Related Approaches

In the preceding chapters we described the STATEMATE approach for
modeling reactive systems. Other authors have also proposed methods
for this purpose. Some have been presented as modeling languages,
some as methodologies, and some as development standards. By and
large, they address the same development stages and the same kind of
systems that we do.

This chapter discusses a number of these methods. They are com-
pared to the STATEMATE approach, and when appropriate we show how
they can be used in conjunction with STATEMATE.

15.1 An Overview of Specification
Methods

In this chapter we review methods that deal with reactive systems and
cover the early stages of development, that is, specification and top-
level design. We should add that by methods we mean methodologies,
modeling languages, or standards.

A methodology is usually proposed together with a particular model-
ing language that matches its concepts. Similarly, modeling languages
are more fitting for use with some methodologies than with others.
The borderline between a methodology and a modeling language is
thus not clear, and people often do not distinguish between the two.
Our interest is mainly in methods that are heavily based on diagram-
matic modeling.

We also discuss development standards. Standards are used in orga-
nizations, and are often imposed on modelers and system developers.
In some sense they are similar to methodologies: They define processes
of development, the various steps these processes involve, and their
deliverables (such as special documents in predefined formats). Some
standards are strict and very well defined, but some are more flexible.

201

202 Chapter Fifteen

The flexible ones—unlike most methodologies—do not dictate any par-
ticular modeling language, although they may talk about the concepts
that should be dealt with when adhering to the standard and the
resulting elements and relationships that should be described during
the specification.

It is interesting to survey some of the highlights of methodologies for
reactive systems. Our purpose is to represent the trends, and not to
give a full history survey. Moreover, we concentrate only on methods
that we found meaningful in comparison with STATEMATE.

Two variations of modeling methods based on the Structured Analy-
sis paradigm (SA; see, for example, DeMarco 1978) were developed by
Ward and Mellor (1986) and by Hatley and Pirbhai (1987). These
authors added real-time provisions to the data-flow diagrams of the
basic SA approach. The resulting extensions are usually referred to as
RTSA methods (for real-time Structured Analysis).

A consolidation of these two methods into a new notation called
ESML (Extended Systems Modeling Language) has been proposed by
Bruyn et al. (1988). We discuss the Ward/Mellor and Hatley/Pirbhai
methods in Sec. 15.2.

Around the same time, several other methods were developed for
modeling reactive systems, taking a variety of approaches to the
description of concurrent processes and their communication. Some
examples are the Jackson System Development (JSD) method
(Jackson 1983; Cameron 1989), Alford’s Software Engineering
Requirement Methodology/Distributed Computer Design System
(SREM/DCDS) method (Alford 1985), and the CCITT Specification and
Description Language (SDL) (International Telecommunication Union
1995). The last of these, SDL, was developed mainly for telecommuni-
cation systems, and it has evolved over the years into an object-based
version. It is discussed in more detail in Sec. 15.4, which deals with
other object-based methods.

Since the late 1980s, there has been an increasing interest in object-
based and object-oriented techniques. This trend started in the pro-
gramming community with the advent of object-oriented programming
languages but has moved up to the earlier stages of specification and
design, too. This is a natural process, because people want to avoid dis-
continuity between early and later stages of system development and
to allow more natural traceability between them.

Several object-oriented methodologies and modeling languages have
been proposed in the last few years, and some are aimed at reactive
systems. We discuss three. The first is Real-time Object-Oriented
Modeling (ROOM), an executable modeling language supported by the
computerized tool ObjectTime (Selic et al. 1994). The second is Unified
Modeling Language (UML) (Rational 1997), a broad and general
approach, combining elements from the Booch method (Booch 1994),
the Object-Modeling Technique (OMT) (Rumbaugh et al. 1991), and

Related Approaches 203

scenario-like use-cases (Jacobson 1992), with Statecharts at its heart.
The third is a UML-consistent executable language set called XOM
(Executable Object Modeling), which was co-developed by one of us and
is supported by a computerized tool, Rhapsody (Harel and Gery 1997).

Many methods, including some of those already mentioned, are the
result of wide efforts, sometimes spanning a number of large compa-
nies. They were aimed at easing the task of developing complex sys-
tems in a particular industry or across several industries. For
example, the Embedded Computer Systems Analysis and Modeling
(ECSAM) methodology (Lavi and Winokur 1989) has been evolving
since the early 1980s to address the needs of the Israel Aircraft
Industries (IAI) in its system development projects. It uses the
STATEMATE languages for modeling.

During the past 20 years or so many standards have been written
and approved by various organizations, providing guidelines and cri-
teria to be used in system development activities. Some of these are
documented in Dorfman and Thayer (1990a). One of the best known
standards is the U.S. Department of Defense Military Standard 2167A
(Military Standard 1988) and its successor MIL-STD-498 (Military
Standard 1994). Like most other standards, DOD-STD-2167A does not
require the use of a particular modeling language. In Sec. 15.5 we
show how our languages can be used to apply this particular standard.

The remainder of this chapter is devoted to briefly describing the
aforementioned methods. We compare them with our own approach,
and when relevant show how they can be used in conjunction with
STATEMATE.

15.2 Methods Based on Structured
Analysis

In the early 1980s, two methods were proposed, extending the classi-
cal structured analysis of DeMarco (1978) with means for modeling
reactive, real-time systems, in the form of timing and control informa-
tion. The two approaches are very similar and have the same expres-
sive power. We shall concentrate on the parts of these methods that
address the functional and behavioral views as defined in this book.
Both methods contain portions that deal with the architecture of a sys-
tem, too, but as far as we know, these aspects are rarely used, and the
popular implementations of these methods do not cover them.

15.2.1 Ward and Mellor

The Ward/Mellor method was initiated by a group at Yourdon, Inc., prin-
cipally by P. Ward and S. Mellor, and was described in detail in their
1986 book (Ward and Mellor 1996). We base our discussion on that book,
concentrating on what the authors call the transformation schema.

204 Chapter Fifteen

The transformation schema contains diagrams based on the data-
flow diagrams of DeMarco (1978). The diagrams of Ward and Mellor
(1986) contain nodes for data transformations and for control trans-
formations connected by edges depicting different types of flows
between them. See Fig. 15.1a.

The control transformations are denoted by dashed circles. They
map input event flows into output event flows. Among these are
events whose effect is to enable, disable, or trigger a data transforma-
tion. The control transformations are described by state transition
diagrams or tables. See Fig. 15.15 for a state transition diagram
describing the control transformation in the transformation schema
of Fig. 15.1a.

A data transformation may be stated procedurally in pseudocode or
in any appropriate graphical or tabular language. The method also
allows nonprocedural specification of relationships between the inputs
and the outputs.

The notation for specifying data is a modified version of DeMarco’s.
Figure 15.2 presents the symbols used to define data compositions.

Ward and Mellor (1986) offer a way of executing the transformation
scheme, which is based on the description of the execution of the Petri
nets described by Peterson (1981).

e Current

Driver Honito Cruise Speed
Command | Control Select
— Cruigse

! Cruise :
C?r i Comtrol
Car Si gnal S V. \
Input ' Throttle
Value
Throttle
Value
(a
Accelerate l Cruise Control Reguest
enable Increase Speed trigger Select Speed
Mai i S
1dle Jdenable Maintain Speed
Stop Accelerate Brake
dilsable Increase Speed disable Maintain Spee
y Accelerate A 4

disable Maintain Speed
enable Increase Speed

(®)

Figure 15.1 Diagrams in Ward/Mellor notation. (a) Transformation schema.
(b) State transition diagram.

Accelerating Cruising

Related Approaches 205

Symbol Read as
= 1s composed of
+ together with
[...[...|...] select one of
m{... }n at least m but no more
than n iterations of

Figure 15.2 Data composition notation in the
Ward/Mellor method.

15.2.2 Hatley and Pirbhai

The development of the Hatley/Pirbhai method was started by D.
Hatley of Lear-Siegler, Inc., in collaboration with some engineers at
Boeing. The method is described in detail in Hatley and Pirbhai
(1987). Our discussion of the method is based on that book.

The Hatley/Pirbhai method prescribes that the system’s require-
ments be captured by two related models: the process model and the
control model.

The process model consists of a hierarchical structure of data-flow
diagrams, each of which consists of processes describing the functions
of the system, interconnected by data flows. A primitive process is
described by a process spec (PSPEC). PSPECs are usually written in
structured English, but they can also employ tables, diagrams, and
equations. Each data flow is specified in the requirement dictionary.

The control model uses control-flow diagrams (which are very simi-
lar to the data-flow diagrams of the process model) to show the flow of
control signals between the processes. Each nonprimitive process can
be described by a pair consisting of a data-flow diagram and a control-
flow diagram. The behavior of the process is described by control
specifications (CSPECs), which are represented by a bar on the control-
flow diagram, to show their input and output signals (their role is very
similar to that of control activities in our Activity-charts). See Fig.
15.3a. The control specifications themselves may be presented in sev-
eral ways: conventional state transition diagrams or tables, decision
tables that describe functions between discrete inputs and outputs, or
process activation tables that connect signal values with activation and
deactivation of processes in a specified order. Figure 15.3b shows a
process activation table.

Timing requirements can be added, too, specifying repetition rates of
output signals in the requirement dictionary and input-to-output
response times in tables or in timing diagrams.

The method does not include rigorous definitions of the languages
used in PSPECs and CSPECs or in the timing requirements. However,
the authors provide what they call balancing rules, which enable ver-
ification of a model’s consistency.

206 Chapter Fifteen

crui Current
ruise Select Speed
Control
"ahgequest Speed Desired
—Speed
Car
Sign
(a)
INPUT PROCESS
Mode Cruise Select Increase Maintain
Control HRgpeed Speed Speed
quf
Off 0 0 0
idle
on 1 0 0
Off 0 1 0
accelerating
On 0 1 0
Off 0 0 1
cruising
on 0 0 1

(b)

Figure 15.3 Components of the Hatley/Pirbhai notation. (@) Control-flow
diagram. (b) Process activation table.

15.2.3 Evaluation and comparison
with STATEMATE

The Ward/Mellor and Hatley/Pirbhai methods are quite similar and
have very similar expressive power. There are, however, some differ-
ences between them, especially with regard to the activation of pro-
cesses. Both methods allow the use of a variety of languages for
describing primitive processes, and both allow the use of different
kinds of grammars and tables for this purpose. To implement these
methods one must supply a rigorous syntax and semantics for what-
ever languages are used for this purpose.

As far as the relationship of these methods to ours is concerned, we
note that all components of their languages have equivalents in ours. As
both these methods use conventional state transition diagrams for con-
trol specification, they cannot take advantage of the features present in
Statecharts, especially hierarchy, concurrency, history, and timing.

A significant deficiency of Ward/Mellor and Hatley/Pirbhai is their
inability to deal with multiple similar components. There is no mech-

Related Approaches 207

anism to deal with instances of a generic component, a feature that is
essential for object-based modeling.

We refer the reader to the 1989 survey of Wood and Wood, which
compares and evaluates the three approaches: those of Ward/Mellor,
and of Hatley/Pirbhai, and ours (as well as a related forth one, ESML).
This survey is quite illuminating, and it emphasizes the differences
between the methods, particularly those relevant to modeling behav-
ior. Davis’ 1990 book contains interesting discussions and comparisons
of these and other modeling approaches, too.

15.3 ECSAM

The Embedded Computer Systems Analysis and Modeling (ECSAM)
methodology was developed at the Israel Aircraft Industries (IAI) for
the analysis and design of computer-based systems (Lavi and Winokur
1989; Lavi et al. 1992). The method has evolved since the early 1980s,
and it is used by several projects at the IAI. For modeling, it employs
the languages described in this book. Some of the features of the struc-
tural view and its connection with the functional view that were
described in Chaps. 9 and 10 were actually added to our languages to
support the special needs of the ECSAM method.

According to ECSAM, a system is specified by two models—the con-
ceptual model and the design model. Here we describe the conceptual
model only. It consists of the following three views: the logical mod-
ules view, the operating modes view, and the dynamic processes view.

The logical modules view describes the partitioning of the system
into logical subsystems (modules), the external information that flows
between the system and its environment, and the information that
flows between the subsystems. These are presented by module-charts,
as described in Chap. 9. The logical modules view also defines the
capabilities (activities) performed by each of the logical subsystems.
This is done by linking an activity-chart that describes the module to
each of the modules constituting the system, as explained in Sec. 10.2.
In Fig. 15.4 the module-chart SYSTEM contains the system’s logical
modules. The capabilities of the logical module M3 are described by the
activity-chart M3_ACTIVITIES.

The operating modes view describes the main operating modes of the
system and the transitions between them. This view is described by a
statechart that is linked to the control activity of the entire system. In
Fig. 15.4, the system’s modes are described in the statechart MODES,
which is connected to the control activity of the activity PROCESSES.

The dynamic processes view describes the behavioral processes that
occur in the system in its various operating modes. This view is pre-
sented by a set of activity-charts. One activity-chart, which describes
the system on the top level, details the processes (as activities) and con-
nects them by the throughout construct to the states representing the

208 Chapter Fifteen

module-chart describing statechart MODES

logical modules describing the

system’s modes

SYSTEM

] activfﬁ?hcl}”art
g describing the
g processes that
occur in the ;
... System’s modes

act_,i’:vity—chart deébgibing
the activities(capabilities)
off a logical module

M3_ACTIVITIES
i Al

that us
leogical modules

A2

A3

4

Figure 15.4 Relationships between ECSAM conceptual model components.

system modes (see Sec. 7.3.3). See the activity-chart PROCESSES in
Fig. 15.4.

Each of the processes is then described by an off-page activity-chart
containing the activities that constitute the process (e.g., see P2 in
Fig. 15.4). These activities are associated with the capabilities of the
logical modules by the is activity relation, as explained in Sec.
10.4. For example, in Fig. 15.4 the activity named M3>A1 is an occur-
rence of activity A1 in module M3 . The dynamics of the process is
described by its control activity using a statechart.

In addition to defining these three views, the ECSAM method outlines
roughly a dozen analysis steps that are to be applied to the system and
to each of its subsystems. These can be found in Lavi et al. (1992).

15.4 Methods Based on Objects

We now discuss some methods that involve object-oriented concepts,
such as abstract data types, object decomposition using class-instanti-
ation techniques, and inheritance.

15.4.1 SDL

There have been several versions of Specification and Description
Language (SDL) since its inception in 1976 as the Z.100 recommenda-
tion of CCITT. SDL was developed by the International Telecommunica-

Related Approaches 209

tion Union mainly for telecommunication systems. Our review here is
based on SDL-92 (International Telecommunication Union 1992), which
extends SDL-88 by adding means for object-oriented modeling.

SDL is a rich language. It offers two different syntactic forms: a
graphic representation (SDL/GR) and a textual phrase representation
(SDL/PR), which are equivalent and are based on the same abstract
grammar. The following example uses the graphical version.

A system in SDL is decomposed into blocks connected to each other
and to the environment by channels that convey signals. The blocks
are either further decomposed into other blocks or contain processes.
A process in SDL is a kind of state machine that communicates with
other processes or with the environment; processes are used to des-
cribe the behavior of the system.

A process, like any state machine, consists of states, in which it may
consume signals. The transition between states is a sequence of actions,
such as performing a task (assignment statement or informal text),
making a decision, causing the output of a signal, setting a timer, call-
ing a procedure, or creating an instance of a process type. See Fig. 15.5.

Arriving ,

‘floor
Goto Floor_re to be
(/*n*/) (/*dir,n*/) ‘no seryed’
. ‘update
‘continue’ P X
‘n=current reserva‘tlons
floox’ ¥ T
\ ’ ‘no’
thed open
vy ‘update - _door
ignore’ X
reservations r
close
_door
‘IHHHHHH%I"
‘more
floors’

A4

(sate > (E,)

Figure 15.5 A process in SDL.

210 Chapter Fifteen

There are several ways in SDL to make the specifications more com-
pact and easier to read. They include referenced definitions, macros,
and packages. In particular, ypes of components are defined in pack-
ages that can be used in different contexts (e.g., in Ada), wherever the
components are instantiated.

As a language, SDL is defined very rigorously. The recommendation
document is very detailed (International Telecommunications Union
1995). It gives a formal definition—semantics included—for each
entity and construct of the language. The processes—the dynamic
components of the specification—are executable, with well-defined
semantics.

As to the relationship to our languages, there are a many similari-
ties, due to the similar evolution of both. They both support function-
based and object-based decomposition. Their expressive power is quite
similar. SDL, like our languages (and unlike the methods based on
structured analysis, described in Sec. 5.2), has an instantiation mech-
anism, which is necessary in object-based modeling. SDL: went one
step further in support of object technology by including an inheri-
tance (type specialization) mechanism. In contrast, our approach was
to construct a separate language set and a separate tool specifically for
object-oriented modeling; see Sec. 15.4.4.

15.4.2 ROOM

The Real-Time Object-Oriented Modeling (ROOM) language and
methodology originated at the Telos Group at Bell-Northern Research
in the late 1980s (Selic et al. 1994). This group started the develop-
ment of the ObjectTime toolset, which supports the construction and
execution of ROOM models.

The ROOM language is based on an object paradigm in which a sys-
tem is viewed as a set of concurrently active objects, communicating by
message passing. ROOM refers to these objects as actors. Each actor is
an independent machine whose interface to its environment is defined
by ports. Actors exchange messages through these ports. Each port has
an associated protocol that restricts the type of messages that may
flow through the port. Actors can be organized into a structure by con-
necting their ports via channels that are called bindings. A ROOM
actor can itself be organized with an internal structure of component
actors. See Fig. 15.6.

The behavior of an actor can be described by an extended state
machine called a ROOMchart, which in the words of Selic et al. (1994)
was “inspired by the Statechart formalism.” Several features of
Statecharts are included in ROOMcharts, such as state hierarchy
(referred to as composite states), transitions exiting from the contain-
ing state (group transitions), condition connectors (choicepoints), and
history entrances. On the other hand, ROOMcharts do not have

Related Approaches 211

f=== ey
|y

operatorMessages specChangesj

) dyeValveMessages
-1 fSpecificationsé

parameters

drainValve:
] Messages [&4
~=fig dyeingRunController

i solutionOut

e levels
dyeingSolution [% DyeingSystem

Figure 15.6 An actor in a ROOM model.

orthogonality; that is, they do not admit the and-state feature, a deci-
sion that is explained in Appendix C of Selic et al. (1994).

ROOM incorporates a conventional programming language into
models (e.g., the ObjecTime implementation uses C++) to represent
actions and data structures in low-level detailed descriptions.

ROOM models are based on class definitions for actors, protocols,
and data objects. Class hierarchies are supported for each entity type,
with different inheritance rules.

ROOM’s concepts have a rigorous semantics, and its models are exe-
cutable. The supporting tool, ObjecTime, includes a compiler that
translates models into high-level source code that runs in a special
run-time environment.

An interesting recent development is the newly announced commer-
cial alliance between Rational Corporation (and their Rose toolset) and
ObjecTime. This might effectively cause the ROOM method and the
current ObjecTime tool to be dismissed and their development discon-
tinued in favor of a UML-based approach.

15.4.3 UML

Unified Modeling Language (UML) is a large-scale effort to unify
three of the many object-oriented methodologies that appeared in
the late 1980s. These are the so-called Booch method (Booch 1994),
the Object Modeling Technique (OMT) (Rumbaugh 1991), and
Object-Oriented Software Engineering (OOSE) (Jacobsen 1992). The
first two are general modeling methods that incorporate an object-
based structural model, with classes, object instances, relationships,
aggregation, inheritance, etc., and use variants of the Statecharts

212 Chapter Fifteen

language for modeling behavior. OOSE, on the other hand, is based
on use-cases.

The unifying effort resulting in UML began in 1994 and is organized
by Rational Corporation. It is led by the principal authors of the three
aforementioned methods, G. Booch, J. Rumbaugh, and I. Jacobson.
Many other people from several organizations participated in putting
UML together, especially in the more recent effort on version 1.1,
which was aimed at getting the earlier version 0.8 to be better defined.
These include the people responsible for the ROOM method and its
underlying tool ObjectTime (see Sec. 15.4.2) as well as the team
responsible for i-Logix’s object-oriented approach with its underlying
tool, Rhapsody (see Sec. 15.4.4) represented by Eran Gery from
I-Logix, Inc. and David Harel. UML version 1.1 was submitted as a
proposal to the Object Management Group (OMG) Analysis and
Design Task Force’s RFP-1 for adoption as a standard. A decision by
the OMG to adopt UML 1.1 as a standard was made in late 1997.

The UML involves many different kinds of diagrams. Use-case dia-
grams show the interaction of external entities with the system. These
diagrams present the functional requirements of the system; they are
similar in appearance to those in OOSE. Class diagrams are more or
less the standard object models from the Booch method, OMT, and sev-
eral other object-oriented methods. They show the collection of static
model elements, their contents, and relationships. Statechart diagrams
are based on the usual Statecharts, as defined here, with modifications
that cater to object orientation. Activity diagrams are behavioral
flow-chart-like diagrams. Sequence diagrams are a variant of MSCs
(message sequence charts) found in many object-oriented writings.
They show object interactions arranged in a time sequence. Col-
laboration diagrams also show object interactions, but they are orga-
nized around objects, and they show the relationships among them.

Detailed documents specifying the meta-model, notation, and seman-
tics of UML can be found by following the links in www.rational.com/uml/
(Rational 1997). It is worth mentioning that one of the basic premises of
UML is to leave many of the details vague enough to permit different
implementations. This means that one can expect any number of tools to
be built in the future, all claiming, correctly, to implement UML,
although there might be quite significant differences between them.

15.4.4 XOM and Rhapsody

The Rhapsody tool is the first executable implementation of the core of
the UML. It started out in the form of a carefully defined set of dia-
grammatic languages for modeling object-oriented systems with
Statecharts at its heart, called XOM (Executable Object Modeling); see
the conference version of Harel and Gery (1997). Joint work with the
UML team has resulted in modifications to both approaches, so that

Related Approaches 213

although the XOM language set of Harel and Gery (1997) does not cover
all aspects of UML, it is fully compatible with it. In fact, this language
set constitutes, in essence, the core executable portion of UML, and it
comes complete with a fully worked-out behavioral semantics.

The XOM approach is supported by Rhapsody, a tool that enables
model execution and full-code synthesis into object-oriented program-
ming languages such as C++. The philosophy driving the develop-
ment of Rhapsody is similar to the one that drove the development
of STATEMATE, except that Rhapsody is used exclusively for object-
oriented modeling, and it is intended more for software than for sys-
tems in general.

The XOM and Rhapsody approach involves two constructive model-
ing languages, object-model diagrams and Statecharts, and a reflective
language, message sequence charts (MSCs, also called sequence dia-
grams). A language is constructive if it contributes to the dynamic
semantics of the model. That is, its constructs contain information
needed in executing the model or in translating it into executable code.
Other languages are reflective and can be used by the system modeler
to capture parts of the thinking that go into building the model—
behavior included—or to derive and present views of the model to aid
in analysis and to check for consistency against the constructive parts
of the model. Object-model diagrams specify the structure of the sys-
tem by identifying classes of objects (i.e., object types) and their mul-
tiplicities, object relationships and roles, subtyping, and inheritance.
Especially noteworthy in object-model diagrams is the provision for
specifying composite objects, which capture a strong form of aggre-
gation; they are depicted by encapsulation, as in Activity-charts; see
Fig. 15.7.

The behavior of an object is specified by a statechart that is associ-
ated with its class; see Fig. 15.8. Statecharts employ two mechanisms
for interobject interaction, events and operations. An object can gen-
erate an event, which is queued, to be later consumed by the target
object’s statechart, and an object can also directly invoke an operation
of another object, thus causing its statechart to carry out an appropri-
ate method and perhaps return a value. One upshot of the hierarchi-
cal modeling of composite structure is that these interactions can be
arranged to take on the form of either direct communication or broad-
cast. Statecharts can also create and destroy object instances and can
delegate events to their components.

15.5 MIL-STD-498 (DOD-STD-2167A)

The system software development standard DOD-STD-2167A (Military
Standard 1988) was used for many years by the contractors who devel-
oped software for the U.S. Department of Defense. A few years ago it
was combined with the automated information system documentation

214 Chapter Fifteen

. _6l6
1 Terminal 1
* 1
Passenger 1? fStOPSAt Control-
- Center
1 Car 1
(a)
Terminal 1 r] ®
1 JPlatform- DestPanel
Manager
2
Car- Ent 2
Handler \\\\“\~\\\\\\\ o
0,1 1 2
Exit
\\ 1 1 T stopsAt
Car 1 1 *
Proximity- Cruiser
Sensor
1 1
Occupancy- DestPanel
Sensor

(b)

Figure 15.7 Object-model diagrams in a Rhapsody model. (a) High-
level object-model diagram for a rail car. (b) Detailed diagram for

composite objects.

//’;;r SetDest (term) /
stopAt->add(term)

new (term)
itsTerm=term;
itsCarhandler=

itsTerm-> .
assignCar (this) [stopsAt->isEmpty ()]

destSelected

operating [mode=stopl / —’///4153
o stopsAt->
{ } remove (itsTerm)
@arrival

alert100 (texrm)/
itsTerm=term

N

tm(90)

\

\\\\ifaction: destSelected (term) /stopsAt->add(term)

Figure 15.8 Statechart in a Rhapsody model.

Related Approaches 215

standard DOD-STD-7935A to form the military standard MIL-STD-
498 (Military Standard 1994). These standards detail the activities
included in the software development process and provide a set of data
item descriptions (DIDs), which form the requirements for document-
ing the development process.

Our languages, and hence the STATEMATE toolset, can be used to
accomplish many of the specification and design activities required by
these standards. The standards recommend using the DIDs as a
checklist of items to be covered in the planning or engineering activity
during the development and as a template for recording the results of
this activity. Here we show how the concepts and terminology used in
each DID of these standards map to the concepts and elements of our
languages.

When conceptualizing the operational aspects of the system, a DID
called the operational concept description (OCD) is used. The purpose
of this phase is to obtain consensus among the acquirer, the developer,
and the user on the operation of the system under development.
Activity-charts and statecharts are used to describe the behavior of the
system, and STATEMATE tools can be used to automatically generate a
prototype of it.

During the system requirements phase the system /subsystem specifi-
cation (SSS) and the interface requirements specification (IRS) are used.
In this phase, an activity-chart describing the entire system (which is a
module) is prepared, and the system capabilities are presented by the
activities contained in it. The external and internal interfaces are rep-
resented by the flow-lines and their labeling data elements. These ele-
ments, in turn, are characterized in the Data Dictionary according to
the requirements appearing in the DIDs. The system’s states and
modes, with their hierarchy, are described by a statechart, which is
linked to the control activity of the top-level activity of the system.

During the system design phase the system/subsystem design
description (SSDD) and the interface design description (IDD) are used.
In this phase, the system components, which are the computer software
configuration items (CSCIs) and hardware configuration items
(HWClIs), are identified by a hierarchical module-chart, in which each
component is represented by a module. The interfaces between the sys-
tem components are described by the flow-lines between the modules.
Each interface entity is a data element (information-flow, data-item,
condition, or event) defined with all the required characteristics in the
Data Dictionary.

During the software requirements phase the software requirements
specification (SRS) and the interface requirements specification (IRS)
are used. In this phase, a computer software configuration item (CSCI)
is specified by an activity-chart whose activities present the CSCI’s
capabilities. The external and internal interfaces are described by the

216 Chapter Fifteen

TABLE 15.1 Mapping of MIL-STD-498 Documents to STATEMATE Concepts

Development Applicable Modeling Constructs in the
Phase IDDs STATEMATE Languages
System requirements OCD Activity-charts and statecharts describing the
analysis system behavior
SSS Activity-chart and Data Dictionary describing
IRS the system capabilities and external interfaces.
Statechart describing the system modes.
System design SSDD Module-chart and Data Dictionary describing
IDD the CSCIs and HWClIs, and the interface data
elements between these components
Software requirements SRS Activity-charts and Data Dictionary describing
analysis IRS the CSCI’s capabilities and the internal and
external data elements
Software design SDD Module-charts and Data Dictionary describing
IDD - the CSCI’s components (software units) and the

interface data elements

flow-lines in this activity-chart, labeled by data elements that are
defined in the Data Dictionary.

During the software (top-level) design phase the sofiware design
description (SDD) is used. In this phase, a CSCI is described by a mod-
ule-chart. The CSCI components (software units) are defined as mod-
ules, which may be arranged in a hierarchy. The interface between
these units is described by flow-lines between the modules labeled
with the corresponding interface entities, accompanied by definitions
in the Data Dictionary.

Table 15.1 presents STATEMATE modeling constructs that are used in
each development phase according the standard.

An important facet of this connection between the military stan-
dard and the STATEMATE modeling languages is the fact that the same
model can be used for all the development phases, with each phase
refining the model and adding new parts. This assures good trace-
ability between the phases, and makes it possible to document the
traceability information together with the other specification details.

The STATEMATE system contains tools that support the production of
the documents required by MIL-STD-498. Using these tools ensures
that the documents are consistent. A description of this capability
exists in the STATEMATE documentation provided by I-Logix.

