Modeling
Reactive Systems
with Statecharts

Other McGraw-Hill Books in the Software Development Series

HERKOMMER Number Theory: A Programmer’s Guide 00-07-913074-7

JONES o Applied Software Measurement 0-07-032826-9

JONES o Estimating Software Costs 0-07-913094-1

JONES « Handbook of Team Design 0-07-032880-3

LoSsHIN o Efficient Memory Programming 0-07-038868-7

Musa « Software Reliability Engineering 0-07-913271-5

SopHI/SopHI ¢ Software Reuse: Domain Analysis and Design Processes 0-07-057923-7

To order or receive additional information on
these or any other McGraw-Hill titles, in the
United States call 1-800-722-4726, or visit us
at www.computing.mcgraw-hill.com. In other
countries, contact your local McGraw-Hill
representative.

Modeling
Reactive Systems
with Statecharts

The StaTemATE Approach

David Harel and Michal Politi

McGraw-Hill

New York San Francisco Washington, D.C. Auckland Bogota
Caracas Lisbon London Madrid Mexico City Milan
Montreal New Delhi San Juan Singapore

Sydney Tokyo Toronto

Library of Congress Cataloging-in-Publication Data

Harel, David, 1950—
Modeling reactive systems with statecharts : the statemate approach
David Harel, Michal Politi.
. cm.
Includes index.
ISBN 0-07-026205-5
1. System design. 2. Computer software—Development.
3. Statecharts (Computer science) 4. Object-oriented programming
(Computer science) I. Politi, Michal. II. Title.
QA76.9.S88H3677 1998)
005.1'2—dc21 98-17831
CIP

McGraw-Hill 22

A Division of The McGraw-Hill Companies

Copyright © 1998 by The McGraw-Hill Companies, Inc. All rights reserved.
Printed in the United States of America. Except as permitted under the
United States Copyright Act of 1976, no part of this publication may be repro-
duced or distributed in any form or by any means, or stored in a data base or
retrieval system, without the prior written permission of the publisher.

1234567890 DOC/DOC 90321098
ISBN 0-07-026205-5

The sponsoring editor of this book was Simon Yates. The editing supervisor
was Ruth Mannino, and the production supervisor was Clare Stanley. It was
set in New Century Schoolbook by Kim Sheran and Paul Scozzari of
McGraw-Hill’s Professional Book Group Hightstown composition unit.

Printed and bound by R. R. Donnelley & Sons Company.

McGraw-Hill books are available at special quantity discounts to use as
premiums and sales promotions, or for use in corporate training programs. For
more information, please write to the Director of Special Sales, McGraw-Hill,
11 West 19th Street, New York, NY 10011. Or contact your local bookstore.

This book is printed on recycled, acid-free paper containing a
minimum of 50% recycled, de-inked fiber.

Information contained in this work has been obtained by The McGraw-Hill
Companies, Inc. (“McGraw-Hill) from sources believed to be reliable. However,
neither McGraw-Hill nor its authors guarantee the accuracy or completeness
of any information published herein and neither McGraw-Hill nor its authors
shall be responsible for any errors, omissions, or damages arising out of use of
this information. This work is published with the understanding that
McGraw-Hill and its authors are supplying information but are not attempt-
ing to render engineering or other professional services. If such services are
required, the assistance of an appropriate professional should be sought.

For our dear parents,

Joyce and Harold Fisch
and the late Zvi and Lena Frenkel

With love and respect

Contents

Preface xiil
Acknowledgments xv

Chapter 1. Introduction 1
1.1 System Development and Methodologies 1
1.1.1 Specification in a System Life Cycle 1
1.1.2 Development Methodologies and Supporting Tools 2

1.2 Modeling Reactive Systems 3
1.2.1 The Nature of Reactive Systems 3
1.2.2 An Example: The Early Warning System 4
1.2.3 Characteristics of Models 4
1.2.4 Modeling Views of Reactive Systems 5
1.2.5 Modeling Heuristics 7

1.3 The Modeling Languages 8
1.3.1 Activity-Charis 9

1.3.2 Statecharts 9

1.3.3 Module-Charts 11

1.3.4 Relationships between the Languages 11
1.3.5 Handling Large-Scale Systems 13

1.4 The StaremATE Toolset 14
Chapter 2. The Functional View: Activity-Charts 19
2.1 Functional Description of a System 19
2.1.1 Functional Decomposition 20
2.1.2 Function-Based Decomposition 21
2.1.3 Object-Based Decomposition 22
2.1.4 System Context 22
2.1.5 The Decomposition Process 23

2.2 Activities and Their Representation 24
2.2.1 The Hierarchy of Activities 24
2.2.2 The Context of an Activity 25

2.3 Flow of Information between Activities 26
2.3.1 Flow-Lines 26
2.3.2 Flowing Elements 29
2.3.3 Information-Flows 30

2.3.4 Data-Stores 31

vii

viii Contents

2.4 Describing the Behavioral Functionality of Activities

2.5

2.4.1 Control Activities
2.4.2 Activities in the Data Dictionary

Connectors and Compound Flow-Lines

2.5.1 Joint Connectors (Fork and Merge Constructs)

2.5.2 Junction Connectors
2.5.3 Diagram Connectors
2.5.4 Compound Flow-Lines

Chapter 3. Information Elements

3.1
3.2
3.3
34

3.5

Information Elements in the Model
Events

Conditions

Data-ltems

3.4.1 Data-items of Predefined Types
3.4.2 Records and Unions
3.4.3 Data-ltem Structure

User-Defined Types

Chapter 4. The Behavioral View: Statecharts

4.1
4.2
4.3
4.4

4.5

4.6

Behavioral Description of a System

Basic Features of Statecharts

The Hierarchy of States

Orthogonality

4.41 And-States and Event Broadcasting

4.4.2 Conditions and Events Related to States
4.4.3 Multi-Level State Decomposition
Connectors and Compound Transitions

4.5.1 Condition and Switch Connectors

4.5.2 Junction Connectors

4.5.3 Diagram Connectors

More about Transitions

4.6.1 Transitions to and from And-States
4.6.2 History Entrances

Chapter 5. The Textual Expression Language

5.1

5.2

5.3

5.4

Event, Condition and Data-ltem Expressions
5.1.1 Event Expressions

5.1.2 Condition Expressions

5.1.3 Data-ltem Expressions

5.1.4 Named Expressions

Actions

5.2.1 Element Manipulation

5.2.2 Compound Actions and Context Variables
5.2.3 lterative Actions

Time-Related Expressions

5.3.1 Timeout Events

5.3.2 Scheduled Actions

Static Reactions

41

41
43
44
45
46

48
49

5.4.1 Reactions on Entering and Exiting a State
5.4.2 General Static Reactions

Chapter 6. The Semantics of Staiecharts

6.1

6.2

6.3

Execution of the Model

6.1.1 External Changes and System Reactions
6.1.2 The Details of Status and Step

Handling Time

6.2.1 Sequentiality and Time Issues

6.2.2 Time Schemes

Nondeterministic Situations

6.3.1 Multiple Enabled Transitions
6.3.2 Racing

Chapter 7. Connections between the Functional
and Behavioral Views

7.4
7.2

7.3

7.4

Dynamics in the Functional Decomposition
Dynamics of Activities

7.2.1 Statecharts in the Functional View
7.2.2 Termination Type of an Activity

7.2.3 Perpetual Activities

Controlling the Activities

7.3.1 Starting and Stopping Activities
7.3.2 Sensing the Status of Activities

7.3.3 Activities throughout and within States
7.3.4 Suspending and Resuming Activities
Specifying Behavior of Basic Activities
7.4.1 Reactive Minispecs

7.4.2 Procedure-Like Mini-Specs

7.4.3 Combinational Assignments

Chapter 8. Communication between Activities

8.1
8.2

8.3

8.4

Communication and Synchronization Issues
Controlling the Flow of Information
8.2.1 Elements Related to Flow of information

8.2.2 Interface between “Execution” Components

Examples of Communication Control

8.3.1 Communication between Periodic Activities

8.3.2 Message Passing
Activities Communicating through Queues

8.4.1 Queues and Their Operation
8.4.2 The Semantics of Queues
8.4.3 Queues in an Activity-Chart

8.4.4 Example of Activities Communicating through Queues

8.4.5 An Address of a Queue

Chapter 9. The Structural View: Module-Charts

9.1
9.2

Structural Description: High-Level Design
Iinternal and External Modules

Contents

ix

87
87

91

91

91
95

97

97
98

99

99
100

101

101
103

103
104
105
106
106
108
108
110

111

112
113
114

17

117
118
118
120
121

122
123
124
125
126
127
128
129

131

131
132

x Contents

9.3 Communication Lines between Modules

9.3.1 Flow of Information between Modules
9.3.2 Physical Links between Modules
8.4 Connectors and Compound Flow-Lines

Chapter 10. Connections between the Functional
and Structural Views

10.1 Relating the Functional and Structural Models

10.1.1 Functional Description of a Module
10.1.2 Allocating Activities to Modules
10.1.3 Mapping Activities to a Module’s Activities

10.2 Activity-Chart Describing a Module

10.3 Activities implemented by Modules

10.4 Activities Associated with a Module’s Activities
10.5 Object-Oriented Analysis with Module-Charts

Chapter 11. Splitting Up Charts

11.1 Separating a Chart into Multiple Pages

11.2 Offpage Charts

11.3 Connecting Offpage Charts by Matching Flows
11.4 Connecting Offpage Statecharts Using Connectors

Chapter 12. Putting Things Together

12.1 Relationships among the Three Kinds of Charts
12.2 A Chart in a Model

12.3 Hierarchy of Charts

12.4 Entities External to the System under Description

12.4.1 Environment Modules of Activities
12.4.2 Testbenches

Chapter 13. Scope and Resolution of Elements

13.1 Visibility of Elements and Information Hiding
13.2 Defining, Referencing and Resolving Elements
13.3 The Scope of Charts and Graphical Elements

13.3.1 Referring to Charts and Box Elements

13.3.2 Referring to Activities in Statecharts

13.3.3 Referring to States in Statecharts

13.3.4 External Activities or Modules

13.3.5 Referring to Modules and Activities in Activity-Charts
13.4 The Scope of Textual Elements

13.4.1 Visibility of Textual Elements

13.4.2 Naming Textual Elements

13.4.3 More about Resolution of Textual Elements
13.5 Global Definition Sets (GDSs)

Chapter 14. Generic Charts

14.1 Reusability of Specification Components

134
135
135
136

139

139

140
140
142

142
145
148
149

153

153
185
157
160

163

163
166
166
167
167
169

173

173
174
176
176
177
178
178
179
180
180
181
183
184

187
187

14.2 Definition and Instances of Generic Charts

14.2.1 Notation and Basic Rules of Generics
14.2.2 Generic Charts in the Chart Hierarchy

14.3 Parameters of Generic Charts

14.3.1 Formal Parameters of a Generic Chart
14.3.2 Actual Bindings of Parameters

14.4 Referring to Elements in Instances

Chapter 15. Related Approaches

15.1 An Overview of Specification Methods
16.2 Methods Based on Structured Analysis

15.2.1 Ward and Mellor
15.2.2 Hatley amd Pirbhai

15.2.3 Evaluation and Comparison with STATEMATE

15.3 ECSAM
15.4 Methods Based on Objects
15.4.1 SDL
15.4.2 ROOM
15.4.3 UML
15.4.4 XOM and Rhapsody
15.5 MIL-STD-498 (DOD-STD-2167A)

Chapter 16. Transition to Design

- 16.1 StatEmMATE Models in the Development Process
16.1.1 Models as Prototypes
16.1.2 Design using Specification Models
16.1.3 Restructuring for Design
16.2 Mapping Models to Design Structures
16.2.1 Design Criteria
16.2.2 Evaluation of the Mapping

Appendix A. Names and Expressions

A.1 Names
A.1.1 Reserved Words
A.1.2 Textual Element Names
A.1.3 Box Element Names
A.1.4 Names of Elements in Generic Instances
A.2 Expressions
A.2.1 Event Expressions
A.2.2 Condition Expressions
A.2.3 Data-ltem Expressions
A.2.4 Action Expressions
A.2.5 Data-Type Expressions
A3 Predefined Functions
A.3.1 Arithmetic Functions
A.3.2 Trigonometric Functions
A.3.3 Random Functions
A.3.4 Bit-Array Functions
A.3.5 String Functions

Contents

Xi

189

189
191
192
193
196
197

201

201
203
203
205
206
207
208
208
210
21
212
213

217

217
218
218
219
219
219
221

225

225
225
225
226
226
227
227
228
230
233
234
235
235
235
236
236
236

xii Contents

A.4

A5

Reactions and Behavior of Activities

A.4.1 Statechart Labels

A.4.2 State Reactions and Reactive Mini-Specs

A.4.3 Procedure-Like Mini-Specs

A.4.4 Combinational Assignments

Flow of information

A.5.1 Flow Labels and Information-Flow Components
A.5.2 Actual Bindings of Generic Parameters

Appendix B. Early Warning System Example:
Functional Decomposition Approach

B.1
B.2

Textual Description of the System
The Model

B.2.1 The Hierarchy of Charts
B.2.2 The Charts

B.2.3 The Data Dictionary

References

index 253

237
237
237
237
237

237

237
238

239

239
239

239
240
243

251

Preface

This book provides a detailed description of a comprehensive set of lan-
guages for modeling reactive systems. The approach is dominated by
the language of Statecharts, which is used to describe behavior, com-
bined with Activity-charts, which are used for describing the system’s
activities (i.e., its functional building blocks, capabilities, and objects)
and the data that flows between them. These two languages are used
to develop a conceptual model of the system, which can be combined
with the system’s physical, or structural, model described in our third
language, Module-charts. These three languages are highly diagram-
matic in nature, constituting full-fledged visual formalisms, complete
with rigorous semantics. They are accompanied by a Data Dictionary
for specifying additional parts of the model that are textual in nature.

The approach described here lies at the heart of the STATEMATE sys-
tem, which the authors have helped design and build at I-Logix, Inc.
since 1984. STATEMATE is most beneficial in requirements analysis,
specification, and high-level design. In addition to supporting the mod-
eling effort using the aforementioned language set, STATEMATE pro-
vides powerful tools for inspecting and analyzing the resulting models,
via model execution, dynamic testing, and code synthesis.

This book discusses the modeling languages in detail, with an
emphasis on the language of Statecharts, because it is the most impor-
tant and intricate language in the set and the most novel. Statecharts
are used to specify the behavior of activities, whether they represent
functions in a functional decomposition or objects in an object decom-
position. We describe the syntax in a precise and complete manner and
discuss the semantics in a way that is intended to render the model’s
behavior clear and intuitive. Our presentation is illustrated exten-
sively with examples, most of which come from a single sample model
of an early warning system (EWS). Appendix B provides a summarized
description of this model.

xiii

xiv Preface

Whenever possible, we have tried to explain our motivation in
including the various features of the languages. We also provide hints
and guidelines on such methodological issues as decomposition crite-
ria and the order in which charts are to be developed.

While we do provide a brief description of the STATEMATE system in
Sec. 1.4, this book is not intended to be a user manual for it but, rather,
a definitive description of its languages and a guide to their use. For
more on STATEMATE’s capabilities, we refer the reader to the documen-
tation supplied by I-Logix, Inc.

This book should be of interest to a wide variety of systems develop-
ers (both in software and hardware) and to teachers and students of
software and hardware engineering.

Acknowledgments

Thanks are due to Jonah Lavi for initiating David Harel’s interest in
this area in 1983, an interest that led to the invention of the State-
charts language. The other two languages, Activity-charts and
Module-charts, and the ways they are integrated with Statecharts,
were developed by the authors together with several people, predomi-
nantly Rivi Sherman and Amir Pnueli. We would also like to express
our deep gratitude to the many other extremely talented and dedi-
cated people at I-Logix Israel, Ltd., led with insight, wisdom, and sen-
sitivity by Ido and Hagi Lachover, for conceptualizing, designing, and
building the STATEMATE tool.

Chapter

introduction

This chapter describes the role of models in a system development life
cycle and characterizes reactive systems, the ones for which the lan-
guages of this book are particularly suited. It then introduces the early
warning system (EWS), a reactive system that we shall use as a run-
ning example throughout the book. It also presents an overview of the
modeling languages and a brief description of the STATEMATE toolset,
which was built around the language of Statecharts and which sup-
ports the modeling process and provides means for executing and ana-
lyzing the models, synthesizing code from them, and more.

1.1 System Development
and Methodologies

We first describe the background for our work and the context in which
our modeling languages fit.

1.1.1 Specification in a system life cycle

It is common practice to identify several phases in the development life
cycle of a system, each of which involves certain processes and tasks
that have to be carried out by the development team. The main phases
of the classic waterfall model (Royce 1970) are requirements analysis,
and specification, design, implementation, testing, and maintenance.
Over the past 20 years, many variations of this model were proposed,
as well as quite different approaches to the life cycle (Dorfman and
Thayer 1990b). Some center around prototyping, incremental develop-
ment, reusable software, or automated synthesis.

Most proposals for system development life cycle patterns contain a
requirements analysis phase. Correcting specification errors and mis-
conceptions that are discovered during later stages of the system’s life

1

2 Chapter One

cycle is extremely expensive, so it is commonly agreed that thorough
comprehension of the system and its behavior should be carried out as
early as possible. Special languages are therefore used in the require-
ments analysis phase to specify a model of the system, and special
techniques are used to analyze it extensively. As described later, we
advocate various kinds of analyses, including model execution and
code synthesis. In this book, we shall use the terms model and specifi-
cation interchangeably.

The availability of a good model is important for all participants in
the system’s development. If a clear and executable model is construc-
ted early on, customers and subcontractors, for example, can become
acquainted with it, and can approve of the functionality and behavior
of the system before investing heavily in the implementation stages.
Creating precise and detailed models is also in the best interest of the
system’s designers and testers. Clearly, the specification team itself
uses modeling as the main medium for expressing ideas and exploits
the resulting models in analyzing the feasibility of the specification.
Chapter 16 contains more about the ways our models can be used for
later stages of development.

1.1.2 Development methodologies
and supporting tools

A term commonly used in connection with the development process is
methodology. A methodology provides guidelines for performing the
processes that comprise the various phases. Concentrating on the mod-
eling and analysis phase, we may say that a methodology consists of
the following components:

e The methodology’s underlying approach and the concepts it uses,
that is, the terms and notions used to capture the conceptual con-
struct of the system and to analyze it.

The notation used, that is, the modeling languages with their syntax
and semantics. Sometimes these contain constructs that are suffi-
ciently generic to be relevant to several different concepts of the
underlying approach.

@ The process prescribed by the methodology, that is, which activities
have to be carried out to apply the methodology and in what order, how
does the work progress from one activity to the next, and what are the
intermediate outputs or products of each. The methodology usually
also provides heuristics for making the process more beneficial.

The computerized tools that can be used to help in the process.

This book is mainly about notation, in that it describes a set of mod-
eling languages and illustrates their use. However, it also describes

Introduction 3

several concepts and notions that underly a number of development
methodologies. Thus, while our approach to modeling and analysis is
not necessarily connected to any particular methodology, it is more
compatible with some methodologies than with others (just as flexible
programming languages can be used with very different program
design and implementation methods but might be more fitting for some
specific ones). In particular, our approach can be used smoothly with
variants of Structured Analysis (DeMarco 1978; Military Standard
1988) as well as with other methodologies, such as object-oriented
analysis. Moreover, although the book does not get into the details of
any particular methodological process, we do describe the STATEMATE
set of tools (from I-Logix, Inc.) later in the chapter. STATEMATE can be
used in conjunction with several relevant methodologies to apply our
modeling and analysis approach, and implements all features of the
languages described in the book.

1.2 Modeling Reactive Systems

As explained above, the heart of the specification stage is the con-
struction of the system model. In this section we discuss the overall
nature and structure of models, thus preparing for the subject matter
of the book, which involves the modeling languages themselves.
However, we should first say something about the kinds of systems we
are interested in.

1.2.1 The nature of reactive systems

Our modeling approach, particularly the Statecharts language, is
especially effective for reactive systems (Harel and Pnueli 1985;
Manna and Pnueli 1992), the behavior of which can be very complex,
causing the specification problem to be notoriously elusive and
error-prone. Most real-time systems, for example, are reactive in
nature.

A typical reactive system exhibits the following distinctive charac-
teristics:

= It continuously interacts with its environment, using inputs and
outputs that are either continuous in time or discrete. The inputs
and outputs are often asynchronous, meaning that they may arrive
or change values unpredictably at any point in time."

IThis should be contrasted with transformational systems, in which the timing of the
inputs and outputs is much more predictable. A transformational system repeatedly
waits for all its inputs to arrive, carries out some processing, and outputs the results
when the processing is done.

4 Chapter One

® It must be able to respond to interrupts, that is, high-priority events,
even when it is busy doing something else.

m Its operation and reaction to inputs often reflects stringent time
requirements.

= It has many possible operational scenarios, depending on the cur-
rent mode of operation and the current values of its data as well as
its past behavior.

s It is very often based on interacting processes that operate in parallel.

Examples of reactive systems include on-line interactive systems,
such as automatic teller machines (ATMs) and flight reservation sys-
tems; computer-embedded systems, such as avionics, automotive, and
telecommunication systems; and control systems, such as chemical
and manufacturing systems.

1.2.2 An example: The early warning system

Many of the characteristics mentioned earlier are present in the sim-
ple early warning system (EWS) that we use as an example through-
out this book to illustrate the ideas and features of the languages. The
EWS monitors a signal arriving from outside, checks whether its value
is in some predefined range, and if not, notifies the operator by an
alarm and appropriate messages. This is a general kind of system, the
likes of which can be found in a variety of applications. Here is a brief
informal description of the EWS that will become useful for under-
standing the details later on:

The EWS receives a signal from an external sensor. When the sensor is
connected, the EWS processes the signal and checks if the resulting
value is within a specified range. If the value of the processed signal is
out of range, the system issues a warning message on the operator dis-
play and posts an alarm. If the operator does not respond to this warning
within a given time interval, the system prints a fault message on a
printing facility and stops monitoring the signal. The range limits are
set by the operator. The system becomes ready to start monitoring the
signal only after the range limits are set. The limits can be redefined
after an out-of-range situation has been detected or after the operator
has deliberately stopped the monitoring.

See Fig. 1.1 for the schematic structure of the EWS.

1.2.3 Characteristics of models

A system model constitutes a tangible representation of the system’s
conceptual and physical properties and serves as a vehicle for the speci-
fier and designer to capture their thoughts. In some ways, it is like the
set of plans drawn by an architect to describe a house. It is used mainly

introduction 5

Q alarm
—

<<<>>>

T messages
[-

OPERATOR

OPERATOR

commands

<f & data

>

COMPUTER

signal
printed reports
PRINTER

_—

v

SENSOR

Figure 1.1 The early warning system (EWS).

for communication, but it should also facilitate inspection and analysis.
The modeling process involves conceiving the elements relevant to the
system and the relationships between them and representing them
using specific, well-defined languages. When the model reflects some
preexisting descriptions, such as requirements written in natural lan-
guage, it is useful to keep track of how the components of the developing
model are derived from the earlier descriptions.

To achieve the goal of enabling systems developers to model a sys-
tem, our modeling languages have been designed with several impor-
tant properties in mind: to be intuitive and clear, to be precise, to be
comprehensive, and to be fully executable. To achieve clarity, elements
of the model are represented graphically wherever possible; for exam-
ple, nested box shapes are used to depict hierarchies of elements, and
arrows are used for flow of data and control. For precision, all lan-
guages features have rigorous mathematical semantics, which is a pre-
requisite for carrying out meaningful analysis. Comprehension comes
from the fact that the languages have the full expressive power needed
to model all relevant issues, including the what, the when, and the
how. As for executabilty, the behavioral semantics is detailed and rig-
orous enough to enable the model to be both executed directly, like a
computer program, and to be translated into running code for proto-
typing and even for implementation purposes.

1.2.4 Modeling views of reactive systems

Building a model can be considered as a transition from ideas and infor-
mal descriptions to concrete descriptions that use concepts and prede-
fined terminology. In our approach, the descriptions used to capture
the system specification are organized into three views, or projections,
of the system: the functional, the behavioral, and the structural. See
Fig. 1.2.

6 Chapter One

Conceptual Model

unctional view

capabilities &
flow of information

behavioral view

control & timing

Physical Model

structural view

modules/objects &
communication links

Figure 1.2 The three specification views.

The functional view captures the “what.” It describes the system’s
functions, processes, or objects, also called activities, thus pinning
down its capabilities. This view also includes the inputs and outputs
of the activities, that is, the flow of information to and from the exter-
nal environment of the system as well as the information flowing
among the internal activities. For example, the activities of the EWS
include sampling the input signal, comparing the read signal value
with the predefined limits, and generating an alarm. The informa-
tion flows in the EWS include the signal that flows from the external
sensor, the operator commands that are input from the operator
console, and the message and alarm notification that are output to
the operator.

The behavioral view captures the “when.” It describes the system’s
behavior over time, including the dynamics of activities, their control
and timing behavior, the states and modes of the system, and the con-
ditions and events that cause modes to change and other occurrences
to take place. It also provides answers to questions about causality,
concurrency, and synchronization. In the EWS example, the behav-
ioral view might identify those states in which the system is waiting
for commands, processing the signal, generating an alarm, or setting
up new limit values. The behavioral view would also identify the
events that cause transitions between these states. For example, it
would specify what causes the system to generate an alarm or when
the processing stops and the set-up procedure starts. Hence, it speci-
fies precisely when the activities described in the functional view are
active, and when the information actually flows between them.

Introduction 7

There is a tight connection between the functional and behavioral
views. Activities and data-flow need dynamic control to come to life,
but the behavioral aspects are all but worthless if they have nothing
to control. Technically, each activity in the functional view can be pro-
vided with a behavioral description given in the behavioral view,
whose role it is to control the activity’s internal parts, that is, its sub-
activities and their flow of information.

The structural view captures the “how.” It describes the subsystems,
modules, or objects constituting the real system and the communica-
tion between them. The EWS could be specified in the structural view
to consist of an operator monitor, a control and computation unit, a sig-
nal processor, an alarm generator, and so on.

While the two former views provide the conceptual model of the sys-
tem, the structural view is considered to be its physical model, because
it concerns itself with the various aspects of the system’s implementa-
tion. As a consequence, the conceptual model usually involves terms
and notions borrowed from the problem domain, whereas the physical
model draws more upon the solution domain.

The main connection between the conceptual and physical models is
captured by specifying the modules of the structural view that are
responsible for implementing the activities in the functional view. For
example, the EWS activity that compares the input signal with the pre-
defined limit values is implemented in the control and computation unit.

1.2.5 Modeling heuristics

Modeling heuristics are guidelines for how the notation should be used
to model the system. This involves several issues, such as:

The mapping between the methodology’s concepts and the elements
allowed in the notation. If the notation is flexible and its constructs
can be used to depict several different concepts, this mapping has to
be defined carefully.

= The type of decomposition to be used. Some possibilities are decom-
positions that are function based, object based, mode based, module
based, or scenario based. The type chosen depends, in general, on the
conceptual base of the methodology, although within a given method-
ology there is often some flexibility, according to the nature of the
system and the role the model will play in the overall development
effort. In the context of our notation, this issue is mainly relevant to
the functional view and will be discussed further in Chap. 2.

s The step-by-step order of the modeling process. Which view are we to
start with? Should we be working in a bottom-up or top-down fash-
ion? Again, this is an issue that mostly depends on the methodology,
but it is also affected by what is already known about the system.

8 Chapter One

In addition, modeling guidelines are often concerned with more mar-
ginal details, such as naming conventions and the number of allowed
offspring in each decomposition level as well as layout rules for improv-
ing the model’s aesthetics and clarity.

In this book we do not mean to address or recommend any specific
global methodology. Although most parts of our running example will
use a particular method, we will mention other possibilities, too.

1.3 The Modeling Languages

The three views of a system model are described in our approach using
three graphical languages: Activity-charts for the functional view,
Statecharts for the behavioral view, and Module-charts for the struc-
tural view. Additional nongraphical information related to the views
themselves and their inter-connections is provided in a Data Dictionary.
See Fig. 1.3.

Some of the basic ideas that make up our languages have been
adapted from other modeling languages, such as data-flow diagrams,
state-transition diagrams, data dictionaries and minispecs. However,
they include many extensions that increase their expressive power
and simplify and clarify the model. In addition, all the languages have
precise semantics, so much so, that models can be fully executed, or
translated into other executable formalisms, such as software code. We
now briefly describe the modeling languages and their main connec-
tions. As we shall see, the general visual style, as well as many of the
conventions and syntax rules, are common to all three.

Activity-charts

Statecharts

Activity:

Mini-spec:
\,
State:

Module-charts .
Description:

—"l I'»l —' . Module:

Description:

Figure 1.3 The modeling languages.

Introduction 9

1.3.1 Activity-charis

Activity-charts can be viewed as multilevel data-flow diagrams. They
capture functions, or activities, as well as data-stores, all organized
into hierarchies and connected via the information that flows between
them. We adopt extensions that distinguish between data and control
information in the arrow types and provide several kinds of graphical
connectors as well as a set of semantics for information that flows to
and from nonbasic activities. ‘

Figure 1.4 illustrates some of these notions using the EWS exam-
ple. We see internal activities, such as GET_INPUT, SET_UP, and
COMPARE, external activities, such as OPERATOR and SENSOR, a
data-store LEGAL_RANGE, data flows, such as RANGE_LIMITS and
SAMPLE, control flows, such as COMMANDS and OUT_OF_RANGE,
and the control activity EWS_CONTROL, whose internal description
is to be given in the language of Statecharts for the behavioral view.
Notice how the hierarchy of activities is depicted graphically by
encapsulation, so that a single chart can represent multiple levels
of activities.

In addition to the graphical information, each element in the descrip-
tion has an entry in the Data Dictionary, which may contain nongraph-
ical information about the element. For example, the activity entry
contains fields called mini-spec and long description, in which it is pos-
sible to provide formal and informal textual descriptions of the activity’s
workings. See Fig. 1.5.

Activity-charts are described in detail in Chap. 2.

EWS_ACTIVITIES

KEY ;ENSOR_CONNECTEL}—W POWER o
PRESSING GET_ Pl ews conTROL lq] OPERATOR
{ Bl -
! INPUT COMMANDS m—J
: RANGE OUT_OF_RANGE
OPERATOR LIMITS ALARM_
| DISPLAY NOTIFICTIOIN
T FAULT i
SET UP 5 LEGAL_ SR, A
SET_UP_MSGS - > i
- RANGE { OPERATOR |
OUT_OF_RANGE_DATA |
....................... e
7 l
PROCESS_ »| COMPARE PRINT_
SIGNAL SAMPLE FAULT FAULT_REPORT
SIGNAL
SENSOR

Figure 1.4 An activity-chart.

10 Chapter One

Activity: PROCESS_SIGNAL = R
Defined in Chart: EWS_ACTIVITIES

Termination Type: Reactive Controlled
Mini-spec: 8t/TICK; ;
TICK/ $SIGNAL VALUE:=SIGNAL;
SAMPLE : =COMPUTE ($SIGNAL_VALUE) ;
sc! (TICK, SAMPLE_INTERVAL)

Figure 1.5 An activity entry in the Data Dictionary.

1.3.2 Statecharts

Statecharts (Harel 1987b) constitute an extensive generalization of
state-transition diagrams. They allow for multilevel states decomposed
in an and/or fashion, and thus support economical specification of
concurrency and encapsulation. They incorporate a broadcast communi-
cation mechanism, timeout and delay operators for specifying synchro-
nization and timing information, and a means for specifying transitions
that depend on the history of the system’s behavior.

Figure 1.6 contains a statechart taken from the EWS model. It
consists of a top-level state EWS_CONTROL, which is decomposed into
two substates. One of the substates, ON, is decomposed into two
parallel behavioral components, MONITORING and PROCESSING; each
of these is further decomposed into exclusive states. This means that
the system must be in two states simultaneously, each from a different
component. For example, when the statechart starts, the system is in
WAITING_FOR_COMMAND and in DISCONNECTED. The chart also
depicts events that cause transitions, such as ALARM_TIME_PASSED,
which causes the system to go from the GENERATING_ALARM state
to WAITING_FOR_COMMAND, and RESET, which causes the system to
leave both COMPARING and GENERATING_ALARM and enter WAITING
_FOR_COMMAND. Some transitions are guarded by conditions, such as
the one from WAITING_FOR_COMMAND to COMPARING, which is taken
when the event EXECUTE occurs but only if the condition
in (CONNECTED) is true, namely, the system is in the CONNECTED state
of the SAMPLING component. Some transition labels contain actions,
which are to be carried out when the transitions are taken. For exam-
ple, when moving from COMPARING to GENERATING_ALARM the system
sends a HALT signal to the PROCESSING component.

Here, too, each element in the statechart has an entry in the Data
Dictionary, which may contain additional information. For example,
an event entity can be used to define a compound event by an expres-
sion involving other events and conditions. Statecharts are discussed
in Chaps. 4, 5, and 6.

Introduction 11

1.3.3 Module-charts

A module-chart can also be regarded as a certain kind of data-flow dia-
gram or block diagram. Module-charts are used to describe the mod-
ules that constitute the implementation of the system, its division into
hardware and software blocks and their inner components, and the
communication between them.

Figure 1.7 shows a module-chart for the EWS. It contains inter-
nal modules, such as the control and computation unit (CCU), the
SIGNAL_PROCESSOR, and the OPERATOR_MONITOR. The latter module
contains the submodules KEYBOARD and SCREEN. (Here, too, the hier-
archy of modules is depicted by encapsulation.) The module-chart also
contains environment modules, such as OPERATOR and SENSOR, and it
is noteworthy that these are similar to the external activities depicted
in the functional view. The communication signals between modules
include KEY_PRESSING from the OPERATOR to the KEYBOARD, the
ALARM_SIGNAL from the CCU to the ALARM_SYSTEM, and so on.

Elements of the module-charts also have entries in the Data
Dictionary, in which additional information can be specified.

Module-charts are described in Chap. 9.

1.3.4 Relationships between the languages

The relationships between the concepts of the three views are reflected
in corresponding connections between the three modeling languages.

ﬁs_comnox, \
[POWER_ON] [not POWER_ON]

_ ” \
A’NITO“ING [in (DISCONNECTED)] \

[in(CONNECTED)] / \
EXECUTE N /OPERATE | | COMPARING
WAITING_FOR_ <)
COMMAND Je
yy RESET/HALT
SET_UP OUT_OF_RANGE
/HALT
(SET_UP) X
S
v pishi_ GENERATING
SETTING_UP ALARM_TIME_PASSED ALARM
/st! (PRINT_FAULTK____/
PROCESSING
(" connECTED)

[SENSOR_CONNECTED]

» ’\ OPERATE >
DISCONNECTED v OPERATING
< | IDLE '
& [SENSOR_DISCONNECTED] _ HALT j/

Figure 1.6 A statechart.

12 Chapter One

OPERATOR
lPOWER__ON
EWS ALARM_SIGNAL
MONITOR JP —
user_1Nput | Y ALARM
KEY_PRESSING . " -
= »| KEYBOARD SYSTEM
JRURRR. A,
i i TO_PRINT
{ OPERATOR ! MSGS_TO_DIBPLAY | MSGS_TO_PRT} { OPERATOR
: i J' SAMPLE l L I
SCREEN SIGNAL_ PRINTER
DISPLAYED_MSGS PROCESSOR FAULT_REPORT
SIGNAL
SENSOR

Figure 1.7 A module-chart.

Most of these connections are provided in the Data Dictionary, and they
tie the pieces together, thus yielding a complete model of the system
under development.

The main relationship between the functional and behavioral views
is captured by the fact that statecharts describe the behavior and con-
trol of activities in an activity-chart. We thus associate a statechart
with each control activity in an activity-chart. In Fig. 1.4, the @ sym-
bol denotes that the statechart named EWS_CONTROL (which appears
in Fig. 1.6) is to be taken as the “contents” of the control activity.

Another relationship between activity-charts and statecharts
involves activities that are specified as being active throughout states.
For example, in the Data Dictionary entry for the state COMPARING,
we can specify that the activity COMPARE is active throughout
(see Fig. 1.8). This means that COMPARE will start when the state
COMPARING is entered and will terminate when it is exited.

There are ways to directly refer to activities from within a state-
chart. For example, the event sp (SET_UP) , which labels a transition
in Fig. 1.6, occurs when the activity SET_UP terminates (the sp stands
for stopped). It causes the transition from the SETTING_UP state to
WAITING_FOR_COMMAND. Chapters 7 and 8 are devoted to the con-
nections between activity-charts and statecharts.

The relationships between the conceptual and physical models of the
system are reflected in connections between activity-charts and mod-
ule-charts. One such connection involves specifying which module
implements a given activity. This is done in the activity entry of the
Data Dictionary. For example, in the entry for the COMPARE activity we
might say that COMPARE is implemented in the CCU module.

Introduction 13

Another connection involves associating an activity-chart with a
specific module in the module-chart, thus describing the module’s
functionality in detail. This kind of association is specified in the
Data Dictionary entry for the module. For example, the activity-chart
EWS_ACTIVITIES (which was shown in Fig. 1.4) describes the func-
tionality of the EWS module. See Fig. 1.9.

Chapter 10 is devoted to describing these relationships.

1.3.5 Handling large-scale systems

Methodological approaches, particularly the models that they recom-
mend constructing, are essential for developing large systems. Our
own approach is thus intended primarily for such systems. These
involve vast quantities of information and numerocus components and
levels of detail, as well as portions that may appear repeatedly in
many parts of the model. Such systems are usually developed by sev-
eral separate teams. Our languages support features designed specifi-
cally to ease in this work.

Although a single chart can describe a multilevel hierarchy of ele-
ments, it is not advisable to overuse this capability when the model
grows beyond a certain size. Accordingly, our languages allow splitting
large hierarchical charts into separate ones. See Fig. 1.10, in which a
separate chart is used to describe the contents of activity A.

Chapter 11 is devoted to this subject.

A related issue involves coping with visibility and information hiding
by setting scoping rules of elements in the model. It is also possible to
introduce global shared information in a model component called a

State: COMPARIN
Defined in Chart: EWS__CONTROL

Activities in State:
COMPARE (Throughout)

Module: EW.
Defined in Chart: EWS

Described by Activity-Chart: EWS_ACTIVITIES

Figure 1.9 An activity-chart describing a module.

14 Chapter One

X v E2 |
o L] =

activity-chart A

A

Figure 1.10 Splitting up charts.

global definition set. This is analogous to the scoping issue in pro-
gramming languages.

Scoping is discussed in Chap. 13.

A very important feature of our languages is that of generic charts,
which allow reusing parts of the specification. A generic chart makes
it possible to represent common portions of the model as a single chart
that can be instantiated in many places, and in this it is similar to a
procedure in a conventional programming language.

Generic charts are described in Chap. 14.

Another feature that contributes to reusability is that of user-
defined types, which are described in Chap. 3. This feature makes it
possible to define a data type that will be used for many data elements
in the model.

1.4 The StatemATE Toolset

We now provide a very brief description of the STATEMATE toolset
(Harel et al. 1990), which supports the languages and approach pre-
sented here. STATEMATE was intended primarily to help address the
goals of the specification stage, although it supports some of the activ-
ities carried out in other stages, too. See Fig. 1.11 for a schematic
overview of the STATEMATE toolset.

We should note that the modeling approach and languages presented
here have a life of their own, whether they are used in conjunction with
a computerized tool or not. Moreover, there are other tools, both com-
mercial and of research nature, that support Statecharts and other
aspects of the approach. We describe STATEMATE here both because we
have been part of the team that designed it and because it still seems
to be the most powerful tool of its kind available.

Introduction 15

For entering the information contained in the model, STATEMATE has
graphic editors for the three graphical languages, as well as a Data
Dictionary. It carries out syntax checking and tests for consistency
and completeness of the various parts of the model. While construct-
ing the model, the specifier can link original textual requirements to
elements of the model. These links can be used later in requirement
traceability reports. STATEMATE also provides extensive means for
querying the model’s repository and retrieving information from it. A
number of fixed-format reports can be requested, and there are docu-
ment generation facilities with which users can tailor their own doc-
uments from the information constituting the model.

Our view of system development emphasizes “good” modeling, but it
also regards as absolutely crucial the need to enable a user to run,
debug, and analyze the resulting models and to translate them into
working code for software and/or hardware. Accordingly, STATEMATE has
been constructed to “understand” the model and its dynamics. The user
can then execute the specification by emulating the environment of
the system under development and letting the model make dynamic
progress in response.

Using STATEMATE the model can be executed in a step-by-step inter-
active fashion or by batch execution. In both cases, the currently active
states and activities are highlighted with special coloring, resulting in
an (often quite appealing) animation of the diagrams. It is also possi-
ble to execute the model under random conditions and in both typical

e Sy
\ Charts, Data Dictionary
~__ & Panels Editors

Configuration . STATEMATE _| Extraction
Management < Model ©| Functions

Documentation

Code Synthesis

Repor{s & Document Generator
< Reqmrements Tracer .~

lAda, VHDL & Verllog

Translators . ‘_

_ Simulator
Dynamic Tests

Figure 1.11 The STATEMATE toolset.

16 Chapter One

and less typical situations. A variety of possible results of the execu-
tions can be accumulated to be inspected and analyzed later.

We should note that it is possible to execute only part of the model
(in any of the execution modes), as long as the portion executed is syn-
tactically intact. This implies that there is no need to wait until the
entire model is specified to carry out executions, and even an incom-
plete model can be executed and analyzed. Moreover, it is possible to
attach external code to the model, to complete unspecified processing
portions, to produce input stimuli, or to process execution results
on-line. This openness enables STATEMATE to be linked to other tools.

STATEMATE also supports several dynamic tests, which are intended
to detect crucial dynamic properties, such as whether a particular sit-
uation can be reached starting in a given state. These tests are carried
out by the tool using a form of exhaustive execution of scenarios. We
shall not get into a discussion of the feasibility of such exhaustive exe-
cutions here; the reader is referred to Harel (1992b) for some com-
ments on the matter.

Once a model has been constructed, and has been executed and ana-
lyzed to the satisfaction of the specifiers, STATEMATE can be instructed
to translate it automatically into code in a high-level programming
language. This is analogous to the compilation of a conventional pro-
gram into assembly language, whereas model execution is analogous
to its direct interpretation. Currently, translations into Ada and C are
supported, and a variant of STATEMATE enables translation into hard-
ware description languages VHDL and Verilog. Code supplied by the
user for bottom-level basic activities can be appropriately linked to
the generated code, resulting in a complete running version of the sys-
tem. The resulting code is sometimes termed prototype code, because it
is generated automatically and reflects only those design decisions
made in the process of preparing the conceptual model. It may not
always be as efficient as final code, although it runs much faster than
the executions of the model itself, just as compiled code runs faster
than interpreted code. For some kinds of systems, however, this code
is quite satisfactory.

One of the main uses of the synthesized code is in observing the
model performing in circumstances that are close to its final envi-
ronment. The code can be ported and executed in the actual target
environment, or as is more realistic in most cases, in a simulated
version of the target environment. To this end, STATEMATE makes it
possible to construct a “soft” version of the user interface of the final
system, which can then be activated, driven by the synthesized code.
The resulting setup can be used to debug the model by subcontrac-
tors and customers, for example. Again, Chap. 16 contains a discus-
sion of how such code can be beneficial in the design phase of system
development.

Introduction 17

Associated with the code synthesis facility is a debugging mecha-
nism with which the user can trace the executing parts of the code
back up to the model using back animation. The requirements trace-
ability feature makes it possible to trace problems back up to the (tex-
tual) requirements.

For more on these topics, we refer the reader to the STATEMATE docu-
mentation supplied by I-Logix, Inc.

