Chapter

10

Connections between
the Functional
and Structural Views

In Chap. 2 we discussed the functional view, described via the lan-
guage of Activity-charts, and in Chap. 9 we discussed the structural
view, described via Module-charts. The former depicts the system’s
decomposition into functional components, or activities, and the latter
depicts its decomposition into structural components, or modules. This
chapter discusses the connections between these two views and the
way the connections are captured in our languages.

10.1 Relating the Functional
and Structural Models

The functional view provides a decomposition of the system under
development into its functional components, that is, its capabilities
and processes. The structural view, on the other hand, provides a
decomposition of the system into the actual subsystems that will be
part of the final system, and which implement its functionality. The
subsystems may be physical in nature, as were most of the modules in
our description of the EWS example in Chap. 9, or logical in nature.
For example, an MMI subsystem, which carries out all functions related
to the man-machine interface of some system, would be considered a
logical subsystem of that system.

We now describe the three types of connections between the func-
tional and structural views: one is to describe the functionality of a
module by an activity-chart (Sec. 10.1.1); the second is to allocate spe-
cific activities in an activity-chart to be implemented in a module (Sec.
10.1.2), and the third is to map activities in the functional description

139

140 Chapter Ten

of one module to activities in that of some other module (Sec. 10.1.3).
The way these three kinds of connections are specified in our lan-
guages is described in Secs. 10.2, 10.3, and 10.4, respectively.

10.1.1 Functional description of a module

Our discussion of the functional view of the EWS in Chap. 2 centered
around providing a functional description of the entire system, that is,
the EWS module. However, there are a number of reasons for develop-
ing separate functional descriptions for some or all of the various sub-
modules identified in the structural view:

® A module might represent an autonomous subsystem that is to be
developed separately and then combined with the whole system
(often with a relatively humble interface). For example, we may
want to describe the SIGNAL_PROCESSOR of the EWS as a separate
component. It may be used in other systems, and its independent
description could be valuable for other purposes.

® A separate functional description of a submodule is sometimes a nec-
essary prerequisite to its detailed design and implementation. Note
that the description of the submodule’s functionality may depend on
a good understanding of the entire system specification, in which
case a top-down approach is appropriate. For example, prior to the
implementation of the CCU—the control and computation unit of
the EWS—we might want to develop a separate description of its
functionality. However, we can determine its specification only after
identifying relevant functions in the entire EWS.

® Jt might be beneficial to obtain a good understanding of the func-
tionality of a subsystem by identifying its capabilities to help carry
out the functional specification of the entire system. In this case, a
bottom-up approach is best. For example, we may prefer to first ana-
lyze the functionality of the MONITOR module, identifying the activi-
ties it will perform (such as GET_INPUT and DISPLAY_MESSAGE),
and use these later, in the description of the processes that take
place in the overall system. We shall discuss this approach further
in Sec. 10.1.3.

In conclusion, we may wish to attach functional descriptions (i.e.,
activity-charts) to modules on different levels of the structural decom-
position. See Fig. 10.1.

10.1.2 Allocating activities to modules

The structural decomposition and the identification of the flow of infor-
mation between modules is part of the design stage of a system’s devel-
opment. But the design must be related to the system’s functionality.

Connections between the Functional and Structural Views 141

functional
description of

1 the CCU

EWS
ccu ALARM
SYSTEM
MONITOR
SIGNAL _ PRINTER
PROCESSOR
functional functional
description of the description of
MONITOR

the EWS

Figure 10.1 Functional descriptions attached to different modules.

That is, the functions identified in the functional view must be speci-
fied as being carried out by certain modules in the structural view. To
capture this association, each of the functions must be allocated to one
or more modules. In the EWS, for example, the SIGNAL_PROCESSOR
performs the activity PROCESS_SIGNAL. This is a straightforward case
of such an allocation. A more delicate case is the SET_UP activity, which
contains subactivities that interact with the operator, as well as activ-
ities that carry out calculations. SET_UP should probably be divided
among several modules with appropriate capabilities. Interaction
would be carried out by the MONITOR, while the control of SET_UP and
its calculation would be implemented by the cCU.

The allocation of activities to modules is the main activity carried out
during top-level design. Indeed, some methodologies provide heuristic
criteria for allocating activities to modules, for example by analyzing
cohesion and coupling (Gomma 1993; Yourdon and Constantine 1979).
This allocation actually determines the flow of information among the
modules. Information that flows between two activities that are car-
ried out by two modules will flow also between those modules. It is pos-
sible to examine alternatives for the allocation, using the amount of
implied communication among the modules to decide which is best.

The allocation of activities to modules is also used in requirement
traceability analysis. A functional requirement that was part of the
original requirements of the system and was translated into an activ-
ity in the functional view will be automatically associated with the
module that carries out that activity.

The allocation of activities to modules also allows restructuring
of the functional description to define the implementation structure.
One of the main criticisms of function-based decomposition meth-
ods such as Structured Analysis is that there is a troublesome discon-
tinuity between the specification and design descriptions. This gap is

142 Chapter Ten

overcome to some extent in object-based methods, where both specifi-
cation and design use the same components (objects) and the design
is, in general, a refinement of the specification. This means that if
the functional decomposition was carried out using an object-based
approach, the mapping between activities and modules can be made
easy: the decomposition into modules will use (or at least it will start
with) the same components as the functional description.

10.1.3 Mapping activities to a module’s

activities

Sometimes it is not sufficient to allocate activities described on the
system level to their implementing modules. We might want to be
more concrete about the activities within the module’s specification
(as a subsystem) that are responsible for implementing the system
activities. For example, the COMPARE activity is performed by the
CCU, so there should be an activity within the CCU’s functional
description that implements the comparison. We could thus include
an activity in the CCU’s functional description, called cMP, which
would be responsible for this. In such a case, we would map activi-
ties appearing on the system level to those appearing on the sub-
system level.

This type of connection is even more useful in a bottom-up devel-
opment process, where we first analyze the capabilities of each of the
subsystems by developing their functional descriptions and later use
them to construct the functional description of the entire system by
detailing the scenarios in which these functions participate. Actually,
the two views can be developed in parallel: while identifying the pos-
sible scenarios that occur during system operation, the required
functions are defined and are specified as part of the appropriate
subsystem. This approach is suggested by the ECSAM methodology,
described in Lavi and Winokur (1989) and in Chap. 15 below. It is
somewhat similar to an object-oriented analysis method in which
the operations each object can perform are identified in parallel to the
development of the scenarios (use cases) that use them. In Sec. 10.5
we illustrate this approach using the EWS.

In the following sections we show how our languages support the
three connections discussed in the last three subsections.

10.2 Activity-Chart Describing a Module

The activity-chart EWS_ACTIVITIES, shown in Fig. 2.5, constitutes
the functional description of the entire EWS system. In the struc-
. tural view, the system appears as the top-level module of the module-
chart EwS of Fig. 9.1. We may thus say that the activity-chart
EWS_ACTIVITIES describes the functionality of the module EWS.

Connections between the Functional and Structural Views 143

This connection between a module and its describing activity-chart
is specified in the Data Dictionary entity of the module, in the field
Described by Activity-Chart (see Fig. 10.2).

Notice that the connection is between an activity-chart and a module
(and not between an activity-chart and a module-chart, or between an
activity and a module). In our example, the module thus related is a
top-level module, but this is not mandatory. It is possible to associate
an activity-chart with any module in a module-chart. One reasonable
way of proceeding (having already described the structural view of
the system by a module-chart) would be to first describe the function-
ality of the entire system, that is, to construct a functional view for the
top-level module, and then describe the detailed functionality of spe-
cific lower-level modules. Thus, in our example, we may now want to
specify the activity-chart ccu_Ac for the module cCU. The situation is
illustrated in Fig. 10.3. (More about this issue in Secs. 10.4 and 10.5
and in Chap. 12.)

Module: EWS
Defined in Chart: EWS

activity-chart EWS_ACTIVITIES

ac_fg.i&"iity—chart ccu_ac describing the module EWS

_@éscribing the module CCU

...........

Figure 10.3 Activity-charts describing modules.

144 Chapter Ten

There must be a correspondence between the functional and struc-
tural decompositions of a module in terms of the environment and
the interface with it. Because the top-level activity in the describing
activity-chart represents the “functional image” of the module, we
expect the external activities that interact with this top-level activity
to correspond to the environment of the module described by the
module-chart. When an external activity has been given a name, it
must be the name of some module from the relevant environment.
Indeed, as we saw in Fig. 2.5, the external activities in the chart
EWS_ACTIVITIES were OPERATOR and SENSOR, the same as the mod-
ules external to the EWS module in the module-chart EwWS. In this
case, they are environment modules because EWS is the top-level mod-
ule. However, in Fig. 10.4, the external activities in the activity-chart
CCU_AC for the cCU module will be MONITOR, SIGNAL_PROCESSOR,
ALARM_SYSTEM, and PRINTER, because they are the modules exter-
nal to the module cCcU, with which it interacts.

Notice that we included MONITOR as an external activity in CCU_AC
but not its submodules KEYBOARD and SCREEN, although in the module-
chart the CCU is connected to them through the communication lines.
This is because the CCU is not supposed to “know” the internal struc-
ture of the modules with which it communicates.

Because the external activities in an activity-chart that describes a
module correspond to modules, they have no entity of their own in the
Data Dictionary, and they are viewed as pointers to the modules they

module-chart EWS
EWS
MONITOR
ALARM
CCU s —
KEYBOARD cvaTER
SCREEN-—T “..| PRINTER
o SIGNAL ...
PROCESSOR
activity-chart CCU_AC
> ALARM
MONITOR CCU ACTIVITIES i SYSTEM
! PRINTER
SIGNAL
PROCESSOR

Figure 10.4 External activities corresponding to modules.

Connections between the Functional and Structural Views 145

represent. Not only must the external elements of a module and its
corresponding activity-chart match, but so must the information flow-
ing in and out of them. To get a feeling for this requirement, compare
Fig. 2.5 with Fig. 9.3. The former shows the information flowing to and
from EWS_ACTIVITIES, and the latter shows the same for the EwS
module in the module-chart. Most of the flows connect identically
named external elements. However, notice that COMMANDS,
RANGE_LIMITS, and SENSOR_CONNECTED were drawn in the activity-
chart as flowing from OPERATOR, while in the module-chart they
arrive from KEYBOARD (as components of USER_INPUT), and not from
OPERATOR. This inconsistency arises from the fact that when we con-
structed the activity-chart we did not include the activity named
GET_INPUT, for simplification. This activity is performed continuously
in the MONITOR, whose role is to translate the KEY_PRESSING of the
OPERATOR into COMMANDS and other information elements contained
in USER_INPUT. To correct this problem, thus making the views con-
sistent, we must add the GET_INPUT activity to the functional descrip-
tion. The revised version of the activity-chart EWS_ACTIVITIES of Fig.
2.5 that describes the module EWS is given in Fig. 10.5.

When constructing an activity-chart that describes a module, the
names of the particular modules that produce or consume the exter-
nally flowing information may not be interesting. In such cases, the
external activities can remain unnamed, as we illustrate in some of
the following examples. However, as stated earlier, if an external activ-
ity is named, that name must correspond to a module in the corre-
sponding module-chart.

10.3 Activities Implemented by Modules

Now that we are familiar with the general connection, whereby an
activity-chart describes the functionality of a module in the module-
chart, we can discuss how the components of each of these charts are
related.

The relationship is this: all internal activities and control activi-
ties that appear in the activity-chart that describes a certain mod-
ule are implemented by that module, and all the data-stores that
appear in the chart reside in that module. In our EWS example,
all activities in the EWS_ACTIVITIES chart (e.g., GET_INPUT,
SET_UP, PROCESS_SIGNAL, etc.; see Fig. 10.5) are implemented
by the EWS module, and the data-store LEGAL_RANGE resides in the
EWS module.

When the module described by the activity-chart is eventually decom-
posed into submodules, we may be more concrete and allocate the rele-
vant activities and data-stores to the submodules. This is done in the
field Implemented by Module of the activity entity in the Data
Dictionary, or in the field Resides in Module of the Data Dictionary

146 Chapter Ten

EWS_ACTIVITIES
KEY GENSOR CONNECTED BOWER, |phf ==
_ — l OPERATOR
PRESSING EWS_CONTROL
A p| CET_ COMMANDS -
INPUT :
- = IALARM
OPERATOR RAN SET.-UP_ DONE -
GEl ET-OF_ NOTIFICTION
LIMITS DISPLAY_
T y LEGAL_ »| FAULT l,
RANGE
SET_UP
SET_UP_MSGS — OUT_OF_RANGE_DATA OPERATOR
/'y
A
PROCESS_ 3 [COMPARE PRINT_
SIGNAL SAMPLE FAULT FAULT_REPORT
SIGNAL
SENSOR

Figure 10.5 Revised activity-chart describing the EWS module.

entity for the data-store. For example, the PROCESS_SIGNAL activity is
implemented by the module SIGNAL_PROCESSOR, and we have written
this information in the Data Dictionary entity of the activity, as shown
in Fig. 10.6. Similarly, the fact that LEGAL_RANGE resides in CCU
appears in the Data Dictionary entity of the data-store.

Activities can be implemented by execution modules only (not stor-
age or external modules), and data-stores can reside in any internal
module, that is, in either execution or storage modules.

Several activities and data-stores can be allocated to a single module
via the implemented by moduleor resides in module relation. For
example, the activities COMPARE and EWS_CONTROL, as well as the
data-store LEGAL_RANGE, are all allocated to the cCU module. How-
ever, a single activity or data-store cannot be distributed among sev-
eral modules. In our example, the activities SET_UP, DISPLAY_FAULT,
and PRINT_FAULT are each carried out by several modules. We could, of
course, assign them to sufficiently high-level modules to cover this dis-
tribution, but this might lead to allocations that are too general to be
useful. It is often better to further decompose such activities into
subactivities that can each be allocated to a single module. This
allocation will obviously be more informative. Thus, for example,
SET_UP will be decomposed into PROMPT_RANGE, DISPLAY_SU_ERROR,
VALIDATE_RANGE, and the control activity SET_UP_STATES. The role of
the first two is to display messages, and they are implemented by the
MONITOR module, while the other two are implemented by the CCU
module. See Fig. 10.7.

Connections between the Functional and Structural Views 147

The association of activities and data-stores with modules must be
consistent with the module hierarchy and the activity hierarchy. As
discussed earlier, all components of the top-level activity must be
implemented in the module described by the activity-chart. Similarly,
all subactivities and data-stores of an activity A that is implemented
by a module M must be themselves implemented by M or its submod-
ules. In other words, descendants of A cannot be allocated to modules
outside of M. In the EWS example, we would not be allowed to specify
that the SET_UP activity is implemented by the CCU and, at the same
time, that its subactivity DISPLAY_SU_ERROR is implemented by the
MONITOR module, because MONITOR is not contained in the CCU.

In Sec. 10.2 we discussed the consistency between the interface of
the described module and the flows to the top-level activity. A similar
consistency requirement applies to the flow of information on all lev-
els. If two activities in the activity-chart are implemented by two dif-
ferent modules, we expect the information elements flowing between

Activity: PROCESS_SIGNAL
Defined in Chart: ENS_ACTIVITIES

Is Activity:
Implemented by Module: SIGNAL PROCESSOR

Figure 10.6 An activity implemented by a module.

SET_UP activity

SET_UP
PROMPT [@SET_UP_STATES]
RANGE
DISPLAY _ VALIDATE
SU_ERROR RANGE
/1 7
|\ Vi 7
H ¢ module-chart EWS
v EWS
MONITOR
ccu
ALARM
K —
EYBOARD SYSTEM
SCREEN SIGNAL_
PROCESSOR PRINTER

Figure 10.7 Allocation of subactivities of SET_UP to modules.

148 Chapter Ten

the activities to also flow between these modules. For example, com-
pare Figs. 9.4 and 10.5. We allocated the PROCESS_SIGNAL activity to
the SIGNAL_PROCESSOR module and the COMPARE activity to the
ccu. In both charts the data-item SAMPLE flows between the corre-
sponding boxes.

10.4 Activities Associated
with a Module’s Activities

This section deals with the possibility of mapping activities from the
functional description of the entire system to activities from the func-
tional description of its subsystems. The next example illustrates how
this is actually done,

Figure 10.8 contains the activity-chart MONITOR_AC that describes
the functionality of the module MONITOR. This module performs two
functions, GET_INPUT and DISPLAY_MESSAGE, which are described,
together with their inputs and outputs, in the activity-chart. (Some of
the external activities are left unnamed in the figure because the
sources and targets of the flowing data are not relevant here.)

Thus there are two activity-charts: EWS_ACTIVITIES for the entire
system (EWS) and MONITOR_AC for one of the subsystems (MONITOR). In
addition to allocating activities of the former chart to the EWS modules,
we can also specify which activities in the latter chart correspond to
these higher-level activities. In this example, we say in the Data
Dictionary entity of the subactivity DISPLAY_SU_ERROR of SET _UP
thatit is activity DISPLAY _MESSAGE, implemented by module
MONITOR. See Fig. 10.9. Similarly, the subactivity PROMPT_RANGE of
SET_UP will also correspond to the activity DISPLAY_MESSAGE, using
the field Is Activity. Attaching both activities to the same activity
DISPLAY_MESSAGE means that the two will actually be implemented by
the same function.

activity-chart MONITOR_AC
MONITOR
KEY)
PRESSING USER_INPUT N
» GET_INPUT v
OPERATOR
M4GS_TO_
DISPLAY
DISPLAY
e MESSAGE
DISPLAYED
_MSGS

Figure 10.8 Activity-chart of MONITOR.

Connections between the Functional and Structural Views 149

Activity: DISPLAY SU_ERROR
Defined in Chart: SET_UP

Is Activity: DISPLAY MESSAGE
Implemented by Module: MONITOR

Figure 10.9 Mapping of activities by the is activity
relation.

We also attach the activity GET_INPUT from the EWS_ACTIVITIES
activity-chart to the activity GET_INPUT in MONITOR_AC. Although we
use the same name for both activities, the field Is Activity must be
specified. We say that PROMPT_RANGE in SET_UP is an occurrence of the
activity DISPLAY_MESSAGE in the MONITOR module. The DISPLAY_
MESSAGE activity is called the principal activity of PROMPT_RANGE.

Note that the field Is Activity is meaningful only when the
Implemented by Module field is not empty. Moreover, the activity
referred to must be one of the activities in the activity-chart that
describes the implementing module.

In a similar way, a data-store may be associated with another data-
store in the description of the submodules. The relevant field is Is
Data-Store, which is completely analogous to Is Activity in the
Data Dictionary entity for an activity. The terms used are the same: if
a data-store P is defined as is data-store Q, then P is called an
occurrence of the data-store Q, and Q is the principal data-store of P.

10.5 Object-Oriented Analysis
with Module-Charts

Chapter 2 discussed an object-based approach to decomposition.
This approach often fails to address one of the main goals of the spec-
ification phase because the decomposition alone makes it difficult to
see the system’s global behavior. Object-oriented approaches recom-
mend that during requirement analysis, the behavioral scenarios (use
cases) that might occur throughout the system should be identified,
not just the objects and their operations. Here we show how the com-
bination of module-charts and activity-charts and the Is Activity
relation described earlier can be used to provide full specifications.

We shall use a module-chart to describe the system’s objects. The
operations of each object will be described as activities in the activity-
chart that describes the module (object). The activity-chart that
describes the top-level module (i.e., the entire system) will be used to
describe the behavioral scenarios as sequences of object operations. An
activity with its controlling statechart and subactivities will represent

150 Chapter Ten

a set of related scenarios, while the subactivities are mapped to the
object operations by the Is Activity relation. Figure 10.10 illus-
trates this scheme.

The module-chart EWS_0OBJS in Fig. 10.11 shows the decomposition
of the EWS into objects and is similar to the one described in Sec. 2.1.3.

The operations of the RANGE object are described in the activity-chart
RANGE_OPS, shown in Fig. 10.12. The Data Dictionary entry for the
module RANGE contains the fact that it is described by activity-
chart RANGE_OPS.

The activity-chart that describes the functionality of the entire
system—the top-level module EWS in the figure—consists of the pos-
sible scenarios. The SET_UP scenario is the activity shown in Fig.
10.13; it consists of subactivities mapped to operations of the objects
RANGE and MMI_HANDLER.

module-chart describing system’s objects

SYSTEM
OBJ1

OBJ4

OBJ3

system’s scenarios R

4[4

|ele

aqfivity-chart describing ™
operations and behavior of
/an object

ac;i%ity-chart of a scenatrio
tHat uses object operations e

Figure 10.10 An object-oriented analysis model.

EWS
OPERATOR
OPERATOR Sz CONTROLLER FAULT_ >
HANDLER HANDLER
SIGNAL_ RANGE
PROCESSOR
i
{ SENSOR

Figure 10.11 A module-chart based on object decomposition.

Connections between the Functional and Structural Views 151

activity-chart RANGE_OPS

RANGE

READ LIMITS

VALIDATE LIMITS

STORE_RANGE

GET_RANGE

IS_SETUP_DONE

Figure 10.12 An activity-chart specifying the operations of RANGE.

SET UP is activity:
- [@SET_UP_CNTRL] @_LIMITS
PROMPT_ READ _
| rance LIMITS
is activity:
is activity: VALIDATE_ /V VALIDATE LIMITS
DISPLAY MESSAGE LIMITS
'\\ DISPLAY_ STORE_ H
RANGE
SU_ERROR is activity:

STORE_RANGE

Figure 10.13 An activity-chart describing the SET_UP scenario.

