Chapter

12

Putting Things Together

In the preceding chapters we discussed different kinds of charts and
elements, and their interrelationships. A full-fledged model of a sys-
tem may consist of many charts, each containing many elements. Now,
although we have not yet described all the features of our languages,
we pause here to take a bird’s eye view and discuss how charts are con-
nected to build a full model. Later, when we introduce additional fea-
tures, such as generic charts, we will also address the issue of their
location in the entire model. Do not be misled, however; when model-
ing a system, it is not necessary to specify all parts of the full structure
as presented here.

This chapter also deals with entities external to the model—envi-
ronment systems and testbenches. It discusses their role and how they
relate to the other elements of the model.

Charts that make up the model share elements among themselves.
Therefore, the picture is incomplete without the material of Chap. 13,
in which we discuss the scope of elements and their visibility with
regard to the various components of the model. We also introduce
there another component of a model, the global definition set, which
contains information that is visible to the entire model.

12.1 Relationships among the Three
Kinds of Charts

We now describe the full picture of our EWS example, as it emerges
from the various pieces described in earlier chapters. The fact that our
exposition follows a certain order is not meant to imply any specific
order recommended in developing the model.

The interface of the EWS with its environment and its structural
decomposition appear in the module-chart EWS of Fig. 1.7, which is also

163

164 Chapter Twelve

shown on the left-hand side of Fig. 12.1. The entire system is depicted
by the top-level module therein, named EWS. The activity-chart
EWS_ACTIVITIES, whose contents is shown in Fig. 1.4, describes the
functionality of this top-level module. The top-level activity in that
chart, EWS_ACTIVITIES, corresponds to the EWS module, so the inter-
faces of the two must be the same. See Chap. 10.

Control activities appearing in an activity-chart are described by
statecharts. See Chaps. 6, 7, and 8. Thus in Fig. 12.1 we see that the
control activity of the activity EWS_ACTIVITIES is described by
the statechart EWS_CONTROL of Fig. 1.6. Similarly, the control activity
of SET_UP is described by the statechart of Fig. 7.3.

We refer the reader to App. B, which contains the entire EWS model.

As we saw in Chap. 10, an activity-chart can be attached to any mod-
ule in the module-chart as its functional description. The control activ-
ities in these activity-charts are also described by statecharts. For our
EWS example, this results in the structure shown in Fig. 12.2.

Figure 12.2 captures only the relationships between the three types
of charts that describe the three views. However, as explained in Chap.
11, each of these logical charts can be decomposed into several physi-
cal charts, thus creating a more complex network of charts. These
additional connections are based on the three types of relationships
described therein: one, a module described by an activity-chart, is
specified in the module entry in the Data Dictionary, and the other
two, that between a control activity and its describing statechart, and

module-chart EWS

activity-chart EWS_ACTIVITIES

EWS_ACTIVITIES

..............

statechart EWS_CONTROL

statechart EWS_CONTROL
SET UP_STATES
ET_UP_STATE DC’%W

0s (Oe—C1)

Figure 12.1 The charts of three views of the EWS.

Putting Things Together 165

. Statechart
EWS CONTROL

module-chart EWS -
e activity-chart
EWS EWS_ACTIVITIES

monzzox |[cou]|] I
L

] istatechart
SET_UP_STATES

jactivity- g _— :
jactivity-char activity-chart . [_____*___J

|MONTTOR AC CCU_ACTIVITIES .
) statechart

| I 3 5 CCU_STATES
| S —— ¥ e,

K

statechart statechart

{)il J

Figure 122 Charts in multilevel specification of the EWS.

Module: M
Described by Activity-

module-chart M

activity-chart M_AC

module-chart Ml

M12

module-chart M1l

statechart CA
esl ; es2 |

activity-chart] jactivity-chart o p
statechart S1 statechart S2

M111l AC iM112_AC

Figure 12.3 Relations between charts in system specification.

the offpage (decluttering) relationship, are depicted graphically, using
the @ symbol.

A schematic example of a structure built up from many of these rela-
tionships is shown in Fig. 12.3. Notice that this particular figure con-
tains only one logical module-chart, consisting of the three physical

166 Chapter Twelve

charts M, M1, and M11, but three logical activity-charts, namely, M_AC,
M111_AC, and M112_AC.

12.2 A Chart in a Model

Regarding the terms logical chart and physical chart, from here on, we
mostly use chart to mean physical chart. Each (physical) chart plays a
role in the whole specification according to its relationships with other
charts. The top-level box of the chart is its subject. For example, the
activity-chart EWS_ACTIVITIES of Fig. 10.5 describes the functional-
ity of the EWS module. Its top-level activity is EWS_ACTIVITIES, which
is therefore its subject. In our examples we almost always use the
same name for the chart and its top-level activity, although this is
not mandatory.

Charts will always be identified by name. Chart names must be
unique throughout the entire model, even those of different types.
Thus we may not have a module-chart and an activity-chart with the
same name in a single model.

Like other elements in the model, a chart has an associated entry in
the Data Dictionary. This entry contains descriptive information, such
as short and long descriptions and attributes. It may also contain admin-
istrative information, such as the owner of the chart and its creation
date, version number, and access privileges. We shall see later that this
entry is also used to define a chart as generic, that is, as one that can be
instantiated multiple times in the model.

12.3 Hierarchy of Charts

The relations between boxes and charts induce a hierarchy of charts.
A chart is considered to be a parent chart of all the charts that describe
its boxes by the of fpage chart relation, by the relation between a
control activity and its statechart, and by the module described by
activity-chart relation. Referring to Fig. 12.3, for example, we find
that the module-chart M is the root of the hierarchy; it is the parent of
the module-chart M1 and the activity-chart M_AC. The activity-chart
M_AC, in turn, is the parent of the activity-chart A1 and the statechart
CA, and the statechart Ca is the parent of statecharts S1 and S2. As in
other cases, here, teco, we use the terminology subchart, ancestor, and
descendant. Thus, for example, the module-chart M1 is a subchart of M,
and all the charts in Fig. 12.3, except for M itself, are descendants of M.

The chart hierarchy is sometimes called the static structure of charts.
The structure for the example of Fig. 12.3 is shown in tree form in Fig.
12.4. The chart hierarchy serves as a sort of table of contents for the
specification.

The uniqueness rules discussed in earlier chapters (e.g., that each
chart can be a definition chart of a single box only) imply that each chart

Putting Things Together 167

T

M11 (mc)
T Ao Ge

g LSIER)

e]

l| CA (sC)

—(Gito]

Figure 12.4 Hierarchy of charts.

has (at most) one parent. In addition, cyclic definitions are not
allowed, so that the hierarchy of charts will indeed be either a tree (as
in Fig. 12.4) or a forest of trees. Now, in a typical full specification
there is usually a module-chart that describes the system context and
sometimes the top levels of the structural decomposition, too, and all
the other charts are its descendants. This renders that module-chart
the root chart, so that the chart hierarchy is a single tree. However, in
many cases, especially if the specification is carried out in a bottom-up
manner and is not yet complete or when using methodologies that do
not call for a single module-chart for the context description, there
might be no such root, and the structure will therefore be a forest.
Moreover, we shall see later that generic charts, those that can be
instantiated multiple times in the model, have no parents and are con-
sidered roots in the chart hierarchy, so that here, too, the structure
will be a forest. A tree in the chart hierarchy is sometimes called a
cluster; in Fig. 12.4, the entire structure consists of a single cluster.

12.4 Entities External to the System
under Description

The model that specifies the system under development operates in
the context of the environment systems. We now discuss these systems
and other external entities that are connected to the system model and
might interact with it.

12.4.1 Environment modules or activities

A number of times we stated that the external boxes in a chart repre-
sent either boxes in the parent chart or parts of the real environment
of the model. The EWS example, as presented throughout this book,

168 Chapter Twelve

models the context of the system by the top-level module-chart EWS.
This is the root of the chart hierarchy, and, as always with the context
module-chart, all of its external boxes (in our case, OPERATOR and
SENSOR) are environment modules and are not part of the system. In
a typical model, all other module-charts are offpage charts, whose
external modules are occurrences of modules from their parent chart.
For example, if the MONITOR’s structure is specified in a separate off-
page module-chart, this chart will contain two external modules, the
CccU and the OPERATOR, which are simply occurrences of the two
modules that appear in its parent chart, the module-chart EWs. See
Fig. 12.5.

In Fig. 12.5, we also show the activity-chart EWS_ACTIVITIES,
which describes the top-level module EWS (see Sec. 10.2), and which, as
such, is a subchart of the EWS module-chart. Its external activities
OPERATOR and SENSOR are simply occurrences of the corresponding
environment modules from the parent module-chart. Other offpage
activity-charts participating in the functional description, such as the
SET_UP chart in Fig. 11.2, also contain external boxes that are linked
to other activities and data-stores from the parent chart (e.g.,
GET_INPUT, LEGAL_RANGE, and OPERATOR). However, a model does
not necessarily contain a module-chart. One can construct the func-
tional view only, starting with a root activity-chart that will contain
the environment systems, too.

module-chart EWS

EWS

OPERATOR .| 5 |oMONITOR —-——>| ccu I

N4

OPERATOR

moduie-chart MONITOR “7' \
FAN A v
/ MONITOR A activity-hart EWS_ACTIVITIES
1] \
\

LY
\
v
[
\
[}
1

N
OPERATOR i~ IIKEYBOARDI—> ccu AN \EWS_ACTIVITIES
\ | OPERATOR; |% OPERATOR

N 1
[y

1Y

LY

$Iscreen [H 5\
A

[}
L)
)

Figure 125 External and environment boxes.

Putting Things Together 169

An environment box—module or activity—has an entry in the Data
Dictionary, but an external box that points to another box has no entry
of its own. The Data Dictionary entry of an environment box may con-
tain descriptions and attributes, but not behavioral information. For
instance, a mini-spec cannot be associated with an environment activ-
ity. In fact, when modeled as external entities, the environment sys-
tems cannot be associated with functional and behavioral descriptions
in our languages at all. It is impossible to associate an activity-chart
or a statechart with an environment module or activity. Often there is
only limited and imprecise knowledge about the external entities.
However, in some cases there are assumptions about the behavior of
the interface signals that are significant to the design of the system,
and the designer might want to express them explicitly. This can be
done by including the relevant environment systems as part of the
model and representing them as internal modules or activities. It
helps to give them some user-defined marks to indicate that they are
beyond the scope of the system under development. This technique can
also be used when the designer wants to simulate the system in its
environment and wants to use the modeling languages to describe the
external systems. It is often convenient to specify environment behav-
ior in a statistical manner, for which purpose one can use the random
functions listed in App. A.3.

The ECSAM methodology, which essentially employs our modeling
languages (Lavi and Winokur 1989), has been extended recently to
construct what its authors call a black box external model by including
the environment systems in the model, as we suggest here (Lavi and
Kudish 1996).

Sometimes it is easier to use a conventional programming language
to simulate the external systems, particularly when these systems
have already been implemented in software. In general, any existing
implementation can be used for simulation and prototyping purposes.
The value of supporting tools based on our languages can be enhanced
if they can be made to provide means for linking the model execution
facilities to an external existing environment.!

12.4.2 Testbenches

Other external entities that interact with a typical model are the tests
developed to check its behavior. These tests are valuable even beyond
their primary purpose, which is to check whether the model matches
some preliminary requirements and behaves as expected. Sometimes
the model is built as a reference model, that is, it is to be compared
with its implementation. In such a case, the model is developed for

1STATEMATE indeed provides such means.

170 Chapter Twelve

prototyping purposes, and the real system is developed later, indepen-
dently, with the intention that it behave similarly. Hence, tests that
are developed to check the model can be used later to check the imple-
mentation. Extensive testing of the model is even more justified when
it is automatically transformed to yield an implementation. In this
case, if the model fulfills the requirements and is found to be correct
by the tests, then the synthesized implementation is correct, too.

One approach to testing the model is based on generating test sce-
narios according to some patterns and rules, by a special-purpose test
driver (written as an external program or with the aid of our modeling
languages). The outputs of the modeled system are then collected by
some monitoring function, and the collected data can be analyzed and
checked in order to learn about the system’s behavior and performance
and to detect undesired reactions.

Another approach uses auxiliary charts (mainly statecharts) to
express and verify temporal requirements that are related to the
model, such as safety and liveness properties (Manna and Pnueli
1992). These special charts are called testbenches, or sometimes watch-
dogs, and we now illustrate how they are used.

Assume that we want to be convinced that the EWS model satisfies
the causality property that an alarm is issued only after an out-of-
range situation has been detected. This requirement is expressed in
terms of our model as follows: the activity DISPLAY_FAULT operates
(is started) only after the event OUT_OF_RANGE has occurred. We can
now construct a testbench statechart, ALARM_CAUSALITY, shown in
Fig. 12.6, that will run in parallel with the system model and will
“watch” the model execution under different scenarios of external
changes. Whenever the requirement is violated by some scenario, the
testbench will enter the state ERROR.

This testbench checks for the kind of causality categorized as a safety
property in the literature on program verification. Safety properties
often take the form B never occurs after A (Manna and Pnueli 1992).
In such a case we look for a scenario that violates the property (i.e., one

ALARM_CAUSALITY \

OUT_OF RANGE

¢ (p1spLay pavLt) | PETER.
S = OUT_OF RANGE

st (DISPLAY FAULT)

| BEFORE _
OUT_OF_RANGE |

N

Figure 12.6 The testbench statechart ALARM_CAUSALITY.

Putting Things Together 171

in which B occurs after A) to prove that the model does not satisfy
the requirement. A similar technique can be used to check whether the
model satisfies what is called a liveness property. One variation of live-
ness states that after A occurs, B can occur. To convince ourselves that
this requirement is satisfied, we draw a testbench in which a scenario
of B after A leads to a success state.

A supporting tool (such as STATEMATE) can be instructed to try out
many scenarios, perhaps even all of them exhaustively, to find one that
satisfies or violates such requirements.

Testbench statecharts are not an integral part of the model and the
hierarchy of its charts. Due to their special role, they are allowed to refer
to the model’s elements without necessarily obeying the scoping rules
discussed in Chap. 13. For example, in Fig. 12.6, the testbench chart
ALARM_CAUSALITY refers to the activity DISPLAY_FAULT, although
this violates the visibility rules defined in Chap. 7 for activities.

In terms of the scoping rules, the difference between environment
modeling and using testbenches is analogous to two different ways of
testing a hardware board: the former has a well-defined interface and
is therefore like connecting to a board via the connector’s pins, and the
latter is less disciplined and therefore more like monitoring a signal
with a probe.

