Chapter

Splitting Up Charts

The three graphical languages described in this book allow the decom-
position of elements: each activity, state, or module is either basic or
is described by a set of subelements. Other modeling notations and
tools also allow multilevel descriptions, but many of them require
that each level be described in a separate chart. Our languages allow
multiple levels in the same chart but also allow the description to
span several charts. In this chapter we discuss the possibility of pre-
senting different levels of decomposition in separate charts. We deal
mainly with linking the graphical information. The visibility of ele-
ments belonging to different charts is discussed in Chap. 13.

It is worth distinguishing separate charts depicting different levels
of the decomposition from generic charts that are considered reusable
components of a model. This chapter deals with the former; the latter
are described in Chap. 14.

11.1 Separating a Chart into Muitiple
Pages

The charts drawn in earlier chapters contained a top-level box, repre-
senting the element being described. This box was then decomposed
into lower-level boxes, with each level being drawn inside the higher
one. See, for example, Figs. 2.3, 4.11, and 9.1. Often, however, it is
convenient to break down the drawing into a number of charts, each
containing one or more levels of decomposition. For example, instead of
chart A of Fig. 11.1a we might want to draw the two separate charts
of Fig. 11.1b. Although there are now two physically distinct charts, A
and A2, logically there is just one, and the information in chart A2 is
treated as if it were drawn inside the box named A2 in A. Thus there
is a single logical chart that consists of two physical charts, which are
also called pages.

153

154 Chapter Eleven

A
Al A2
All Al2 A21 A22
(@)
A
Al A2
A2
All Al2
A21 A22
(b)

Figure 11.1 Splitting up a chart into pages.

Here are some of the reasons for dividing a chart into pages. They
are similar to the reasons for breaking down a large piece of software
into functions and subroutines.

® QOverly detailed charts. A complex chart that contains too many
details is difficult to read and comprehend. Breaking it down into
several pages has a “decluttering” effect. Because this is the pri-
mary reason for dividing charts, we often term the separation of
charts into pages as decluttering.

®_Information relevant to different people. Often, different pieces of
information in a chart are relevant to different observers. Here, the
breakup is according to the responsibilities or interests of different
people. We might call this person-oriented information hiding; that
is, each person gets to see only the information relevant to the parts
of the system he or she is working on. This is a widely acclaimed
principle of system development, and decomposing charts into pages
can help support it. Also, such a division can help overcome difficul-
ties that arise when different people update parts of the same chart,
or when one updates it while another analyzes it.

® Information relevant to different levels. Here, the idea is to support
information hiding in the classical sense, that is, to make sure each
level of the specification contains only the elements relevant to it.

e Information from different configuration management units. Here,
the splitting is done according to different versions or releases (or

Splitting Up Charts 155

both) of the system under development, or according to different
ownership and read/write/modify privileges.

8 Hybrid process of building the charts. Some charts are built partly
by a top-down process and partly by a bottom-up one. Breaking down
charts can be used to draw the low-level components on separate
pages and incorporate them as the internal descriptions of compo-
nents in charts of higher levels. This introduces flexibility into the
chart-building process.

8 Easing modification. Splitting up the model into many charts can
simplify the logistics of modification. Subcharts represented by sep-
arate pages can be replaced easily by others with the same interface.
This makes it easy to present specification alternatives simply by
changing the contents of black boxes.

Although chart decluttering can be beneficial, sometimes it is not rec-
ommended. We have in mind situations in which the system does not
lend itself to neat structuring or where despite the availability of a
good structuring there is a tight interrelationship between the low-
level elements in different parts of the structure. In such cases,
decluttered charts may be harder to comprehend. For example, it is
sometimes easier to follow the behavioral aspects of a complex model
when these elements are concentrated in a single statechart. The
same goes for presenting and comprehending the flow of information
in an activity-chart down to the basic low-level activity that actually
produces and consumes the data elements.

11.2 Offpage Charts

We now discuss the mechanism used to split a chart into several pages.
The contents of a box element (activity, state, or module) may be drawn
in a separate chart. The box element is called an instance box, and
the associated chart is called an offpage chart or a definition chart. The
relationship between the two is sometimes termed the box-is-chart
relation. The chart of the instance box is sometimes referred to as the
instance chart.

To represent the relation between an instance box A and a definition
chart B, we label the instance box by A@B, which means that this is
box 2 but its internals are to be described in chart B. If we want to use
the same name for the box and its definition chart, we may simply
omit the first of the two names. Thus a box labeled @A means that the
box and its definition chart are both named A (which is therefore like
labeling it A@A).

In our EWS example, the functional decomposition of the SET_UP
activity of Chap. 2 may be described in a separate chart. Figure 11.2a
shows this activity named @SET_UP, meaning that its contents are

156 Chapter Eleven

activity-chart EWS ACTIVITIES
EWS_ACTIVITIES
GET_INPUT | @EWS_CONTROL l
@SET_UP LEGAL_ DISPLAY .
OPERATOR RANGE FAULT OPERATOR
PROCESS_ COMPARE PRINT
SIGNAL FAULT
SENSOR
(a)
activity-chart SET_UP
SET UP
OPERATOR - @SET UP_STATES LEGAL_
== RANGE
.................................... p—— S ——
GET_INPUT cE aE OPERATOR
RAN DISPLAY RAN
SU_ERROR
(b

Figure 11.2 An instance activity and its definition (offpage) chart.

defined in a chart named SET_UP, and Fig. 11.2b shows the corre-
sponding definition chart with its further decomposition. As explained
earlier, no name precedes the @ symbol, so the box name is the same
as the definition chart name, and we may, for example, use the action
start (SET_UP) in the controlling statechart EWS_CONTROL. Had we
labeled the box SUGSET_UP, that action would have had to take the
form start (SU) .

Note that the notation used to associate a box with its offpage chart is
the same as that used to associate a control activity with its describing
statechart. See Fig. 11.2a; the control activity labeled @EWS_CONTROL is
described by a statechart named EWS_CONTROL.

When a box is described by an offpage chart, say, A@B, the definition
chart B must have a unique top-level box, and the instance box A may
have no subboxes. Of course, the subboxes appearing in the top-level
box in B are considered logical subboxes of A, but A has no physical
subboxes. This terminology is used for parents, too. Boxes may thus
have logical and physical parents.

Referring again to Fig. 11.2, the PROMPT_RANGE activity is consid-
ered a subactivity of the instance activity SET_UP, and therefore it is
also a logical descendant of EWS_ACTIVITIES. The physical parent of
PROMPT_RANGE is the top-level activity SET_UP in the activity-chart
with the same name. Because the top-level box is considered an
“image” of the instance box, we have named the two identically in our
example. However, it is possible—although not recommended—to

Splitting Up Charts 157

have three different names, one each for the instance box, the defini-
tion chart, and the top-level box.

The external activities that are presented in the definition chart are
the boxes that surround the SET_UP activity in the instance chart
(EWS_ACTIVITIES) with which SET_UP communicates. We shall
return to this issue in the following section and in Chap. 12, where the
entire model is discussed.

Both the instance box and the top-level box of the definition chart
have associated entries in the Data Dictionary, and the information
appearing therein must be consistent. More specifically, the following
fields, if not empty, must contain the same information: Termination
Type and Implemented by Module in an activity entry and
Described by Activity-Chart in a module entry. For all other fields,
such as Static Reactions and Active Activities in a state entry
and Attributes for all elements, the information in the entries for the
instance box and the top-level box of the definition chart is accumu-
lated and viewed as applying to the common entity.

We do not allow multiple instances of a common definition chart. In
other words, two instance boxes cannot be described by the same defi-
nition chart. When the need arises for multiple instances of the same
chart, the generic chart mechanism of Chap. 14 should be used.

11.3 Connecting Offpage Charts by
Matching Flows

One advantage of having multiple levels in the same chart is the ease
of viewing arrows (flow-lines in activity-charts and module-charts, and
state transitions in statecharts), in that sources and targets are seen
together. When charts are decluttered into separate pages, this will
necessarily be less convenient. In any case, we need to have reasonable
mechanisms for combining arrows over pages. We supply two. The
first, discussed in this present section, concerns matching flows and
can be used only in activity-charts and module-charts. The second con-
cerns diagram connectors and is described in Sec. 11.4. Although dia-
gram connectors can be used in all three types of charts, we describe
their nse for statecharts only, because the first method is preferred for
the two other types of charts.

Here is how to link flow-lines between pages in activity-charts and
module-charts. The arrows leading to and from the borderline of the
instance box are matched with the arrows exiting or entering external
boxes in the definition chart. The actual matching is carried out by
identifying common information elements included in the labels.

Let us examine an example. In Fig. 11.3 part a is the original chart
and b describes its partition into two charts, by extracting the contents
of A1 and relegating them to a new activity-chart. The flow-lines in
activity-chart A that depict the interface of activity A1 are all connected
to the borderline of the instance box, including those that are related to

158 Chapter Eleven

activity-chart A
A

Al

<
M v2 v *
X2
X3
El a1l a12 W W
'y »
X1 v

A4

(@)
activity-chart A
A Y
@Al v
X2 REY
El W
X1] a3
g SESEE—

definition activity-chart Al

Al
Y1 v2
X2 W

All Al2

L X1
>
®)

Figure 11.3 Connecting pages by matching flows.

the internal activities of A1 . In the definition chart of 21, all flow-lines
are labeled with the flowing elements and are connected to their actual
sources and targets inside A1 .

Note that the matching is carried out according to the flowing ele-
ments and not the written labels. For example, in the definition chart
Al, the flow-line emanating from A12 is labeled v, an information
flow consisting of v and w. This line is matched with the two separate
flows labeled v and W in the instance chart.

Note also that the external boxes in the definition chart of Fig.
11.3b are unnamed. This is done mainly to emphasize the fact that
arrows are linked by matching the flowing elements and not by the
sources and targets. However, the names may be added if it is impor-
tant to represent these sources and targets explicitly. This indeed
might be the case in a top-down development effort because the sources
and targets are already determined in the instance chart.

Another point worth making is that there is no correspondence
between sources and targets of the flows in the definition and
instance charts. For example, v and w of Fig. 11.3, when considered as

Splitting Up Charis 159

the compound information item vw, have a single external target
in the definition chart, whereas in the instance chart they lead to two
separate boxes. This illustrates the fact that unnamed external boxes
are really just place holders, or external agents that are connected to
arrows that lead to or from the outside. (In a bottom-up development
effort, this is particularly helpful; we might not want to specify the
actual external elements when developing the definition chart
because we might not yet know about them.) If the external boxes in
the definition chart are named, the names must be consistent with
those of the corresponding sources and targets in the instance chart.

For example, Fig. 11.4 shows the SET_UP definition chart with its exter-
nal interface. Comparing it with Fig. 10.5, we see that the boxes in this
external interface correspond to the various boxes with which the
SET_UP activity communicates. In the case of decluttering an activity-
chart, the external activities in the definition chart may correspond to the
following kinds of elements in the instance chart: regular internal activi-
ties, control activities, external activities, and data-stores. In particular,
the data-store LEGAL_RANGE is also depicted as an external activity
in the definition chart. In a similar way, when decluttering a module-
chart, external modules in the defining chart may correspond to execu-
tion modules, storage modules, or external modules in the instance chart.

Clearly, each input or output of the top-level box in the definition
chart must also appear in the instance chart, either as a direct flow to
the instance box or as a flow-line connected to one of its ancestors. We
also expect each flow-line connected to the instance box to appear in
the definition chart that contains the particular source or target, even
when it is specified as being consumed or produced by all subelements
of the instance. For example, comparing Fig. 11.3b with Fig. 11.3a, we
see that although X1 is an output of A1, it also appears in the defini-
tion chart. The reason for this is that when drawing the interface of
the instance, it is considered as the interface to a “black box.” That is,
drawing an input line means “one or more of the components consume
this input, and the actual consumer(s) will be specified in the defini-
tion chart.” The reasoning is similar for outputs.

activity-chart SET_UP

SET_UP) LEGAL_RANGE LEGAL_
@SET_UP_STATES] RANGE
7y
PROMPTS SET_UP_DONE
OPERATOR) I_—_—PROMPT_ ey
«
............... I’i‘fﬁ__ VALIDATE_ CONTROL
p| RANGE
GET_INPUT RANGE_LIMITS
DISPLAY ERROR_MSGS OPERATOR
SU_ERROR >

Figure 11.4 SET_UP definition chart.

160 Chapter Eleven

Xy
@A @B

Bl

Al »

;

A2 > B2

A

(a)

a1 X Xy >/ Bl
e \Q!
A2 ? B2

(b)

Figure 11.5 Compound flow-lines distributed over several pages.

In Sec. 2.5.4 we introduced the notion of a compound flow-line; we
talked about the logical flows between activities (or modules) that consist
of several flow-line segments linked with connectors. Now here, although
using a different construction method, we have compound lines that are
distributed over several pages. Figure 11.5a shows an example that con-
tains two compound flow-lines: X, flowing from A1 to B1, and v, flow-
ing from A2 to B2 . An equivalent construct is shown in Fig. 11.5b.

11.4 Connecting Offpage Statecharts
Using Connectors

The method presented above for connecting offpage charts to the
description in the instance chart cannot be applied in the case of
statecharts because they are not connected via flows. For them we
use an alternative mechanism that is based on diagram connectors.
In earlier chapters we already used diagram connectors to combine
several arrow segments into a single logical compound arrow. See,
for example, Fig. 4.21, in which three compound transitions between
states were constructed from two segments each, using diagram con-
nectors. Because these connectors appear in the same chart, or page,

Splitting Up Charts 161

we refer to them as inpage diagram connectors. When they are used
to connect arrows on separate pages, as is the case here, we call
them offpage diagram connectors. In the instance chart (i.e., the
chart that contains the instance box) the connectors are drawn
inside the instance box, and in the definition chart they are drawn out-
side the top-level box.

Like inpage connectors, offpage diagram connectors may be labeled
either with numbers or with an alphanumeric string that starts with
a letter and might contain underscores. A useful convention is to label
the connector with the name of the source or the target of the arrow
in the instance chart. Another possibility is to use the name of the
trigger of the transition.

Each connector in the instance chart must have a matching connec-
tor in the definition chart, with consistent directionality of the arrow.
See Fig. 11.6b, in which one arrow enters the GO connector in the
instance chart and one exits the GO connector in the definition chart.
A connector is not allowed to have both entering and exiting arrows.
We allow several offpage connectors in an instance box, all with the
same label, and follow a similar convention for connectors in the def-
inition chart. Such multiple occurrences in one chart must all have
the same arrow directionality. The same label can also be used for
offpage connectors in separate instances. However, we do not allow
an offpage connector in an instance box to have the same label as an
inpage connector on the same page, because that might be confusing.

When imagining the compound arrows constructed from arrow seg-
ments leading to and from connectors, the offpage connectors are
treated like junction connectors (as in the inpage case; see Chap. 4).
Consequently, the triggers on these segments are combined by and,
and all the actions on them are performed.

When connecting the statechart pages logically, the only transitions
that have to be connected are those that cross the boundary of instance
states. Transitions that enter or exit an instance state without cross-
ing its borderline will typically not appear in the definition chart at all.
The reason is that such entering transitions will enter substates in the
definition chart via the default connectors, and the exiting transitions
will exit the state regardless of the internal configuration. This rule is
consistent with the idea of a structured specification, in that the rea-
sons for entering and exiting the state are not to be known inside the
state. Exceptions to this rule include exits that do not necessarily
apply on the top level, that is, to all internal states, but only to some of
them. In such cases, it is appropriate to describe the outgoing transi-
tions in the definition chart as well as in the instance chart.

Figure 11.6 contains an example: part @ shows the chart before declut-
tering, and part b after it. Notice that in Fig. 11.6b, transitions that
cross the borderline of state ON are connected by connectors, while those

162 Chapter Eleven

statechart MAIN

/ MAIN ! \

PROCESSING TEST TESTING

>

v

ETEST

\

instance statechart MAIN

/ MAIN \

(a)

TURN TURN
_OFf’ OFF =
-y
— co 4 - TEST
™ P ITESTING
G0) (TO = |ETEST

S ’ /

(b)

Figure 11.6 Transitions between pages of a statechart.

that emanate from that borderline (i.e., TEST and TURN_OFF) are drawn
with or without the connector, depending on the particular case. The
fact that TURN_OFF is an event that triggers an exit from every state is
important information on the upper level. On the other hand, the deci-
sion about which states the event TEST acts on was made on the lower
level. In Fig. 11.6b, the trigger labels appear in at least one page,
depending on the specifier’s preference, but not necessarily in both.

