Chapter

13

Scope and Resolution
of Elements

Charts are the building blocks of a model. These blocks are not isolated
entities, but are linked together by information that might flow
between them and by elements they might share. In particular, some
of the elements defined in one chart can be used in others. Clearly,
however, in large projects there are many elements that need not be
known outside a limited portion of the specification.

Hence issues of scope—dealing with the questions of where ele-
ments are defined, where they are recognized, and where they may be
used—are important. This chapter discusses these issues, and the
way we deal with them is strongly related to the hierarchy of charts,
which was discussed in Chap. 12.

This chapter also introduces a new component of our languages, the
global definition set (GDS), which contains information that is visible
throughout the entire model.

13.1 Visibility of Elements
and Information Hiding

Decomposing specifications into many charts raises issues of visibility
and the scoping of elements. Consider Fig. 13.1. The activity MATIN
has two subactivities, A and B, between which X flows, and each is
described in a separate chart. Obviously, we want X to be recognized in
both charts because it is part of their external interface. The X in both
charts is thus the same X. On the other hand, we would like the two Ys
appearing in these charts to be different when each is internal to the
chart in which it appears. These two charts may actually have been
prepared by different teams. In fact, the two Ys could be of very differ-
ent types, say, a data-item in A and an event in B. Thus X represents

173

174 Chapter Thirteen

the case of an element that has to be visible to several charts, and the vs
represent cases of elements that are to be hidden inside specific charts.

These notions of visibility and information hiding are important in
any kind of structured development. Some elements are allowed to be
known only in specific parts of the model, and others might be global,
that is, known throughout it. Often, it is important to give subteams
the freedom to name their elements as they wish, regardless of the
possible existence of identical names elsewhere in the model, and to
produce reports and carry out analysis on particular portions thereof.
To accommodate these possibilities, we associate a scope with each ele-
ment. The scope of an element is a set of charts in which the element
is known and can be used. As in modern programming languages, we
have a notion of where the element is defined and a set of scoping rules
that determine where it is visible.

13.2 Defining, Referencing,
and Resolving Elements

Each element in the model belongs to a specific chart. We say that it is
defined in that chart. Graphical elements (boxes, arrows, and connec-
tors) are defined in the chart in which they are drawn, besides the spe-
cial case of external boxes. Textual elements (information elements
and actions) are defined in the chart that is specified in the element’s
Data Dictionary entry. See Sec. 13.4.

Elements defined in one chart may be used in others. For example,
we may define the data-item X of Fig. 13.1 in the higher-level chart
MAIN by writing MAIN in the field Defined in Chart of its Data
Dictionary entry, as shown in Fig. 13.2. Because X is used along a flow-

activity-chart MAIN
MAIN

CJ

X

|@A @B I

activity-chart A activity-chart B

A
Y X
IAl I-—biA2 |__.>gB

B

~ Figure 13.1 Visibility vs. information hiding.

Scope and Resolution of Elements 175

Data-Item: X
Defined in Chart: MAIN

Figure 13.2 An element defined in a chart.

activity-chart MAIN statechart §

(&)

b E/st! ()

MAIN

Figure 13.3 A reference activity.

line between the subactivities A and B, it also appears along flow-lines
in the charts for A and B. In these two charts, in which X is used but
not defined, we say that X is a reference element.

Another example of a reference element appears in Fig. 13.3. Here,
the activity A is defined in the activity-chart MAIN, by virtue of its
being drawn there. On the other hand, because it is started in the state-
chart s, which describes the control activity of MAIN, activity A is a
reference element in S, where it is used but not defined.

Each reference element must be matched with, or resolved to, an ele-
ment in some other chart. The latter is said to be the resolution of the
former. In the aforementioned examples, the reference data-items X of
Fig. 13.1 in both charts A and B are resolved to the data-item X defined
in the chart MAIN, and, similarly, the reference activity 2 of Fig. 13.3
in the statechart S is resolved to the activity A in MAIN.

Often, it is useful to be able to refer to elements that have not yet
been defined. In the terminology just introduced, this amounts to hav-
ing a reference element that cannot be resolved to any element. Such
a situation might occur in intermediate stages of the specification
process. A simple example is the use of an external event as a trigger
in a statechart before the activity-chart that defines that event is con-
structed. Another example appears in Fig. 13.4, which is similar to
Fig. 13.3. The difference is that here the activity K, which is started
in statechart S, has not yet been defined in MAIN. This could have
been intentional (K is not ready yet), or it could indicate an error. Thus
K is an unresolved reference element in chart S.

The specific rules for visibility and resolution differ for different
types of elements. They are discussed in detail for graphical elements
in Sec. 13.3 and for textual elements in Sec. 13.4.

176 Chapter Thirteen

activity-chart MAIN TR

~ E/st! (K)

= |

Figure 13.4 An unresolved reference activity.

Having scopes associated with elements makes it possible to use the
same name for different elements, and there are rules that determine
when this is allowed. Elements with the same name can be distin-
guished by attaching the chart name (i.e., the one in which they are
defined) to their own name. The format is chart-name:element-name.
However, this use is not always allowed, and the rules for referring to
elements in this way are related to the scoping rules. Such practice is
useful for testbenches (see Chap. 12), where the scoping rules do not
hold, and any element of the medel can be referred to freely.

The rules for uniqueness of names and for referencing are discussed
in the following sections.

13.3 The Scope of Charts and Graphical
Elements

Charts involve several kinds of graphical elements—boxes, arrows, and
connectors. These elements, with the exception of external boxes
(which are discussed later), are defined in the chart in which they are
drawn. Arrows have no names and cannot be referred to in other
charts. Also, the only connectors that have names are diagram connec-
tors, and their naming and reference rules were discussed in Chap. 11.
This leaves us with having to discuss the scoping and reference rules
for charts and boxes only. ’

13.3.1 Referring to charts and box elements

Charts are global in the entire model. Their names are unique, even
for different types of charts, and they are recognized everywhere. So
far, we saw that charts are referred to in other charts in two ways: in
the names of boxes (to point to offpage charts) and in the Data
Dictionary (to specify that a module is described by an activity-chart).
We shall see later that generic charts are referred to in a similar way.
As for other elements of the model, references to charts are resolved
to charts of appropriate type. If such charts do not exist yet in the
model, we say, as for other element types, that the reference charts
are unresolved. ’

Scdpe and Resolution of Elements 177

The box elements of our languages are activities and data-stores,
which are defined in activity-charts, states, which are defined in state- -
charts, and modules, which are defined in module-charts. As we have
seen in earlier chapters, the box elements are named in the graphics,
and the name of the box must be unique among its siblings boxes.
When the name is not unique in the chart, the box can be referred
to by its pathname, preceded by its ancestor(s), (e.g., A.B.C; see
App. A1). If there is a synonym for the box, defined in its Data
Dictionary entity, then that synonym must be unique among the
names and synonyms of the boxes defined in the same chart. A box can
be referred to by its name or its synonym.

We now describe the rules for referencing a box element in a chart
other than the one in which it is defined. Any cases that are not dis-
cussed, such as referencing a state in an activity-chart, are not allowed.

13.3.2 Referring to activities in statecharts

Activities can be referred to in statecharts in actions (e.g., st! (a)),
in events (e.g., sp(A)), and in conditions (e.g., ac (2)). These actions,
events, and conditions may appear as parts of labels along transitions,
as parts of static reactions, and in the definitions of other elements in
the Data Dictionary. In addition, activities may be referred to in a state’s
Data Dictionary entity in the field Activities in State. See Chap. 7.

As discussed in Chap. 7, in a (logical) statechart reference is allowed
only to activities that are siblings of the control activity described by
the statechart. This is the only way to refer to activities in a state-
chart. As an example, in Fig. 13.5, the activity A in the chart MAIN is
referred to in the statechart S2, which belongs to the logical state-
chart S that controls the activity MAIN.

................... statechart S

statechart S2

s2
o
/st! (A) [:::]

Figure 13.5 Referring to an activity in a statechart.

178 Chapter Thirteen

Notice that the activities that can be referred to in a given statechart
SC must belong to a very particular activity-chart, namely, the parent
activity-chart of sc, that is, the one containing the control activity
described by sc. Therefore, there is no need to attach a chart name to
the name of a referenced activity, and, indeed, such an attachment is
not allowed.

If a statechart refers to an activity name that does not appear in the
parent activity-chart, as in Fig. 13.4, that reference remains unre-
solved. This is true even if there is an activity with the same name
elsewhere in the model.

13.3.3 Referring to states in statecharts

States can be referred to in statecharts in events (e.g., en (S)) and con-
ditions (e.g., in(S)). These events and conditions can be used along
transitions, as part of static reactions, and in Data Dictionary defini-
tions of other elements. See Chap. 5.

The visibility rule is that a state can be referred to in any state that
belongs to the same logical statechart. In other words, any state that is
defined in a page that is a descendant of some statechart SC is visible
to all charts that are descendants of SC. States defined in other charts
that are not part of the logical statechart of SC are not visible.

States in the same page are referred to by name or pathname (if the
name is nonunique in the page), while states in other pages are pre-
ceded by the appropriate chart name (i.e., chart-name:state-
name). As an example, consider Fig. 13.6. In the statechart S2, the
state OFF that appears in the label E[in (OFF)] is understood to be
the state OFF in the orthogonal component S22, which appears in the
same statechart, although there is a state named OFF in the chart S1,
too. On the other hand, to refer to S2:0N in the label in chart 51, the
state name is preceded by the chart name S2, and although the name
0 is unique in the entire logical chart, the chart name is also added to
it when it is used in another chart.

A reference to a state name that does not appear in any chart of the
same logical statechart remains unresolved.

13.3.4 External activities or modules

External activities and modules are considered to be “real” ele-
ments, (e.g., they have their own entities in the Data Dictionary)
only when they are defined explicitly in the Data Dictionary as
environment activities or modules. An unnamed external box is
just a graphical object, like a connector, that signifies some anony-
mous external source or target. A named external box that is not
defined as an environment box serves as a reference to another box.
Like other reference elements, an attempt is made to resolve such a

Scope and Resolution of Elements 179

statechart 8 i =1 statechart 82
Se s21 s22
N
@sl i @s2 Q OFF
e A A
E[in (OFF)]

w=lfics

statechart S1

S
[in(S2:0N)]

1
w Jin(s2:0)7| N I

Figure 13.6 Referring to states in a statechart.

box to a matching element—in this case, a box from the parent
chart. The matching box in the parent chart has the same name, and
it can be an internal box (i.e., a module, activity, or data-store) or an
external box.

Consider the example in Fig. 13.7. Activity-chart M1_AC contains a
number of external activities: E1 is resolved to the environment mod-
ule E1, and M2 is resolved to the internal module M2, but M31 does not
match any module in M (although M contains a module named M31).
This is because the matching boxes are allowed to be found only among
the siblings of M1 (e.g., M3) or the siblings of M1’s ancestors (e.g., E1).
Similarly, in activity-chart A, the external activity D is resolved to the
data-store D in M1_AC, and E1 is resolved to E1 in M “via” E1 in
M1_AC.

A named external box in a root chart (i.e., one with no parent), or a
box to which no box in the parent can be matched, is considered to be
an unresolved external box. For example, if the external module E2 in
the root chart M is not explicitly defined as an environment module, it
is considered unresolved. Also, K in the activity-chart 2 and M31 in
M1_AC are unresolved external boxes, because no matching boxes for
them are found.

13.3.5 Referring to modules and activities
in activity-charts

Modules can be referred to in an activity-chart in the field
Implemented by (respectively, Resides in) of the Data Dictionary
entity of an activity (respectively, a data-store). See Fig. 10.6. Any
module, from any module-chart, can be referred to in these fields.
Recall, however, that the rules of Chap. 10 concerning the consistency
of the hierarchies of modules and activities must be followed.

180 Chapter Thirteen

module-chart M

________________ lMoélule:ﬂl
3 il Described by Activity-
Chart: M1

M3 v

Figure 13.7 Resolution of external boxes.

Because module names are not unique, our languages allow module
names to be referred to from different charts. In cases of possible ambi-
guity, the chart name should be attached to the module name.

Activity names and data-store names are entered in the related
fields Is Activity and Is Data-Store, respectively. As explained
in Sec. 10.4, an element name in these fields is meaningful only when
the implementing module is specified. The activity or data-store
entered must be from the activity-chart that describes the implement-
ing module. See Fig. 13.8. Consequently, there is no need to specify the
chart name of the referred to element, and, indeed, attaching this
name is not allowed.

13.4 The Scope of Textual Elements

Textual elements (i.e., events, conditions, data-items, user-defined types,
information-flows, and actions) are defined via the Data Dictionary. The
chart in which the element is defined is specified by the modeler in
the field Defined in Chart. See Fig. 13.2. This should be contrasted
with graphical elements, for which the definition charts are determined
by where they are drawn.

13.4.1 Visibility of textual elements

A textual element that is defined in a particular chart is recognized in
and can be used in other charts. The visibility rules for textual ele-
ments are very similar to those employed in programming languages
that support nesting and block structure. A textual element is clearly
visible in the chart in which it is defined. It is also visible in all the

Scope and Resolution of Elements 181

descendant charts in the chart hierarchy defined in Chap. 12. An
exception is when the element is masked by another textual element
with the same name, as discussed shortly.

Let us take an example. The event OUT_OF_RANGE, defined in
the activity-chart EWS_ACTIVITIES, is used in the statechart
EWS_CONTROL on a transition; see, for example, Fig. 4.3. To use our ter-
minology, the reference to OUT_OF_RANGE in EWS_CONTROL is resolved
to the event OUT_OF_RANGE that is defined in EWS_ACTIVITIES.
Because the statechart EWS_CONTROL is a subchart of the activity-
chart EWS_ACTIVITIES (see Fig. 12.2), the textual elements defined in
the latter are visible in the former and can therefore be used therein.

Figure 13.9 illustrates masking. The data-item X flows between
activities A and B in the activity-chart MAIN. Assume that it is also
defined there. The offpage chart C, which defines an internal activity
of MAIN, uses an element with the same name, X (in the example, X is
actually an event in C). According to the visibility rule, the data-item
X of MAIN could have been used in the subchart C, but because an
event X is defined in C, the data-item X is no longer recognized there.
Moreover, the same applies to C’s subchart C1, in which we may refer
only to the event X of C and not to the data-item X of MAIN. In such a
case, we say that the data-item MAIN: X is masked by the event C:X.

13.4.2 Naming textual elements

The name and synonym of a textual element are given in its Data
Dictionary entity. Within a chart, all such names and synonyms must
be unique. Hence, if an event named E has already been defined in

module-chart M Module: M
: . Described by Activity- Chart:

Modu]eMl e

Described by Activity-Chart:
M1l_AC

activity-chart M_AC

M_AC D
N

activity-chart M1_AC /f:
M1_AC) /

L]

Is Activity: F2 Implemented by: M1

Figure 13.8 Referring to activities in Is Activity field.

182 Chapter Thirteen

activity-chart MAIN

MAIN : SO
Data-Item: X

Defined in Chart: MAIN

e - X Y i t |Event: X
activity-chart Ci1 i ecl H c2 I——> D

Defined in Chart: ¢ l

Figure 13.9 Masking a textual element.

some chart 2, the name E cannot be used to define, say, a condition in
the same chart. It may be used, however, in some other (physical)
chart, to name an event, a condition, or any other textual element. As
for naming graphical elements, the name E can be used anywhere,
even in the chart A itself.

The possibility of using the same name for different elements is con-
venient and useful, especially in big projects when different teams use
the same names in different scopes. However, despite the presence of
rules for resolving references and detecting masking situations, this
option should be exercised with care, as it may cause confusion.

Special attention must be paid when the same element is used in
several charts to ensure that the different occurrences are resolved to
the same element. Because a textual element is visible only in the
descendants of its defining chart, an element should be defined in a
chart that is high enough in the hierarchy to be the common ancestor
of all charts within which the element is to be referenced. For exam-
ple, consider the event E in Fig. 13.10, which is generated in state S1.
If we want E to cause a transition in state S2, it must be defined in
the statechart S or in one of its ancestor charts, even if it is not used
there, because elements that are defined in S1 are not visible in S2,
and vice versa. When E is defined in S, both references to it in 1 and
S2 are resolved to the definition in S, and the two are therefore
understood to refer to the same element. This example should be con-
trasted with the case illustrated in Fig. 13.1, where we used the same
name Y in the two charts A and B for two different elements flowing
between subactivities. Because we want these elements to be distinct,
we should define them in separate entities in the Data Dictionary in
each of the two charts.

A textual element can be referred to in the same chart or in some
other chart by its name or synonym. We do not allow the format

Scope and Resolution of Elements 183

chart-name:element-name for textual elements because the chart
name would be either redundant (if the chart is the one containing the
resolution) or illegal (if another chart is referenced, thus referring to
an “invisible” element or one that is out of scope). For example, in Fig.
13.10 we are not allowed to replace the event E in the statechart S2 by
S1:E because, according to the visibility rules, elements defined in S1
are not visible in 52 . Note that this rule does not apply to testbenches,
where all elements of the model are visible.

13.4.3 More about resolution of textual
elements

Reference elements are always resolved to elements of the same type.
Thus if we were to define a condition named E, not an event, in the
statechart S of Fig. 13.10, the two references to E in S1 and S2 would
not be resolved to this condition because they are used as events.

If a textual element is referred to without having been defined
explicitly in the Data Dictionary and there is no corresponding ele-
ment in the ancestor charts, the element remains unresolved.
Typically, this happens in intermediate stages of the specification.
Sometimes the type of an unresolved element is not clear from its
usage. A good example is when an element appears as a label on a flow-
line, in which case it can be an event, a condition, a data-item, or an
information-flow. However, elements appearing in transition labels,
for example, have uniquely determined types, as do those appearing in
expressions that define other textual elements. (An exception is the
case of an action that can possibly turn out to be an event, such as E in
Fig. 13.10.)

Event: E

Defined in Chart: § statechart §
--------- " Is I
....... oo oo
statechart S1 statechart S2

s1 829} .
O——0| || O——O

Figure 13.10 Connecting elements from different charts.

184 Chapter Thirteen

Being unresolved does not prevent elements from being visible, and
hence from being used, in descendant charts. Thus elements from such
descendant charts can be resolved to unresolved elements. For exam-
ple, assume that in Fig. 13.1 we do not explicitly define the element X.
It will nevertheless be considered a reference element in the three
charts appearing in the figure. It will be unresolved in chart MAIN,
but in the other two charts it will be resolved to an unresolved element
X in MAIN. As in other cases, however, this kind of resolution will be
carried out only if the types of the elements match. For example, in
Fig. 13.11, E is not explicitly defined in chart MAIN, and therefore it is
an unresolved reference element. Judging only from its usage in
MAIN, it may be an information-flow, a condition, a data-item, or an
event, but in this case it is considered to be an event because it is used
as an event in the subchart s.

13.5 Giobal Definition Sets

The visibility rules imply that textual elements that have to be global
to the entire model should be defined in the root of the chart hierarchy,
which is the common ancestor of all charts in the model. The resolu-
tion scheme described earlier, which is based on the hierarchy of the
functional components, is compatible with the functional decomposi-
tion method. In this method, every accessed data variable—event, con-
dition, and data-item—is either local (i.e., it belongs to the functional
component) or is part of the external interface (i.e., it appears on a
flow-line and, as such, belongs to an ancestor functional component).
Textual elements that are employed as abbreviations (i.e., information-
flows and actions) are usually defined in the charts in which they
are used. Therefore, the only “real” global information that has to be

activity-chart MAIN

MAIN

statechart 8

g @

Figure 13.11 Compatible usage of textual elements.

Scope and Resolution of Elements 185

User-Defined Type: TIME

Defined in Chart/GDS: TIME_DEFS

Data-Type: record
Field Name: HOURS Field Type: integer min=0 max=23
Field Name: MINUTES Field Type: integer min=0 max=59
Field Name: SECONDS Field Type: integer min=0 max=59

Data-Item: MINUTE

Defined in Chart/GDS: TIME DEFS
Defined as: constant

Definition: 60

Data-Item: HOUR
Defined in Chart/GDS: TIME_DEFS
Defined as: constant

Definition: 3600

Figure 13.12 Elements defined in a global definition set.

shared throughout the entire model in an unstructured manner (and
can even be moved between models) is that of constant definitions and
user-defined types.

Our languages provide a special type of model component, the glob-
al definition set (GDS), for capturing such global definitions. This type
of component is part of the Data Dictionary, and it is similar in many
ways to a chart. There may be several GDSs in a model, each contain-
ing definitions of user-defined types as well as constant data-items and
conditions. Figure 13.12 shows several Data Dictionary entities that
belong to a GDS named TIME_DEFS. A GDS that contains definitions
related to time, as in this example, is relevant to many application
domains.

As mentioned, elements appearing in a GDS are visible in the entire
model. For example, a data-item definition in any chart of a model that
contains the GDS TIME_DEFS can be of type TIME. In particular, def-
initions in one GDS can use definitions in another GDS, but this
should not be done in a circular fashion.

There are no hierarchical relationships among the GDSs in a model
or between them and the charts of the model itself.

Global definition sets have a special role in the context of generic
charts, as will be seen in Chap. 14.

