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Abstract-- The last several decades have witnessed a vast accumulation of biological data and data analysis. Many of 

these data sets represent only a small fraction of the system’s behavior, making the visualization of full system behavior 
difficult. A more complete understanding of a biological system is gained when different types of data (and/or conclusions 
drawn from the data) are integrated into a larger-scale representation or model of the system. Ideally, this type of model 
is consistent with all available data about the system, and it is then used to generate additional hypotheses to be tested. 
Computer-based methods intended to formulate models that integrate various events and to test the consistency of these 
models with respect to the laboratory-based observations on which they are based are potentially very useful. In addition, 
in contrast to informal models, the consistency of such formal computer-based models with laboratory data can be tested 
rigorously by methods of formal verification. We combined two formal modeling approaches in computer science that 
were originally developed for non-biological system design. One is the inter-object approach using the language of live 
sequence charts (LSCs) with the Play-Engine tool, and the other is the intra-object approach using the language of 
statecharts and Rhapsody as the tool. Integration is carried out using InterPlay, a simulation engine coordinator. Using 
these tools, we constructed a combined model comprising three modules. One module represents the early lineage of the 
somatic gonad of C. elegans in LSCs, while a second more detailed module in statecharts represents an interaction 
between two cells within this lineage that determine their developmental outcome. Using the advantages of the tools, we 
created a third module representing a set of key experimental data using LSCs. We tested the combined statechart-LSC 
model by showing that the simulations were consistent with the set of experimental LSCs. This small-scale modular 
example demonstrates the potential for using similar approaches for verification by exhaustive testing of models by LSCs. 
It also shows the advantages of these approaches for modeling biology.  

 
Index Terms—c. elegans, modeling, statecharts, verification 

I. INTRODUCTION 

IOLOGICAL systems are fundamentally similar to reactive, engineered systems. By definition, a 

reactive system continuously interacts with its environment [1], which also describes the 

functioning of biological systems [2], [3]. This analogy can be extended to a comparison 

between building engineered systems and the process of modeling and model-verification of 

biological systems [4]. The design of an engineered system begins with the definition of a set of 
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requirements determined by a concept of how the system should eventually work. These 

requirements not only guide the construction and implementation of the system, but are also used 

in verifying the system’s correctness, that is, that the system acts as it should with respect to the 

requirements. Building biological models, on the other hand, involves reverse-engineering, 

where mechanistic models are built to represent how the biological system works based on 

information known about the system [4] (Fig. 1). By testing an existing biological system under 

different conditions, we increase our knowledge of its behavior. The observed results from these 

tests can then be formalized to generate a set of behavioral “requirements”. The inferred rules 

governing the system’s behavior can then be used to construct a mechanistic model. As in 

engineered systems, these “requirements” can also be used to verify the mechanistic model’s 

“correctness”, i.e., its consistency with the laboratory observations on which it was based [4] 

(Fig. 1). The biological model will optimally be based on all the available relevant information, 

but may also include educated assumptions about how the system functions [5].  

 

Fig 1: Building engineered systems vs. modeling and model verification of biological systems. 
 

In computer science, there are a number of accepted terms used for ways to show that a system 
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satisfies its requirements. Testing is used mainly to describe the fact that one runs, or executes, 

the system or a model thereof on some inputs. In most cases, the set of inputs is infinite or 

impractical. The theory of testing is concerned with finding a “good” set of tests, which serve to 

somehow cover most important cases. Verification is used to describe a rigorous mathematical 

and/or algorithmic process whereby one proves that the program satisfies the specification. 

Successful verification leaves no doubts as to the system’s correctness relative to the precise 

specification of the requirements. Model-checking is one of the most widely used techniques for 

carrying out verification. Exhaustive testing is the term used for the case where the testing 

actually covers all possibilities, so that the result is the same as that for verification. This can 

only apply when the number of possibilities is finite and practically small, and is therefore not 

normally possible and is rarely done, except in relatively small-scale cases. Thus, when building 

engineered systems, testing and/or verification are used to make sure that the system behaves in 

the desired fashion.  

In building biological models, a process analogous to testing is the re-consideration of each of 

the laboratory-based results that were used to formulate the mechanistic model as a means to 

determine if the model is a sufficient reflection of the current understanding of the system [4]. 

Additional laboratory-based experiments are then designed to test hypotheses generated by the 

model. The fact that there is a finite set of tests (the laboratory data) from which mechanistic 

models are initially formulated, suggests the possibility that such a model can potentially be 

verified by exhaustive testing; that is, its compatibility with the data-set used to generate it can in 

fact be determined. Having validated a biological model for a specific data-set, new experimental 

results can be added to further challenge the validity of the model, which can be appropriately 

updated. Provided adequate means to formally represent (1) the biology represented in a 
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mechanistic model and (2) the experiments that generated the model, the informal process of bio-

logical mechanistic-model building and testing can be made amenable to formal verification 

methods.  

Another shared feature of biological and engineered systems is that both display functional 

modularity. A functional module is a distinct unit whose function is separable from those of 

other modules [6]. Several areas of research have highlighted the modularity within biology, 

particularly in evolution and development [6], [7], [8], [9]. Because of the growing volume and 

complexity of biological data, the synthesis of the various aspects of biological analysis into a 

complete systemic model, and the illustration of its functional modules have come to rely more 

and more on mathematical and computational methodologies. 

The challenge of developing computational models of biological systems has been the focus of 

many studies. Different groups use different modeling methodologies, including differential 

equations [10], Petri nets [11], process algebra and pi calculus [12], [13]. Different 

methodologies depend on the type of system being modeled and the questions being addressed. 

Our group utilizes two main methods: an intra-object, state-based approach using statecharts and 

Rhapsody and an inter-object, scenario-based approach using live sequence charts (LSCs) and 

the Play-Engine [3], [14], [15], [16], [17]. These methods have proven applicable to biology, 

including the field of developmental genetics that, because of its reliance on genotype-phenotype 

relationships as opposed to more quantitative measures such as reaction diffusion kinetics, is 

relatively refractory to quantitative modeling methodologies.  

Another aspect of modularity in biology stems from the fact that different biological systems 

are investigated using different experimental approaches and raise different kinds of questions. 

Accordingly, we and others have proposed that distinct aspects of the modeling strategies may 
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be amenable to distinct computational approaches. We further proposed that experimental 

observations can be formalized and then used to verify that a formalized proposed mechanistic 

model is consistent with the data upon which it was based [4]. The present paper implements 

these ideas by creating a modular model that integrates the scenario-based and the state-based 

approaches using the simulation engine coordinator InterPlay [18]. We used both LSCs and 

statecharts to create a mechanistic model that focuses on a well-characterized cell fate decision 

that is part of the development of the nematode Caenorhabditis elegans (C. elegans) 

hermaphrodite somatic gonad – the anchor cell/ventral uterine cell (AC/VU) decision. The 

mechanistic model includes both inferences from available genetic data (a genetic interaction 

pathway) as well as previously unmeasured quantitative features of the pathway (e.g., synthesis 

and degradation rates for components of the pathway).  For testing, we generated LSCs to 

represent the results of genetic and anatomical perturbation experiments, from which many of 

the key aspects of the mechanistic model were originally derived. We then used these LSCs to 

verify computationally that the assumptions and hypotheses in the model are consistent with the 

biological observations.  

The development of the C. elegans somatic gonad starts from two founder cells present at 

hatching, Z1 and Z4, which divide two to three times during the first larval stage (L1) to produce 

the 12 cells of the gonad primordium [19]. Ten cells of the primordium have invariant fates: 

eight precursors that later generate uterine and sheath/spermatheca cells, and two terminally 

differentiated distal tip cells (DTCs), which lead the growth of the elongating gonad and play 

critical roles during germline development [20]. Two other cells of the primordium, named 

Z1.ppp and Z4.aaa, have naturally variable fates: in the unperturbed worm one cell will become 

the terminally differentiated anchor cell (AC), and the other will become a ventral uterine 
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precursor cell (VU) [19]. The final conformation of the somatic primordium depends on the 

outcome of the cell fate determination process between these two cells. 

 

Fig. 2: A. Gene interaction in the AC/VU decision. The interaction between Z1.ppp and Z4.aaa is mediated by the receptor LIN-12 and the ligand 
LAG-2. During the AC/VU decision, hlh-2 is required for lag-2 transcription, and is down regulated post transcriptionaly by LIN-12. Arrows 
represent positive regulation and bars represent negative regulation. Adapted from (Karp and Greenwald, 2003) and (Wilkinson et al., 1994). B. 
Activity level at which regulation is modeled. All components have basal rates of production and degradation for both the mRNA and protein in 
addition to these specific regulatory effects. aTF, transcription factor; (+), activation; (-) inhibition 

 
The AC/VU decision occurs during the L2 stage and depends on cell-cell interactions between 

Z1.ppp and Z4.aaa that are mediated by LIN-12, a receptor of the LIN-12/Notch family, and 

LAG-2, a ligand of the Delta-Serrate-LAG-2 (DSL) family (Fig. 2A) [21], [22], [23], [24], [25]. 

Z1.ppp and Z4.aaa have the potential to acquire either the AC or the VU fate, but in wild-type 

animals only one becomes the AC and the other becomes a VU (in 50% of the animals, Z4.aaa 

becomes the AC and Z1.ppp becomes a VU, and vice versa for the other 50%). Initially, Z1.ppp 

and Z4.aaa both express lin-12 and lag-2. The current understanding of the mechanism whereby 

these two cells acquire stable mutually exclusive fates is that an initially small difference in lin-

12 activity between the cells triggers the amplification of ligand and receptor expression such 
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that the cell with slightly higher lin-12 activity continues to transcribe lin-12 and ceases to 

transcribe lag-2, while the cell with lower lin-12 activity continues to transcribe lag-2 and ceases 

to transcribe lin-12. Ultimately, the cell expressing high levels of lin-12 becomes a VU, and the 

lag-2 expressing cell becomes the AC [21], [23], [26], [27]. In addition, hlh-2 promotes lag-2 

transcription during the AC/VU decision. Based on the different patterns of expression of a hlh-2 

transcriptional reporter versus HLH-2 protein, it has been proposed that HLH-2 is post-

transcriptionally down-regulated in the presumptive VU upon LIN-12 activation as part of the 

negative feed-back mechanism that leads to the termination of lag-2 transcription [28] (Fig. 2A). 

The modular model we present here simulates the early lineage of the somatic gonad cells in the 

scenario-based formalism, and focuses on the AC/VU decision in the state-based formalism. We 

used InterPlay to integrate the two formalisms (Fig. 3).  

 

Fig. 3: Combining different tools for different modules. The AC/VU decision was modeled in the state-based formalism using Rhapsody, and the 
lineage of the somatic gonad was modeled in the scenario based formalism, using the Play-Engine. InterPlay was used to connect the two tools. 

 
We further composed a set of LSCs representing a key sub-set of the experimental data upon 

which the mechanistic model was based, and again via InterPlay, we used them to verify that the 

integrated model produced the expected outcomes (Fig. 4). 
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Fig. 4: Model verification. After we constructed the model using Rhapsody and the Play-Engine, we used the Play-Engine again to test the 
integrated model. We created a set of simple LSCs based on lab observations, and used InterPlay to run the combined Play-Engine-Rhapsody 
mechanistic model against them. 

 

II. METHODS 

A. Statecharts 
 

Statecharts is a visual formalism, developed in 1983 as a language for specifying reactive 

behavior [29]. In its object-oriented version [30], one uses statecharts to define the behavior of 

objects over time, in an intra-object fashion, based on the various states that an object can be in 

over its lifetime and the events that cause it to move from one state to another. Statecharts 

describe both how objects communicate and collaborate and how they carry out their own 

internal behavior under different circumstances. Thus, states are actually abstract situations in an 

object's life cycle. The language is well-structured and hierarchical, and is thus relatively easy to 

deal with even by non-specialists.  

B. Rhapsody 

Rhapsody is a software tool for the design of statechart-based models [30] 

(http://www.ilogix.com). It can automatically translate a statechart model into executable C, 

C++, or Java code. Once the model (or some part thereof) is constructed and translated into 
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executable code, Rhapsody can execute it so that one can observe its progress, in animated 

versions of the model's statecharts. During animation, active states and transitions are shown in a 

different color. The code can also be linked up with a graphical rendition of the system being 

specified, a so-called GUI, so as to obtain a realistic simulation of the system in operation.  

C. LSCs 

Live sequence charts (LSCs) constitute a visual formalism for specifying sequences of events 

and message passing between objects [31]. The behaviors are specified as scenarios of events 

and actions, with a variety of possibilities including scenarios that may occur, scenarios that 

must occur and scenarios that are forbidden (called anti-scenarios). There are two types of LSCs, 

universal and existential. Universal charts are more relevant for modeling, and are built of a pre-

chart and main-chart. The relationship between the pre-chart and the main-chart can be viewed 

as a condition-result pair (see Fig. 5A): whenever the scenario in the pre-chart occurs 

(condition), the scenario in the main chart must follow (result) [31].  

D. Play-Engine  

The Play-Engine is a recently developed tool that supports modeling and model execution with 

LSCs. The Play-Engine supports the play-in/play-out methodology, in which one can easily 

represent inter-object behavior, and execute and simulate a modeled system [32]. Using play-in, 

LSCs that specify system behavior can easily be generated with a user-friendly mechanism. The 

user first builds a graphical user interface (GUI) of the system, with no behavior integrated in it 

and then ‘plays’ the GUI by clicking the graphical control elements in an intuitive manner. In 

this way, the Play-Engine constructs the corresponding LSCs, which determine the sequences of 

events and actions, and how the system should respond to them. Thus, play-in is analogous to 

writing programs that determine system behavior. 
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Accordingly, play-out is analogous to running these programs, in that it allows execution of 

the LSCs. Using play-out, the user simply plays the GUI as he or she would have done while 

executing a real system (for example, clicking the “On” button on a computer). As this is 

happening, the Play-Engine interacts with the GUI and uses it to exhibit the system’s response 

over time. Events occurring in the LSCs that govern system behavior during play-out are 

represented in the GUI, so that the user may view the full modeled behavior of the system 

operating simultaneously. The Play-Engine also detects any violations of constraints or 

contradictions between scenarios if attempted. For more on LSCs, play-in/play-out and the Play-

Engine see [32].  

E.  InterPlay 

InterPlay is a simulation engine coordinator that supports cooperation and interaction of 

multiple simulation and execution tools, thus helping in the scale-up process of designing large 

reactive systems [18]. Among other things, InterPlay enables the connection of the Play-Engine 

and Rhapsody, and can be used in distributing large systems into their parts while retaining the 

ability to execute them in tandem (to appear in an extended version of [18]).  

The connection of the Play-Engine with Rhapsody via InterPlay is done through external, non-

GUI objects. External objects are mirror images in the local system of objects in a remote 

system, serving as an interface to it. As such, their structure (properties and methods) is known 

by the local system, as are the elements of their behavior which are relevant to this system. 

Behavioral changes in the remote objects are reflected to the mirror images and vice versa. The 

technical aspects of this reflection are carried out by InterPlay. It is important to stress that the 

behavior of the external objects is driven only by the remote system.    
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III. RESULTS 

A. Model structure 

Since our model is modular and involves the continuous interaction of different modeling 

tools, we will describe its structure by following the progress of an execution.   

The model starts at the beginning of the lineage of the somatic gonad cells. This component is 

simulated using LSCs. The model of the lineage is constructed from two types of GUI objects – 

a Gonad object and the objects of the Somatic Cells. The GUI depicts the somatic gonad cells in 

cartoon form that reflects the activity of the underlying LSC events and that approximates their 

relative size and positions during development, as well as their lineal relationships and divisions 

(see Supp. Fig. 1). All of the Cells objects belong to the same class, and therefore have the same 

properties and methods. The LSCs that describe the lineage of the somatic gonad advance 

according to developmental time. Every Play-Engine clock tick represents one hour of actual 

developmental time. The LSC Developmental Time (Fig. 5A) acts as a “manager” LSC 

that monitors the time and consequently sets the developmental stage of the Gonad object. This 

part of the model describes the lineage of the somatic gonad only up to the L2 molt. For each 

developmental stage that the gonad reaches there is a suitable LSC in which the relevant cells 

change their Divide property to true (see Supp. Fig. 2). For each cell that divides there is an 

LSC in which the divided cell sends its two daughter cells the method Divided. Another LSC 

states that each cell that receives the method Divided from another cell changes its Born 

property to true. As suggested in the work of Karp and Greenwald (2003), the outcome of the 

AC/VU decision is influenced by the birth order of Z1.ppp and Z4.aaa. Therefore, for these two 

cells the LSC Stochastic Event decides randomly which of the two cells is born first (i.e. 

changes its Born property to true first) (See Supp. Fig. 3). The change to true of the Born 
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property of Z1.ppp and Z4.aaa is sent to Rhapsody via InterPlay, and this triggers the cells in the 

Rhapsody model to start the cell fate determination process.  

 

Fig. 5: Examples from the model. (A) An example LSC. This LSC follows developmental time and manages the development of the gonad. If the 
user clicks the Start button (the pre-chart, surrounded by a blue dashed line), then the Gonad object starts to measure time, and advances through 
the developmental stages accordingly (the main-chart, surrounded by a black rectangle). The external Gonad object, which is intended for 
communication with InterPlay, is indicated with a small cloud on the right upper corner. (B) The statechart of the Cell class. The cell starts from 
the unborn state, and from there it can advance either to the Ablated state or to the Fate state. In the Ablated state, the cell's 
participation in the decision is terminated. In the Fate state, the process of fate determination takes place, at the end of which the cell either 
becomes an AC or a VU.  

 
The model of the AC/VU decision, which is simulated in Rhapsody, is composed of a Gonad 

class and a Cells class. The Gonad class aids in the initialization of the simulation (i.e. setting the 

initial conditions for a particular execution). The Cell class consists of two instances of the same 

statechart – one for Z1.ppp and one for Z4.aaa. Consistent with their biological behavior as an 

equivalence group [19], [26], [33], Z1.ppp and Z4.aaa start the process in the wild type (here 

implying the absence of genetic or anatomical perturbations) with the same initial conditions. 
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During the run, however, their gene and protein levels change as a result of their interactions. 

Below we describe the statecharts of the various classes, starting with that of the Gonad. 

1) Gonad class statechart 

The instantiation of the Gonad statechart starts in the InitConditions state (see Supp. 

Fig. 4). This state has a sub-statechart that specifies the variety of initial conditions, according to 

the different perturbations used to run and test this model (Table 1) (see Supp. Fig. 5). The 

default initial condition is the wild type.   

2) Cell class statechart 

The Cell class describes the modeled processes that take place within and between the two 

cells. lin-12, lag-2 and hlh-2 are represented at transcriptional, translational and post-

translational levels, representing the production of mRNA and protein products (Supp. Table 1). 

Although exact levels of these molecules have not been measured experimentally, we assigned 

relative values that were adjusted during model-building to produce the desired behavior. There 

is also a representation of mRNA and protein degradation. We assume that all produced protein 

is active or able to be activated: in the case of the wild-type LIN-12 receptor, the activity of the 

protein is contingent on the neighboring cell producing the ligand. All of these properties are 

depicted as attributes of the class Cell. The processes of transcription and translation and the 

interaction between the cells are implemented in C++ as operations (Supp. Table 2).  

For each of the genes, the calculation includes a basal transcription and degradation rate for 

the mRNA, and a basal translation and degradation rate for the protein. Additional terms are 

included in the operations to account for the known regulatory steps in this system (see Fig. 2A, 

B). These include:  (1) the effect of LIN-12 as a self-activating transcription factor on the lin-12 

mRNA level; (2) the effect of LAG-2 of the neighbor cell as a signal that activates LIN-12; and 
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(3) the effect of HLH-2 as a transcription factor on the lag-2 mRNA level. In addition, since 

LIN-12’s negative effect on HLH-2 is postulated to be post-translational [28], the protein level 

of HLH-2 is computed not only as a factor of the protein’s basal translation and degradation 

rates, but also as a factor of the influence of activated LIN-12 as a negative regulator.  

The strength of the effect of a transcription factor on the transcription rate of its target gene is 

described by a monotonic s-shaped function [34]. This function is used each time there is a 

calculation of a transcriptional regulation interaction between two elements in the system (see 

Fig. 2B). It determines the extent of the influence one element has over the activity level of 

another element, taking into consideration the current activity level of the influencing element. 

We also introduce into the system a random level of noise (between -5% and +5%) each time we 

update both mRNA and/or protein levels of each of the three key components. This simulates the 

natural biological fluctuations of the efficiency of these processes.  

B. A run of the model 

At each execution of the model there are two active copies of the statechart for the class Cell – 

one for Z1.ppp and one for Z4.aaa. Each copy of the statechart has its own list of attributes and 

operations that change during the run (Supp. Tables 1, 2). The statechart of the Cell class starts 

at the UnBorn state (Fig. 5B). Once Z1.ppp and Z4.aaa are born according to the lineage 

modeled in the Play-Engine, the message evBorn is received by Rhapsody via InterPlay.  

The Cell statechart then advances into the state Fate (Fig. 5B), in which the model 

represents the process of cell fate determination, including a set of two sub-statecharts to 

separate events that occur upon reaching the “decision threshold” of LIN-12 levels from the final 

stage of cell fate acquisition. The Fate state starts at the UnDiff (for Undifferentiated) state 

(Fig. 5B). In this state the level of the genes and proteins are updated. The fate of the cell is 
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determined when the level of LIN-12 protein in a cell reaches one of two critical levels – either a 

lower-bound AC threshold or an upper-bound VU threshold. If the level of LIN-12 drops below 

the AC threshold, the cell advances to the AC state (Fig. 5B), in which a sub-statechart ensures 

that the FinalAC fate is not reached until the AC state is stable, that is, has reached an 

additional (arbitrary) 1 unit below the AC threshold  (see Supp. Fig. 6). In this state, a loop 

updates the LIN-12 level within the maintainAC state by iterating the same calculation 

method that was used in the UnDiff state. Once this 1-unit difference is achieved, the cell 

advances to the FinalAC state. Similarly, if at the end of the UnDiff state the level of LIN-12 

protein in the cell exceeds the VU threshold, the cell advances to the VU state (Fig. 5B). Again, 

this state has a sub-statechart that assures that this level of LIN-12 is maintained before the cell 

advances to the FinalVU state.  

When the cells in the Rhapsody model reach their final fate, the result is sent back to the Play-

Engine, again through InterPlay, and the appropriate final conformation of the somatic gonad 

primordium – 5R or 5L (Kimble and Hirsh, 1979) – is set and displayed via the GUI (see Supp. 

Fig. 1C). An example of an outcome of a run of the model under normal, wild-type conditions 

can be seen in Supp. Fig. 7.  

C. Model testing 

We created a set of 18 LSCs (Table 1) to test the model, each of which represents a condition-

result experiment. These LSCs consist of a pre-chart that states the initial condition of the 

experiment (for example lin-12(0) indicates lin-12 is homozygous for a null allele), and a main 

chart that describes the end result of that condition (Z1.ppp and Z4.aaa both become ACs; for 

example, see Supp. Fig. 8). These LSCs do not contain any information about the mechanism 

that led to the result. 
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Table 1: testing 

 
a Numbers in parenthesis indicate the number of variant LSCs per test name if greater than 1.  
 b Run duration is measured in the average number of total rounds that the model goes through to reach completion (that is until it reaches the 
FinalAC and FinalVU states). 
* All protein produced is assumed to be active or activate-able (see text for further explanation). 

 
In the Rhapsody component of the model, the statechart of the Gonad initializes the conditions 

for each test. For example, for lin-12(0), the mRNA and protein levels of lin-12 in both Z1.ppp 

and Z4.aaa are set to zero (Table 1). When running the model, the user can choose which test to 

conduct, either through Rhapsody or through the Play-Engine. The appropriate events are sent 

via Inter-Play, and they consequently trigger the progression of the model. Once the model 

finishes its execution, the test-LSCs are either satisfied or not satisfied. If they were satisfied, 

this implies that the outcome of the simulation driven by the mechanism depicted in the model is 
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consistent with the laboratory observations represented by the LSCs.   

We used the set of experimental observations shown in Table 1 and tested, one by one, the 

combined statechart-LSC model. In the course of applying these tests, we had to make small 

adjustments to the parameters of the mechanistic model, and to check again if it displayed the 

desired behavior. Eventually, all of the test-LSCs were satisfied, meaning that the mechanistic 

model we built was consistent with the laboratory observations tested (see Supp. Fig. 9-17). For 

laboratory observations in which the experimental outcomes were non-deterministic, our model 

is deterministic and therefore produces the most frequent results. That is, where the biological 

outcome was incomplete penetrance of a given phenotype, our model only produces the most 

penetrant phenotype. Future modeling work will address a more realistic representation of non-

deterministic outcomes. Though the model and the tests thereof are not comprehensive – that is, 

these are but a small sub-set of the relevant experiments reported in the literature that relate to 

the AC/VU decision - this set is sufficient to illustrate the process, utility and further potential of 

this style of modeling and model verification. 

IV. DISCUSSION 

Complex systems are built by combining together simpler parts of the system. The process of 

modeling biological systems requires the integration of the mechanistic rules by which the 

smaller pieces operate. In this paper we combined two formal modeling approaches in computer 

science that were originally developed for the systems design field. These were used to construct 

a model for certain aspects of the development of the somatic gonad of C. elegans. In particular, 

we focused on the AC/VU decision. We then used one of the approaches to formally test the 

integrated model, using a defined set of biological condition-result experiments. 

As biological processes are studied, the relevant data frequently have distinct features. For 
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instance, some of the data are observations of normal behavior, while other data are obtained 

after specific perturbations of the normal system. The mechanisms underlying the behavior under 

normal conditions are often inferred from the results of experiments conducted under perturbed 

conditions. In addition, data from many different aspects of the biology are often combined into 

a mechanistic model. For example, the behavior of a condition that alters the activity of a given 

gene can be combined with information about the identity of the protein encoded by the gene and 

from relevant biochemical experiments. These combined inferences are collected into a 

mechanistic model from which testable hypotheses are derived and then lead to additional 

experiments. It was previously suggested [4] that by using a scenario-based approach (LSCs) to 

formalize the observed behaviors and experimental perturbations of a biological system, and a 

state-based approach (statecharts) to formalize the mechanisms underlying these behaviors, one 

can formally verify that the mechanistic model reproduces the system's known behavior.  

Here we have followed this idea: we used different computational approaches to model 

different aspects of the system. As the lineage of the somatic gonad cells is more intuitively 

depicted in the form of scenarios, we chose to describe it using the inter-object approach of 

LSCs. We also used an LSC-based approach to represent condition-result laboratory experiments 

and their outcomes. The AC/VU decision, however, is a continuous process, consisting of 

feedback loops among key components that influence the states of the two cells, Z1.ppp and 

Z4.aaa. Moreover, based on additional more general knowledge about genetic information 

transfer and the dynamic behavior of the mRNA and protein components of the system we 

incorporate into the statecharts model additional quantitative features, some of which have not 

yet been measured directly in the lab. We chose to model this part of the system using the intra-

object approach of statecharts to represent the interactions between three of the crucial 
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components that regulate this cell fate decision and their molecular dynamics. Thus, our 

mechanistic model includes quantitative aspects of the system that may provide additional 

insights as future laboratory measurements are made. We used InterPlay as an interface 

connecting the LSC and statecharts-based aspects of the model (Fig. 3). 

This approach has several more broadly-applicable advantages. Each module is a standalone 

model. Thus, we can choose to explore different aspects of the systems separately by looking at 

each module by itself, or to investigate the complete system by looking at the integrated model. 

This flexibility is useful on several levels: when building the model, one can concentrate on 

developing a single component without influencing other components of the system. It is also 

possible to distribute the modeling work between several investigators/developers, each 

responsible for a single module. Then, for the complete system all modules can be connected. 

Another advantage is that investigators interested in diverse facets of the modeled system can 

look at the processes that interest them on their own, or as a part of the full system.    

We used the same modular approach for verification of the model. The statecharts-based 

model incorporates inferences from a wide set of studies. Using a small set of core behaviors, we 

were able to demonstrate that this model can reproduce these fundamental behaviors. To do this, 

we summarized this key set of previously published laboratory observations in the form of LSCs, 

and used them to test that the mechanistic model we constructed was consistent with these 

laboratory observations (Fig. 4). Thus we allowed the Play-Engine to follow the combined 

Rhapsody and Play-Engine model execution, and ensured that our mechanistic model matches 

these experimental observations. This approach demonstrates the potential for exhaustive testing. 

The modular approach is very convenient, since it enables us to test the components of the 

system either separately or combined. Further tests can be used to help develop a more complete 
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model of this system. Since our mechanistic model also includes previously unmeasured 

quantitative aspects of the system, this type of modeling can serve to simulate experiments to 

determine these important values. 

The AC/VU decision is a process of cell fate determination between two initially equivalent 

cells. This process is mediated by members of the Delta/Notch gene family – LIN-12, a receptor 

from the LIN-12/Notch family, and LAG-2, a member of the DSL (Delta-Serrate-LAG-2) 

family. Members of the Delta/Notch family are involved in such processes in various organisms 

[36]. The proposed mechanism for this cell fate determination is similar to leader-election 

algorithms in computer science. These algorithms are designed to solve a problem in which a 

leader needs to be chosen in a network of initially identical elements. A natural observation is 

that if all elements are identical, the problem cannot be solved deterministically, and one unique 

leader cannot be elected [37]. This implies that the only way to solve the leader-election problem 

is to somehow break the symmetry. The assumption made in some of the algorithms designed to 

solve this problem is that each element in the network starts the process with some unique 

identifier (sometimes chosen at random), which distinguishes the elements and makes it possible 

to break the symmetry. The elements in the network then communicate with each other, and send 

their identifiers across the network. Eventually, a leader is elected according to the nature of 

these identifiers [37]. The change in symmetry in the biological interactions is presumed to be 

due to some kind of stochastic event, which gives one of the cells the advantage in adopting the 

leader fate [36]. In the AC/VU decision, this event is biased by the birth order, which enables 

one of the cells to start accumulating LIN-12 before the other [28]. The LIN-12 activity level 

could act as the unique identifier in the algorithm, by which the leader is eventually chosen. 

The modular nature of our modeling approach makes it easily expandable. One can simply 
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connect additional modules of the system to the existing configuration, using any computational 

tool desired. Furthermore, since every component of the model is standalone, it is possible to 

choose just one of the components, and incorporate it into another system. Thus this model can 

be integrated into the ongoing efforts in our group to model C. elegans vulval development [15], 

[17].  Another plausible expansion of this model is the construction of additional aspects of C. 

elegans gonadogenesis. 
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