in the nucleus object.
Three key genes, SHH, Ptc and Pdx1, are implicated in the signaling pathway that drives pancreatic
specification. Each of these defines an independent component, which can be either in state Expressed
or in state Unexpressed. The transition expSHH is defined from Unexpressed to Expressed and
represents expression of the SHH gene. The SHH gene can be shut down, and thus the reverse direction
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defines the repSHH transition representing repression of the SHH gene. The other two genes, Ptc and
Pdx1, are formalized in a similar way.

The Differentiation component of the cell defines states for developmental stages in pancreatic de-
velopment (e.g., pancreatic progenitor). Therefore, the transitions that are defined between the states
describe the necessary conditions for the developmental progress. For example, the IS IN(Pdx1EXP)
guard is activated when the active state of the Pdx1 gene in the nucleus is set to Expressed (i.e., this cell
expresses the pancreatic marker). Orthogonally to this, the Proliferation component defines a state for
each stage of the cell cycle and the appropriate transitions between them (e.g., the transition evS goes
from state G1 to state S). Similarly, the transition evM leads state G2 to state M, which defines the end
of the proliferation process. Moreover, state M holds the duplication instructions of the Cell, namely
how to create a new identical instance of a cell. The transition exitCC leads from the proliferation stages
(i.e., G1, S, G2, and M) to the resting state G0.

Once a Cell instance is created, the initial state in each component (designated by a stubbed arrow)
is set to the active state. As the simulation advances, the cell responds to various events by changing its
active states accordingly. When a Cell object senses that the concentration of acitivinBeta goes above
the predefined threshold, its Membrane enables the transition actBeta>actBetaTH and the active state of
the ActR component moves from state Unbound to state Bound. A similar scenario moves the active
state of the FGFR component to state Bound when the concentration of FGF2 gets to be above a certain
threshold. When the active states of FGFR and ActR are set to Bound, the repSHH event is generated
and the active state of the SHH gene in the nucleus becomes Unexpressed. Consequently, the event
expPtc is generated, and the active state of Ptc becomes Expressed. In turn, a chain of events is ini-
tiated, and eventually the expPdx1 event is generated and the active state of Pdx1 moves to Expressed
(i.e., this instance of Cell expresses the pancreatic marker). Consequently, the IS IN(Pdx1 EXP) tran-
sition in the Differentiation component is enabled, and the system transitions from state Endoderm to
state Pancreas progenitor. Accordingly, the corresponding animated sphere for the cell changes color
from red to green, indicating that pancreatic specification has been accomplished.

5. Model Testing and Analysis

5.1. Comparison of the model against experimental knowledge

To test that the setup of the chemical composition and the morphogens in our model generates simulations
that conform to the biological knowledge, we compared the output against illustrations and histology of
the pancreas. We found that the general structure emerged in the simulation recapitulates key features
of pancreatic development. As in the biological data, the simulation developed a pancreatic bud from
the initial flat tissue at the early stages. Later on the structure displayed a ’mushroom’-like structure
that, eventually, results with a lobulated ’cauliflower’-like structure similar to the genuine structure of
the organ (figure 5 and clips in www.wisdom.weizmann.ac.il/ yaki/organogenesis/). Further-
more, a cross-section of the simulation at a time corresponds to embryonic day 10 was comparable with
a histological cut of the pancreas approximately at a similar time point (Figure 6). Both showed an
empty bud whose cell population consists mostly of pancreatic cells. Interestingly, the minority of the
cells, although not explicitly programmed to do so, remained unspecified. These cells experienced ab-
normal cellular-morphogen interactions and did not express the pancreatic marker as the majority of the
population.
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Figure 5. Comparison of illustration (top) and histology (middle) against the the emergent structure in the pan-
creas model (bottom) at three different stages of development (reproduced with permission from [21]).

Figure 6. Histological cross-section image vs. the simulation at embryonic day 10. Notice the emerging Pdx1-
negative red clusters in the simulation (dark red) (reproduced with permission from [16]).

Analysis of this phenomenon revealed that the unspecified population shares similar characteristics
with a largely unexplained phenomenon observed in vivo termed primary transition cells. Similar to the
in-vivo primary transition clusters, the unspecified in-silico population does not express the pancreatic
marker and aggregate in clusters at the top of the bud. Further analysis revealed that the unspecified
pancreatic cells in the simulation achieved a maximum approximately at embryonic day 10 displaying
an average of 4% of the population (Figure 7, left). We found that the frequency of primary transition
cells in vivo in the confocal histology in Figure 7, right is approximately 6% in qualitative agreement
with the observed frequency in the model.
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Figure 7. Analysis of the unspecified clusters at day 10. Left: unspecified cells as function of time. Right: the
domain of primary transition cells in the pancreatic bud.

5.2. Relations between the chemical composition and morphogens in the model

One way to test the relations between model’s design and the tissue formation in our model is by reducing
morphogen concentrations in the environment. This is done by disabling the elements in the extracellular
matrix that secrete factors into the environment. This in-silico analysis simulates in-vivo experiment in
which a specific tissue is ablated from the organism. In the spirit of Turing’s theory, this setup changes
the morphogens in the environment keeping the chemical cellular composition in place. Consequently,
the ’the state of the system’ under the altered cell composition over time is different than under the
original setup.

In one of the in-silico experiments, we disabled the notochord that largely mediates pancreatic spec-
ification. The altered setup lacks two essential morphogens that are essential for normal development of
pancreatic cells. Thus, when the model is executed, the cells do not sense the essential morphogens and
thus the chemical composition does not trigger the required signaling pathways for proper development.
This results with unspecified cells that gathered to form the initial bud but failed to develop the mature
lobulated organ (Figure 8). This outcome is consistent with similar in vivo findings that revealed an
undifferentiated bud in mice whose notochord was ablated (Figure 8).

Figure 8. Relations between the morphogens and tissue formation: normal pancreas (top) and notochord ablation
(bottom).
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Another, somewhat complementary way to study relations between the model design and the tissue
formation in the model is through modified chemical composition of the pancreatic cell. The altered
composition changes the way cells react to the signals in the environment and may lead to a distinct
behavior of the system. In the spirit of Turing’s theory, this trial changes the cell composition keeping
the same morphogen layout.

To illustrate this setup, we specified an extreme case, in in which we shuffled the expression of genes
in the nucleus in a way that retains the same chemical characteristics as the original nucleus (in a way
similar to that done in the Erdos-Renyi algorithm[22]). This design mimics a scenario whereby the
chemical composition is determined randomly and chemical entities are not positioned properly on the
signaling pathway (an example of such shuffle is given in Figure 5, top). Consequently, the interactions
between cells and morphogens cannot trigger normal pancreatic development. Specifically, the design
interferes with the sequence of chemical interactions that lead to the expression of the Pdx1 gene.

The modified chemical composition cannot follow the normal development gene linage. Rather, they
do not respond to the morphogens at their environment and remain unspecified. Thus, the simulation does
not reflect the development of the normal structure of the pancreas. At the early stages the simulation
displays normal development with a preliminary proliferation of the tissue, but as time progresses the
normal formation of the pancreatic bud is blocked. The modified chemical compositions result in mutated
cells that form a flat tissue of unspecified cells close to the gut endoderm (Figure 5 bottom). These
results verify that the specific chemical composition in the model is essential for proper development of
pancreatic organogenesis.

6. Verifying Computational Models [recap from [23]]

We have presented some of the techniques we utilized to analyze the output of the pancreas model.
However, the long-run perspective of computerized models raises the challenge of verifying that the
output of the models fully concurs with the experimental knowledge. Here, we reintroduce an idea of the
third-listed author, who suggested a variant of the well-known Turing test from 1950 [24], as a means
to validate the authenticity and completeness of computerized biological models. Below, we reproduced
verbatim the relevant sections from his paper ”A Turing-like test for biological modeling” [23],

”The original concept was proposed by Alan Turing in 1950 as an ’imitation game’ for
determining whether a computer is intelligent. In this test, a human interrogator, the can-
didate computer and another human are put in separate rooms, connected electronically.
Alice, the interrogator, doesn’t know which is the human and which the computer, and has
a fixed amount of time to determine their correct identities by addressing questions to them.
The computer has to make its best effort to deceive Alice, giving the impression of being
human, and is said to pass the Turing test if after the allotted time Alice doesn’t know which
is which. Succeeding by guessing is avoided by administering the test several times.

”If we were to apply the idea in Turing’s paper to validate biological models, what types
of modifications to the original test would we have to implement? First, to prevent us from
using our senses to tell human from computer, Turing employed separate rooms and elec-
tronic means for communication. In our version, we are not simulating intelligence but
development and behavior. Consequently, our ’protection buffer’ will have to be quite more
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Figure 9. Relationship between the chemical composition and tissue formation: Top: A randomized gene expres-
sion in the statechart of the nucleus. Bottom: Snapshots of the emerging structure from the randomized model at
three time points.

complex-intelligent, in fact! It would have to limit the interrogation to be purely behav-
ioral and to incorporate means for disguising the fact that the model is not an actual living
entity. These would have to include neutral communication methods and similar-looking
front-ends, as in Turing’s original test, but also means for emulating the limitations of ac-
tual experimentation. A query requiring three weeks in a laboratory on the real thing would
have to elicit a similarly realistic delay from the simulating model. Moreover, queries that
cannot be addressed for real at all must be left unanswered by the model too, even though
the main reason for building models in the first place is to generate predictive and work-
provoking responses even to those.

”Second, our test is perpetually dynamic, in the good sprit of Popper’s philosophy of sci-
ence. A computer passing the Turing test can be labeled intelligent once and for all because,
even if we take into account the variability of intelligence among average humans, we don’t
expect the nature and scope of intelligence to change much over the years. In contrast, a
model of a worm or a fly that passes our test can only be certified valid or complete for the
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present time. New research will repeatedly refute that completeness, and the model simu-
lating other kinds of natural systems will have to be continuously strengthened to keep up
with the advancement of science. The protection buffer will also have to change as advances
are made in laboratory technology (but, interestingly, it will have to be made weaker, since
probing the model and probing the real thing will become closer).

”Third, our interrogators can’t simply be any humans of average intelligence. Both they,
and the buffer people responsible for ’running’ the real organism and providing its responses
to probes, would have to be experts on the subject matter of the model, appropriately knowl-
edgeable about its coverage and levels of detail.

”Clearly, this modified test is not without its problems, and is not proposed here for immedi-
ate consideration in practice. Still, it could serve as an ultimate kind of certification for the
success of what appears to be a worthy long-term research effort. Variations of the idea are
also applicable to efforts aimed at modeling and simulating other kinds of natural systems.”

7. Discussion

Turing’s pioneering work has led to an increasing interest of the scientific community in applying his
ideas for modeling morphogenesis. Turing’s method has proven beneficial in modeling patterns in nu-
merous biological tissues from diverse organisms. These include zebrafish pigment cells[25], cellular
self-organization [26], iodate-sulfite-thiosulfate [27] and zebra skin pattern [28]. Possible future direc-
tions of Turing’s theory were described in [29], and a possible alternative was suggested in [30]. In
parallel, various computer science techniques have been adjusted to biological modeling and are applied
to model tissue morphogenesis in the spirit of Turing’s theory. Among these are cellular automata [31],
hybrid automata [32], stochastic simulation and the PI-calculus [33].

In this paper we described our approach to modeling morphogenesis. It is a computational approach
that results in a fully executable program for the chemical interactions between cells and morphogens
as well as the intercellular regulation within the cells. Using a model of pancreatic organogenesis as a
representative example, we elucidated how the approach can extend Turing’s concepts of morphogenesis
to allow us to go beyond the simple reaction-diffusion models, which often fail to take into account
the detailed behavior of a large number of interacting agents. We believe that this extension of Turing’s
theory constitutes a biologically-plausible method for the way interacting agents perform pattern-forming
tasks. Indeed, the emerging structure in the representative example is in agreement with experimental
observations and revealed properties that were not explicitly programmed into the model.

Using the language of statecharts and the reactive animation concept, we implemented the behaviors
of agents as basic pattern-forming entities. The collective chemical interactions of the numerous cells
with the morphogens change the state of the pancreatic systems and drive the organogenesis throughout
the simulation period. We further verified that the sequence of chemical interactions is specific and
cannot be replaced with a random sequence. We briefly described how the output of the model can be
compared with biological data, and how unforeseen properties emerge from the simulation at run time.

A future research direction along the lines presented in this paper would be to try to fully understand
the relations between the original equations of Turing and the behavior of computational agents (see
related discussion in [6]). This direction could help in developing an automated system that enables the
translation of Turing’s mathematically-based models to computational ones, and vice versa. It would



14 Y. Setty et al. / Executable Modeling of Morphogenesis: A Turing-Inspired Approach

also provide means to connect mathematical work with computational models and to make experiments
showing the actual in silico implementation of mathematical pattern-forming mechanisms.
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