
Will I be Pretty, Will I be Rich?

Some Thoughts on Theory vs. Practice in Systems Engineering

(Short Summary of Talk)

David Harel

The Weizmann Institute of Science, Rehovot, Israel

harel@wisdom.weizmann. ac.IL

“The mathematician’s patterns, like the

painter’s or the poets’s, must be beautzful; . . .

there is no permanent place in the world for

ugly mathematics.”

(G. H. Hardy [H, p. 25])

Person A: “I’m writing a best-seller.”

Person B: “Short of money, hah?”

(Cartoon in the New Yorker-)

I Preamble

This is a very short summary of a talk presented at

the 13th ACM Symposium on Principles of Database

Systems (PODS) in Minneapolis in May, 1994. The

talk attempted to put forward some thoughts on

theoretical vs. applied research in system design and

programming. By its very nature, such a talk is bound

to be disorganized, rambling, non-self-cent ained, and

extremely subjective. It was; and the written summary

you are reading is even worse, since it not only omits the

details of the examples used in the talk, but also lacks

the intonations, facial gestures and hand-waving that

are part and parcel of talks that have little technical

content.

Oh well. So be it.

2 A 3-way Classification

This is a “Principles of’ conference. Most of its par-

ticipants do theory — that is, research whose methods

and tools are mathematical — but theory geared to-

wards particular kinds of real systems. In this case,

it is database systems, In other analogous confer-

ences, such as those on Principles of Programming Lan-

guages (POPL) or Principles of Distributed Computing

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

(PODC), the setup is the same, but the kinds of systems

differ.

What sort of theory do we do here, and why? Should
the general theory community take notice of us? Should

the applied crowd listen in? How about the converse

questions: Should we peddle our merchandise to other

theoreticians? Are we doing enough to serve the needs

of our own real-world practitioners?l

At the heart of the talk was an attempt to clarify some

of the issues behind these questions, by dividing the

research carried out by theoreticians into three kinds,

which will be referred to as Type 1, Type 2 and Type 3

theory.z

Type 1 theory concerns true foundations and princi-

ples. It should be robust, deep and of fundamental na-

ture, and should explain, generalize and enlighten, Such

are the basics of computability and complexity theory,

for example, as they emerge from the work of Turing,

Church, Cook and many others.

Type 2 theory responds directly to the needs arising

in applications. It should be pragmatic and specific,

molding itself to fit the requirements posed by real-

world difficulties, and it should result in things that

work and can actually be used. Such is the Fast Fourier

Transform, for example, or those parts of the theory of

context-free languages that lead to efficient compilation

techniques.

Type 3 is theory for the sake of theory (TST). It

should be mathematically elegant, yet diflicult and

clever, and should be of interest to other theoreticians.

Much of the work we do is of this type.

The borderlines between these are fuzzy, and as time

goes by migration often take place: Many Type 3

results and techniques eventually become Type 1, and

1In the context of the present talk, these would include many

of the non-PODS members of the SIG MOD community.

2 While our interest here is mainly in theory carried out in

conjunction with practical fields of computer science, such as

databases and systems engineering, many of the points made

can be modified to apply to theory in general. Also, the 3-way

classification proposed here is somewhat different from the one

proposed by Raghavan [R] for general ST OC/FOCS theory.

SIGMODIPODS 94- 5/94 Minneapolis, Minnesota USA
(D 1994 ACM 0-89791 -639-5/94/0005 ..$3.50

1

sometimes — but more rarely — Type 3 work becomes

applicable, converting it into Type 2.

TST is legitimate and desirable, and not only because

it might get upgraded. It is absolutely essential to

the well-being and substance of a scientific community.

Even so, most theoreticians will never admit to doing

Type 3 work.3

One difference between Types 1 and 2 on the one

hand and Type 3 on the other is in the judges.

While the quality of TST is inevitably determined by

theoreticians, the ultimate test of both Type 1 and Type

2 is in the opinions of real-world people, such as systems

engineers and programmers. A non-applicable piece of

work can be considered by theoreticians to be Type 1,

but it cannot fully deserve that label unless engineers

and programmers can be made to appreciate its virtues

too. Otherwise, there are exactly two possibilities: (i)

the theory is bad, or (ii) it is TST (in which case it

might be excellent, but the applied guys couldn’t really

have known).

3 Did Codd do Theory?

This part of the talk was dedicated to illustrating the

points with examples taken from database and system

engineering research.

Here are some of the questions one can ask in

connection with a particular piece of work: Are

Codd’s early papers on relational databases and query

languages [Cl, C2] PODS-like material? Was his

work on defining the relational model Type 1, 2 or 3?

How about his definition of the relational calculus and

algebra and the proof of their equivalence?

Most of the examples given in the talk were couched

as contrasting pairs, in an attempt to identify the totally

different attitudes and strengths a theoretician must

summon up in order to carry out Type 1 vs. Type 2

work, Besides Codd’s pioneering work, the database

topics discussed included Query-by-Example [Z], Dat-

alog (cf. [U]), computable queries [CH 1], and fixpoint

and while queries [AU, AV, CH2]. Also mentioned was

Fagin’s result concerning NP and existential second or-

der logic [F], which inspired many of the connections be-

tween computational and descriptive complexity (e.g.,

those in [1, V, AV]).

To further illustrate things, several examples were

given from the world of system development. Specif-

ically, Petri nets [Re] and statecharts [Hal] were dis-

3 Hardy, the great number theorist, was a notable exception,

stating, in the famous passage from [H, p. 90]: “I have never done

anything ‘useful’. No discovery of mine has made, or is likely to

make, directly or indirectly, for good or ill, the least difference to

the amenity of the world. [...] I have just one chance of escaping

a verdict of complete triviality, that I may be judged to have

created something worth creating. ” He was wrong, of course, as

any modern-day cryptographer will tell you.

cussed from a user’s point of view, as were results on

the relative expressive power and succinctness of these

and other formahsrns for specifying system behavior

[RS, MF, EZ, DH]. Also illustrated was the contrast

between the theoretical and practical aspects of verify-

ing finite-state systems by executable specifications (see,

e.g., [Ha2]), or the recently proposed methods based on

BDD’s [B, B+].

4 Post-Ramble

There was also a message in all this. Subjective, and

perhaps trivial, but here it is anyway.

A typical theoretician wants his or her work to end

up being Type 1. However, setting out in advance with

this in mind is usually pointless. We can try to aim in

the direction of Type 1 by being collective and general,

We should avoid overly specialized theories, ones that

seem to apply only to a special case of some special

language, model or approach. We should seek results

that are as generic and as all-encompassing as possible,

Robustness is the name of the game. And we should

always keep in mind that the essence of true Type 1

must be appreciable by non-theoreticians too, and it is

our responsibility to expose and elucidate it.

As to Type 2, while theory people are by no means

obliged to produce applicable work, some of us really

want to. If we are interested in actively carrying out

Type 2 work, we should get out there and become

involved. We should take a real interest, listen

attentively to what the real-world people ask for, and

study their thought-patterns and work-habits. Only

then can we try to see if there are ways we can help.

The problems arising out there are usually much harder

than we tend to think. Riches don’t come easy. Doing

our work in isolation, and then trying to impose our

ideas on the real world, is bound to fail. If engineers

and programmers do not find it beneficial to use the

result of an application-oriented research effort — for

whatever reasons — that piece of research is probably

quite useless. We should be humble; they are the

absolute judges.

So much for us theoreticians. What can be said here

to the practitioners?

Well, as far as Type 2 theory goes, simply don’t give

in. Be demanding; be pedantic, or even idiosyncratic.

Explain and justify your problems and needs to the

theoreticians. Let them in on your whims and fancies;

you might just turn lucky. But be patient, since most

theoreticians cannot muster the down-to-earth attitude

an engineer needs in order to function well in the face

of real-world problems. Some of us can’t even program!

When it comes to Type 1 work, the practitioners

should be the ones to show an interest, Theory can

be more than just pretty mathematics. Some of it is

deep, sweeping and fundamental. It will usually not

be of direct help in your daily work, but it very often

addresses truly basic issues, capturing phenomena that

are at the heart of the field — that field in which your

real-world work is done. Be open. Listen to it. It might

not be quite as way-out as you think.

References

[AU]

[AV]

[B]

[B+]

[CH1]

[CH2]

[cl]

[C2]

[F]

[DH]

[EZ]

[H]

A.V. Aho and J.D. Unman, “Universality of

Data Retrieval Languages”, Proc. 6th ACM

Symp. on Principles of Prog. Lang., 1979, pp.

110-117.

S. Abiteboul and V. Vianu, “Generic Compu-

tation and its Complexity”, Proc. 23rd ACM

Symp. on Theory of Computzng, 1991, pp. 209-

219.

R.E. Bryant, “Graph-Based Algorithms for

Boolean Function Manipulation”, IEEE Trans.

on Computers C-35:8 (1986), 677–691.

J.R. Burch, E.M. Clarke, K.L. McMillan, D.L.

Dill and J. Hwang, “Symbolic Model Checking:

1020 States and Beyond”, Inf. and Comput. 98

(1992), 142-170.

A.K. Chandra and D. Harel, “Computable

Queries for Relational Data Bases”, J. Comput.

Syst. Sci. 21 (1980), 156-178.

A.K. Chandra and D. Harel, “Structure and

Complexity of Relational Queries”, J. Comput.

Sgst. Set. 25 (1982), 99-128.

E.F. Codd, “A Relational Model of Data for

Large Shared Data Banks”, Comm. Assoc. Com-

put. kf(lCh. 13:6 (1970), 377-387.

E.F. Codd, “Relational Completeness of Data

Base Sublanguages”, In Data Base Systems

(Rustin, cd.), Prentice-Hall, Englewood Cliffs,

N. J., 1972.

R. Fagin, “Generalized First-Order Spectra and

Polynomial-Time Recognizable Sets”, In Com-

piezity of Computations (R. Karp, cd.), SIAM-

AMS Proceedings, Vol. 7, 1974, pp. 43-73.

D. Drusinsky and D. Harel, “On the Power of

Bounded Concurrency I: Finite Automata”, 1.

Assoc. Comput. Mach., in press. (Preliminary

version appeared in Proc. Concurrency ’88,

LNCS 335, Springer-Verlag, New York, 1988, pp.

74-103.)

A. Ehrenfeucht and P. Zeiger, “Complexity

Measures for Regular Expressions”, J. Comput.

Sys. ,$ci. 12 (1976), 134-146.

G.H. Hardy, A Mathematzctan’s Apology, Cam-

bridge Univ. Press, 1940.

[Hal]

[Ha2]

[1]

[MF]

[RS]

[R]

[Re]

[u]

[v]

[z]

D. Harel, “Statecharts: A Visual Formalism for

Complex Systems”, Sci. Comput. Prog. 8 (1987),

231-274.

D. Harel, “Biting the Silver Bullet: Toward

a Brighter Future for System Development”,

Computer (Jan. 1992), 8-20.

N. Immerman, “Relational Queries Computable

in Polynomial Time”, ln~. and Cont. 68 (1986),

86-104.

A.R. Meyer and M. J. Fischer, “Economy of De-

scription by Automata, Grammars, and Formal

Systems”, Proc. 12th IEEE Symp. on Swttching

and Automata Theory, 1971, pp. 188–191.

M.O. Rabin and D. Scott, “Finite Automata and

Their Decision Problems”, IBM J. Res. 3 (1959),

115-125.

P. Raghavan, Electronic mail contribution to a

debate on the future of theory, Feb. 17, 1994.

W. Reisig, Petrz Nets: An Introduction,

Springer-Verlag, Berlin, 1985.

J.D. Unman, Prmczples of Database and

Knowledge-Base Systems, Vols. I and II, Com-

puter Science Press, 1988.

M. Vardi, “The Complexity of Relational Query

Languages”, Proc. Idth ACM Symp. on Theory

of Computing, 1982, pp. 137–146.

M.M. Zloof, “Query-by-Example: A Data Base

Language”, lBM Systems J. 16 (1977), 324-343.

3

