Chapter

The Functional View
Activity-Charts

This chapter deals with the language of Activity-charts, which is used
to depict the functional view of the system under development. We
describe how the functionality of a system is specified by a hierarchy
of functional components, called activities, what kind of information
is exchanged between these activities and manipulated by them, how
this information flows, how it is stored, and so on.

Many of the concepts and notions represented in this view are quite well
known, and are not specific to our approach. They are used in other nota-
tions and methods, perhaps with small variations. In fact, activity-charts
can be viewed as a variant of hierarchical data flow diagrams, but they
embody many enhancements and use some special terms and notations.

2.1 Functional Description of a System

The functional description of a system specifies the system’s capabili-
ties. It details the functional components, or activities, that the system
is capable of carrying out and how these components communicate
through the flow of information among them. It does so in the context
of the system’s environment, that is, it defines the environment with
which the system interacts and the interface between the two.

The functional view does not address the physical and implementa-
tional aspects of the system. As for the dynamic and behavioral
issues, it attempts to separate them from the functional description
whenever possible, but, as we shall see, there is a close relationship
between functionality and behavior. For example, the functional view
is appropriate for telling whether a medical diagnosis system can
monitor a patient’s blood pressure and, if so, where it would get its
input data and which functions would have access to the output data.

19

20 Chapter Two

However, to deal with such issues as the conditions under which the
monitoring is started and the question of whether it can be carried out
parallel to temperature monitoring, the behavioral view must be con-
sidered as well as its connections with the functional view. These cru-
cial parts of modeling the system are described in Chaps. 4 to 8.

The structural view, which deals with sensors, processors, monitors,
software modules, and so on, is described in Chaps. 9 and 10.

2.1.1 Functional decomposition

The main method for describing the functionality of a system in our
approach is that of functional decomposition, by which the system is
viewed as a collection of interconnected functional components (or
activities, as they are called in our terminology), organized into a hier-
archy. Thus, each of the activities may be decomposed into its subac-
tivities repeatedly until the system has been specified in terms of basic
activities, which are those that the specifiers have decided require no
further decomposition. Basic activities are specified using alternative
means, such as textual description, formal or informal, or code in a pro-
gramming language. The intended meaning of the functional decompo-
sition is that the capabilities of the parent activity are distributed
between its subactivities. The order in which these subactivities are
performed and the conditions that cause their activation or deactiva-
tion are not explicitly represented in the functional view and are usu-
ally specified in the behavioral view, as discussed in later chapters.

Note that the term functional decomposition is usually identified
with the Structured Analysis methodology (DeMarco 1978), in which
the functional components of a system are functions in the mathemat-
ical sense of the word. Here, we use this term in a broader meaning,
where the main idea is to decompose the functionality of the entire
system into activities, the functional components, which may very well
be reactive in nature and which together capture the whole picture.

The activities themselves can represent different concepts used in
conventional modeling techniques. They can be objects, processes,
functions, use cases, logical machines, or any other kind of functionally
distinct entity.

Which one is selected depends on the modeler’s preference, but it is
recommended to try to stick with a common type of functional com-
ponent, based on a single conceptual approach or methodology. To
some extent, this selection dictates the nature of the interface and
communication between the activities as well as some of the behav-
ioral aspects.

In the following subsections we discuss two types of decomposition:
function-based decomposition, in which the activities are system func-
tions and object-based decomposition, in which they are objects. Both
styles are illustrated by the EWS example of Chap. 1.

The Functional View: Activity-Charts 21

2.1.2 Function-based decomposition

In function-based decomposition, the activities are (possibly reactive)
functions. To illustrate it, we consider the EWS example. We start with
a narrative that describes its functionality and reorganize it into the
following list of requirements:

s The EWS receives a signal from an external sensor.

s It samples and processes the signal continuously, producing some
result.

It checks whether the value of the result is within a specified range
that is set by the operator.

e If the value is out of range, the system issues a warning message on
the operator display and posts an alarm.

e If the operator does not respond within a given time interval, the
- system prints a fault message on a printing facility and stops moni-
toring the signal.

As the first step of our functional description of the EWS, we identify
the various functions that are called for by these textual requirements:

SET_UP Receives the range limits from the operator.

PROCESS_SIGNAL Reads the “raw” signal from the sensor and performs some
processing to yield a value that is to be compared to the range

limits.

COMPARE Compares the value of the processed signal with the range
limits.

DISPLAY_FAULT Issues a warning message on the operator display and posts
an alarm.

PRINT_FAULT Prints a fault message on the printing facility.

Notice that the description of the activities also contains information
about the data they handle. An activity may transform its input
information into output information to be consumed by other func-
tions that can be either internal or external to the system. For exam-
ple, the activity PROCESS_SIGNAL transforms its input, the raw
signal, into a value that is checked by the COMPARE function. (The
signal processing can be a simple conversion of an analog signal into
a digital representation at a fixed rate. Of course, it could also be a
more complex transformation, such as computing the average value
over some time interval.)

In the function-based decomposition approach the interface of
an activity is described in terms of input and output signals, both
data and control. Also, the model will usually present the source
activity of input information and the target activity of output in-
formation.

22 Chapter Two

2.1.3 Object-based decomposition

In an object-based approach, the decomposition is defined by the entities
on which operations are performed or, alternatively, is based on the
active agents, or the active components, of the system (these are called
logical machines in the ROOM methodology; see Selic et al. 1994). In our
approach, the interface between objects consists of the events and mes-
sages that cause the internal operations to take place and sometimes the
data that is used in these operations, just as in function-based decompo-
sition. This is somewhat different from object-oriented design (OOD) par-
adigms, in which an object’s interface consists of its operations.

To illustrate, we decompose the functionality of the EWS system into
the following components, using encapsulation guidelines that are often
presented in object-oriented methods. When applicable, a component is
characterized by its subject and associated operations:

SIGNAL_PROCESSOR Handles the signal from the sensor. It reads the signal,
processes the read value, and checks the processed signal
against the legal range.

FAULT_HANDLER Consists of all functionality related to fault situations. It
handles a fault occurrence by issuing the alarm, printing
the fault report, and resetting the fault situation.

RANGE Handles the range limits against which the processed sig-
nal is compared. It reads the range limits provided by the
operator, validates the read values, stores the current legal
range, and makes its values and status available to the
other objects.

MMI_HANDLER Takes care of all interaction with the operator (i.e., the human-
machine interface). It accepts commands and data from the
operator and displays messages and other information.

CONTROLLER Controls the behavior of the entire system.

This decomposition is not overly detailed, and some of the compo-
nents can be further decomposed into lower-level objects that help
them accomplish their goals.

2.1.4 System context

One of the first decisions that should be made when developing a sys-
tem involves its boundaries, or context. We must determine which enti-
ties are part of the system’s environment—these can be other systems,
functions, or objects (depending on the decomposition approach)—and
how they communicate with the system itself.

In both approaches to the preceding EWS description some of the
inputs come from outside the system and some of the outputs are sent
outside. For example, in the function-based decomposition, the raw
signal consumed by PROCESS_SIGNAL comes from the SENSOR, which
is not part of the specified system but belongs to the environment.
Similarly, the printed message produced by PRINT_FAULT is sent to
the OPERATOR, which is also external to the EWS. In the object-based

The Functional View: Activity-Charts 23

decomposition, the interaction with the environment is handled by
the MMI_HANDLER that interfaces with the OPERATOR, and by the
SIGNAL_PROCESSOR that reads the signal from the SENSOR.

As a result, we may now decide that the EWS’s environment consists
of two external entities, or systems: the (presumably human) OPERA-
TOR and the SENSOR (see Fig. 2.1).

The system context is sometimes given as part of the requirements,
before the beginning of the specification process. However, it is often
the responsibility of whoever carries out the functional description to
determine the best way to set up the system boundaries.

For example, we could have defined the specification boundaries of
the EWS differently because they were not given as part of the tex-
tual description, removing the printing facility from the system itself
and turning it into an external entity.

2.1.5 The decomposition process

Some specification methodologies that are based on functional decom-
position provide guidelines for how the subfunctions ought to be defined
and the order in which the functional description should be prepared.
According to one of these methodologies, the analyst should start by
describing the system’s context, that is, the environment entities and
the information flowing between them and the system itself. The
process is then continued in a top-down manner, proceeding from the
description of the entire system, to the description of its subfunctions, to
their subfunctions, etc. Alternatively, a bottom-up approach may be
adopted, whereby the basic, lowest-level functions are specified first and
used as building blocks to construct higher-level functions. We shall not
address such methodological issues of order and process here but con-
centrate on the way the concepts relevant to the functional view of spec-
ification can be expressed in our languages.

OPERATOR OPERATOR

EWS alarm
D
commands & data >
(messages

b B
printed reports
B

signal
SENSOR

Figure 2.1 The context of the EWS.

24 Chapter Two

The functional view is specified in our approach by Activity-charts,
together with a Data Dictionary that may contain additional information
about the elements appearing in the charts. The following sections
describe the details of the Activity-charts language. Almost all our exam-
ples will use function-based decomposition, although the same language
constructs can be used for other approaches, such as the object-based one.

2.2 Activities and Their Representation
2.2.1 The hierarchy of activities

The activities in an activity-chart are depicted as rectangular or recti-
linear solid-line boxes, and the subactivity relationship is depicted by
box encapsulation. An activity’s name appears inside its box. Figure
2.2 shows one level of the decomposition of the EWS system.

The overall activity of the system has been named EWS_ACTIVI-
TIES. In function-based decomposition, it is useful to use verbs for
names of activities, with or without a qualifying noun, as we have done
for the subactivities in Fig. 2.2. This helps convey the purpose of the
functions the activities perform. In other decomposition approaches,
some other naming policy may be more appropriate. In any case,
names must follow the rules of legal element name, that is, they start
with an alphabetic character, and consist of alphanumeric characters
and underscores. See App. A.1.

We may further decompose subactivities into subsubactivities on
lower levels, and the new activities may be drawn inside their parent
activities in the same chart. See Fig. 2.3, in which SET_UP is decom-
posed into three subsubactivities. We use the terms descendants and
ancestors to denote subactivities and parent activities, respectively, on
any level of nesting. Activities that have no descendants are termed
basic, while those that do are called nonbasic. Two activities with a
common parent may not have the same name, but subactivities of dif-
ferent parents may be named identically.

EWS_ACTIVITIES

SET_UP DISPLAY
FAULT

PROCESS_ COMPARE PRINT_

SIGNAL FAULT

Figure 2.2 First-level decomposition of an activity.

The Functional View: Activity-Charts 25

EWS_ACTIVITIES
SET UP
PROMPT_ VALIDATE_
RANGE RANGE
DISPLAY DISPLAY
SU_ERROR FAULT
PROCESS_ COMPARE PRINT
SIGNAL FAULT

Figure 2.3 Multi-level decomposition of an activity.

All the activities appearing in the preceding examples are referred to
as internal regular activities, to distinguish them from other types of
activities participating in the functional description, which are dis-
cussed later.

Like many of the elements in our languages, some of the information
related to activities is represented nongraphically. Each activity has a
corresponding item in the Data Dictionary, which may contain addi-
tional information about it, such as textual descriptions, attributes,
and relationships with other elements. Parts of the activity’s Data
Dictionary item are used to complete the description of its functional-
ity, as discussed in Sec. 2.4.

2.2.2 The context of an activity

The functional description of a system may consist of multiple activity-
charts linked together. Each such chart focuses on a portion of the
system’s functionality. It may describe the functionality of the entire sys-
tem or that of some of its subsystems, or it may concentrate on some
specific capability, object, or process being defined as a functional com-
ponent in the higher-level decomposition. In each case, it is important
to delineate the borders of the described portion, separating it from its
environment, and to represent the flow of information between the two.

Each activity-chart contains one top-level box, with solid-line edges.
This box represents the top-level activity of the chart, and its border-
line separates this activity (and its internal description) from its envi-
ronment. The components that constitute the environment are always
referred to as external activities of the considered chart, although they
may correspond to physical modules, humans, or activities or data-
stores that are internal to other activity-charts in the overall model. Of
course, they may also be real environment entities, external to the

26 Chapter Two

entire system under description. This issue will become clearer in
later chapters, where the relations between charts in a full model are
described.

External activities are depicted as boxes with dashed-line edges,
which are located outside the top-level activity. They have the same
names as the modules, the humans, the other activities (external,
internal or control), or the data-stores that they represent in other
parts of the specification.

For example, the environment of the EWS, as presented in Fig. 2.1,
consists of two components, the OPERATOR and the SENSOR. They are
drawn as external activities in the activity-chart of Fig. 2.5 that
describes the overall functionality of the EWS.

Several external boxes in an activity-chart may bear the same name,
in which case they are considered as representing the same external
activity and are merely duplicated to help keep the chart uncluttered.
Thus, for example, a flow-line (see Sec. 2.3.1) that represents the flow
of information between an internal activity and an external one can be
drawn to connect to the closest occurrence of the latter activity. When
the identity of a particular external component is unknown or is irrel-
evant, it may be represented by an unnamed external activity box.

External activities are beyond the scope of the chart and are there-
fore not decomposed further into subactivities. Later we shall see that
representing information flow between them is not allowed either.

2.3 Flow of Information between
Activities

2.3.1 Flow-lines

To complete the functional view of the system, we complement the
description of the activities themselves with the identification of inputs
and outputs and the flow of information among subactivities.

We use the word flow to capture the communication and the transfer
of information between activities. This flow of information can serve as
a means not only to transfer data but to post commands and to syn-
chronize by exchanging control signals. As in data-flow diagrams, we
use labeled arrows for the visual representation of this flow. We refer
to these connections as a-flow-lines (for activity-chart flow-lines), or
just flow-lines for short.

The label on a flow-line denotes either a single information element
that flows along the line (i.e., a data-item, a condition, or an event) or
a group of such elements. We call a grouping of several information
elements an information-flow. The flowing elements are used to spec-
ify communication according to the general specification approach that
is adopted by the modeler. In particular, in the functional decomposi-
tion method they correspond to data and control flow.

The Functional View: Activity-Charts 27

A flow-line originates from its source activity, which is the activity
that produces the information elements described in the flow-line’s
label, and it leads to its target activity, which is the one that consumes
those elements. The communicating activities may belong to different
levels in a multilevel activity-chart (see Fig. 2.4), but both cannot be
external.

Referring to Fig. 2.4, we say that v flows from Al to B1, and U flows
from Al to A2. We also say that Y is an output of A and an input of B
because the flow-line labeled with Y exits A and enters B, crossing
their respective borderlines.

One of the graphical features present in all of our languages is that
an arrow can be connected to a nonbasic box. In general, this means
that the arrow is relevant to all the subboxes contained within the box
in question. (See the discussion of this feature in the general setting of
higraphs in Harel 1988.) In Activity-charts, this feature can take the
form of a flow-line that leads to the edge of a nonbasic activity A but
does not cross it. The arrow is taken to represent flow of information
to all 2’s descendants. For example, the signal Z in Fig. 2.4 is accessi-
ble to both 21 and A2. Similarly, an arrow departing from the border-
line of a nonbasic activity denotes the possibility that the corresponding
information is produced by any of the descendant activities. For exam-
ple, the arrow on the right-hand side of Fig. 2.4, emanating from B and
labeled by v, can represent a global variable that is modified by the two
activities B1 and B2, but it is used only by B2. Note that this conven-
tion enables us to replace several flow-lines from or to subactivities by
one arrow from or to the parent, thus better representing the modeled
flow. We also use this convention in cases where most of the subactivi-
ties consume or produce the information, but we do not want to specify
exactly which ones they are. :

Two types of flow-lines are allowed in Activity-charts: data flow-
lines, drawn as solid arrows, and control flow-lines, drawn as dashed
arrows. Typically, control flow-lines carry information or signals that
are used in making control decisions (e.g., commands or synchroniza-
tion messages) while data flow-lines carry information that is used in
computations and data-processing operations. The different line types

a1 X Bl

[v a2 z B2

A4

Figure 2.4 Flow of information among levels.

28 Chapter Two

are intended to make this distinction visually. There are no clear cri-
teria for deciding whether the flow of a given information element
should be represented by a control flow-line or a data flow-line, but
very often the source or target of a control flow-line will be the control
activity that makes control decisions, as described in the next section.

Looking ahead to Fig. 2.5 for a moment, we see an illustration of the
interface of the activity EWS_ACTIVITIES with its environment, and
the flow of information between its subactivities. The figure illustrates
both data and control flow-lines. The SIGNAL flowing along the data
flow-line from the SENSOR to PROCESS_SIGNAL is used in data pro-
cessing, while the OPERATOR’s COMMANDS, flowing along the control
flow-line, are used to decide control issues, such as which activities
will be activated.

As hinted before, flow-lines in an activity-chart do not, by them-
selves, represent any specific method of transferring the information
between the activities they connect, nor do they enforce or imply any
timing specifications. Flow-lines may represent a variety of means for
information transfer, such as parameter passing to procedures or
global variables in software programs, messages transferred along
transmission lines in distributed systems or through queues between
tasks in real-time software applications, as well as signals flowing
along physical links in hardware systems. They can also be used to
represent the flow of tangible matter or energy.

The flow itself can be continuous or discrete in time, and the target
and source activities are not necessarily active at the time of writing
or reading the transferred data. Only an event appearing on a flow-
line implies some timing constraints, because it is an information ele-
ment with a specific time-related behavior. A special kind of element

EWS_ACTIVITIES

COMMANDS
: Pl EWS CONTROL
SENSOR_CONNECTED > -
Nms s e e

Iy
OUT_OF_RANGE

RANGE_ [ggp yp ALARM_
. . LINITS [orserar_ NOTIFICTION
OPERATOR | ser_oe wsas T FAULT $
N LEGAL_ OUT_OF RANGE_DATA| | OPERATOR
RANGE -7 -

PROCESS_ COMPARE PRINT
SIGNAL e FAULT FAULT REPORT

OUT_OF_RANGE_DATA

SIGNAL

SENSOR

Figure 25 EWS_ACTIVITIES, its environment, and flow of information.

The Functional View: Activity-Charts 29

that is discussed later on, called a data-store, can be used to depict
the presence of persistent data for lengthy periods, but a regular flow-
line can serve the same purpose. Nevertheless, we emphasize that
the dynamic aspects of the actual data transfer are not described in the
activity-chart but in the statecharts or minispecs associated with
the relevant activities, as explained in Chap. 8.

2.3.2 Flowing elements

We have already said that the information that flows between activi-
ties and is processed by them is an essential component of the func-
tional view of a system. Three types of information elements may flow
between activities: events, conditions, and data-items. The differences
are in their domains of values and their timing characteristics. Any of
them can appear as the label of a flow-line.

Events are instantaneous signals used for synchronization purposes.
They indicate that something has happened. In the EWS example, the
activity COMPARE issues the event OUT_OF_RANGE to indicate that
the tested value has been determined to be out of the expected range.

Conditions are persistent signals that may be either true or false.
For example, the OPERATOR in the EWS model sets the condition sig-
nal SENSOR_CONNECTED, whose truth value indicates whether or not
the SENSOR is connected to the system—an essential prerequisite to
activating the signal processing.

Data-items may hold values of various types and structures, like
variables in programming languages. They can be of basic types, such
as integer, real, bit, string, and so on, or of grouped types, such as
records or unions. They can also be arrays or queues. In the EWS,
the SIGNAL that comes from the SENSOR to be processed by the
PROCESS_ SIGNAL activity is of a numeric type (integer or real), while
the LEGAL_RANGE, to which the processed value is compared, is a
record consisting of two numeric fields: HIGH_LIMIT and LOW_LIMIT.

Figure 2.5 illustrates how these elements appear in the activity-chart
labeling the flow-lines. The top-level activity, EWS_ACTIVITIES, is
surrounded by external activities, and the figure represents both the
interface with the environment and the internal flow of informa-
tion. Among other subactivities of EWS_ACTIVITIES, the figure shows
the activity EWS_CONTROL, which is a special type of activity—a con-
trol activity—that will be discussed in Sec. 2.4.1.

All three types of information elements—events, conditions, and
data-items—can be organized in an array structure. The flow of infor-
mation between activities can consist of an entire array, denoted by
its name, with no indexing notation. When an activity deals with indi-
vidual components of an array we can label the flow-line with the
component identification. A typical case is shown in Fig. 2.6, in which
each of three similar activities, A1, A2, and A3, takes care of one

30 Chapter Two

component of an array V, and produces a corresponding component
of an array w. Similarly, a flow-line can be labeled by a portion of
an array, such asv(1..8), or by a record or a union component, such
as R.X.

Information elements do not just appear along flow-lines. Their
main use is in behavioral description. Using the Data Dictionary, one
can define an information element that depends on the status or val-
ues of other elements. For example, we may define an event whose
occurrence depends on the occurrence of other events, or a data-item
whose value is expressed by values of other data-items. Information
elements that have been defined in such a way cannot be used as
labels on flow-lines.

We shall discuss the information elements in more detail in Chaps.
3 and 5.

2.3.3 Information-flows

The number of flow-lines in an activity-chart can be reduced by group-
ing information elements into an information-flow, which is used to
label a common flow-line, thus helping a viewer to better comprehend
the specification. The contents of the information-flow are defined in
the Data Dictionary, associated with the name of the information-flow,
as illustrated in Fig. 2.7. In the figure, the information-flow com-
MANDS, labeling a flow-line from OPERATOR to the control activity, is a
compact representation of three separate flow-lines, each of which is
labeled by an individual component event. Using the three commands,
SET_UP, EXECUTE, and RESET, the OPERATOR controls the operation
of the EWS.

We should emphasize that because an information-flow is merely
an abbreviation of several flow-lines, the elements it contains do not
necessarily flow together. Also, an information-flow may be further
decomposed into other information-flows or into concrete infor-
mation elements (data-items, conditions, events, or array or record
components).

Figure 2.6 Array components labeling flow-lines.

The Functional View: Activity-Charts 31

Information-Flow: COMMANDS
Defined in Chart: EARLY__WARNING_SYSTEM
Consists of: =~ SET UP

EXECUTE

RESET

Figure 2.7 Information-flow COMMANDS in Data
Dictionary.

Another way of using the information-flow feature is to consider it
as the name of a link (or interface) between activities. This idea may
be used as follows: at an initial stage, before getting into more detail,
we can connect activity A1 to activity A2 by a flow-line labeled with
some noncommitting information-flow, such as A1_TO_A2. The con-
tents of this line may then become increasingly more concrete, by fill-
ing in more of its contents in the corresponding information-flow item
in the Data Dictionary. Clearly, this can be carried out repeatedly for
nested information-flows. In any case, we expect the contents of all
information-flows to be eventually specified in full.

2.3.4 Data-stores

As mentioned earlier, there are no restrictions on the time that data
reside on a flow-line. Data produced by the source activity are available
to the target activity even when the source activity is no longer active.
In this sense, a flow-line may be viewed as a kind of storage unit.
Nevertheless, it is often more natural to incorporate an explicit data-
store in the chart, which serves to represent information that is stored
for later use. In addition, a data-store may be used to specify the aggre-
gation of large volumes of data that accumulate continuously over time.
Data-stores can be used to describe a buffer in computer memory, a
message queue, a file on a disk, a database, or even a single variable.
In object-based decomposition, a data-store can be used to encapsulate
the object data. ,

Information is written into the data-store by one or more activities
and can be read by other (possibly the same) activities. Thus, the data-
store can be viewed as a “passive” activity, that is, one that does not
change or produce information.

Data-stores are drawn as rectangular boxes with dashed vertical
edges. The name of a data-store may be any legal name (see App. A.1),
but it must be unique among its sibling activities and data-stores.

Data-stores are always basic; they cannot contain other data-stores
or activities. The internal structure of a data-store may be defined by
associating it with a data-item. To do this, a data-item is defined in the

32 Chapter Two

Data Dictionary with the same name as the data-store. Any structure
then given to this data-item is inherited by the data-store. For exam-
ple, to specify that the data-store Q is a queue containing records of a
certain type, say, MESSAGE, one defines the data-item Q in the Data
Dictionary as a queue of the user-defined type MESSAGE, the structure
of which is described separately.

In the EWS example, we might want to show that the record
LEGAL_RANGE, composed of HIGH_LIMIT and LOW_LIMIT, is stored
in a data-store by the SET_UP activity and consumed by COMPARE. To
represent this, the flow-line labeled LEGAL_RANGE in Fig. 2.5 is
replaced by a data-store LEGAL_RANGE that contains the appropriate
record, and it is then connected to the source and target activities. The
appropriate part of the resulting diagram is presented in Fig. 2.8.
LEGAL_RANGE is defined as a record data-item in the Data Dictionary,
as shown in Sec. 3.4.2.

Notice that the lines flowing to and from the data-store
LEGAL_RANGE are not labeled. This is because we can name the data-
store with the same name as the data-item flowing to or from it, in
which case the labels on the corresponding flow-lines can be omitted.
However, in general, a data-store’s inputs and outputs can be any
information elements, even when there is a data-item matched (by
name) to this data-store. Data-stores can also store control elements
to be used for control decisions, so control flow-lines can flow to and
from data-stores, too. Nevertheless, it is meaningless to have an
event, which is of transient nature, stored in or flowing to or from a
data-store.

Data-stores cannot be drawn as part of the activity-chart’s environ-
ment. The components of the environment are always drawn as exter-
nal activities even when their functionality is that of storage.

Textual descriptions of data-stores, and the relationships they may
have with other elements, are entered in the Data Dictionary.

SET_UP LEGAL _

RANGE

v

COMPARE

Figure 2.8 Data-store containing LEGAL_RANGE data.

The Functional View: Activity-Charts 33

2.4 Describing the Behavioral
Functionality of Activities

We have seen that the functionality of the system is described by
decomposing activities into subactivities and data-stores, and identi-
fying the information that flows between them. This can be done
repeatedly, until basic activities are reached, but it is not enough to
present the full picture.

For nonbasic activities, which are decomposed into subactivities, we
must provide information about the behavioral dynamics of the decom-
position. In the methodology of Hatley and Pirbhai (1987) this issue is
covered by what they call process activation tables. Other approaches
deal with this differently. In our approach, we use the control activi-
ties for this (and more), as will be seen shortly. Basic activities are
described by other means, which are specified via the Data Dictionary
entry associated with the activity.

Describing the behavior of activities in our approach is a broad sub-
ject, and it is discussed in many of the later chapters. The present sec-
tion should be viewed as an introduction.

2.4.1 Control activities

In many systems, the activities at each level of the functional decom-
position perform their functions in a simple fashion. Some are contin-
uously active, consuming their inputs and producing their outputs
periodically. Others become active when their inputs arrive and stop
when they have produced the outputs corresponding to these inputs.
Sometimes, the behavior of activities follows more intricate patterns.

We address these aspects by introducing special control activities,
which are drawn as subactivities of regular internal activities and
whose function is to control their sibling activities. For example, as we
shall see in Chap. 7, a control activity may explicitly start and stop its
sibling activities. In the EWS model, EWS_CONTROL is responsible for
determining the activation and deactivation of all the activities on the
same level, that is, SET_UP, PROCESS_SIGNAL, COMPARE, and so on.
(See Fig. 2.9.)

The control activity will typically receive signals from the siblings it
controls or from other sources, make decisions based on them, and
then, in turn, start and stop the activities it controls and produce sig-
nals that are consumed by its environment. In our example, the con-
trol activity EWS_CONTROL receives and reacts to the commands of the
OPERATOR and to the OUT_OF_RANGE event generated by the COMPARE
activity. (See Fig. 2.5.)

The control activity is depicted as a rectangle with rounded cor-
ners, and it cannot have subactivities. Rather, its specification is
described in the language of Statecharts, the graphical language for

34 Chapter Two

EWS_ACTIVITIES

SET_UP EWS_CONTROL DISPLAY
FAULT

PROCESS_ COMPARE PRINT

SIGNAL FAULT

Figure 2.9 A control activity in an activity-chart.

modeling behavior. The control activity points to the statechart
describing its behavior through its name, as explained in Chap. 7.
The Statecharts language is described in Chap. 4, and the way a state-
chart controls the behavior of activities is discussed in Chap. 7.

Each activity may have at most one control activity. When an activ-
ity requires no further decomposition and its behavior can be conve-
niently described by a statechart alone, the control activity is its only
subactivity. This situation is common in certain highly reactive sys-
tems. Like other elements, the control activity has an associated item
in the Data Dictionary.

2.4.2 Activities in the Data Dictionary

As mentioned earlier, almost every element in our models has a corre-
sponding entry in the Data Dictionary, in which various kinds of tex-
tual information about the element can be specified. Such additional
information can be formal (i.e., possessing some semantics that is rel-
evant to the model and its behavior) or informal. Some kinds of textual
information are relevant to all types of elements, such as a one-line
short description and an unlimited textual long description. These nar-
rative additions, especially the long description, can be used to provide
information about the element in an informal language, for the record.
In addition, the general mechanism of an attribute pair, name and val-
ue, can be used to associate special characteristics with the element,
as we shall see later on. The Data Dictionary can also used to associ-
ate a synonym with the element, usually a shorter name that is easier
to incorporate into a detailed chart.

In the case of activities, the long description is very often used to
add functional specification in a textual language that is not an inte-
gral part of our approach, such as an unstructured natural language.
This additional information can be attached to basic or nonbasic
activities alike.

The Functional View: Activity-Charts 35

On the other hand, for basic activities, our approach supports a num-
ber of formal executable textual descriptions that specify particular
patterns of behavior. These are also associated with the activity in its
Data Dictionary entry. The patterns are:

s A reactive event-driven activity is continuously “active” in an idle
state and constantly waits for an event to occur and to cause it to
perform some action. It then becomes idle again until the next event
happens. An example of such an activity is a simple keyboard driver
that accepts key press events and locally performs a very simple
operation and/or transfers a command to some other activity. A reac-
tive event-driven activity can be described by a reactive minispec,
which is a list of reactions, each consisting of a trigger event and its
implied action; see Fig. 2.10a. More complex reactive activities are
described by statecharts, as we shall see, but simple event/action
activities do not require a statechart, and they can be described by
a reactive minispec.

s A procedure-like activity, when invoked, performs a sequence of oper-
ational statements and then stops. An example of such an activity is
the VALIDATE_RANGE subactivity of the range SET_UP activity of the

Activity: PROCESS SIGNAL
Defined in Chart: ENS_ACTIVITIES

Mini-spec: st/TICK; ;
TICK/ $SIGNAL_VALUE:=SIGNAL;
SAMPLE =COMPUTE ($SIGNAL VALUE)

" Activity: VALIDATE RANGE

Defined in Chart: SET_UP

Mini-spec: if (LOW_LIMIT < HIGH_LIMIT)
then SUCCESS
else FAILURE end 1f

(b) Procedure- hke actnvnty descrlbed by a mini-spec

Act1v1ty COMPUTE IN RANGE
Defined in Chart: COMPARE

Combinational Assignments:
IN_RANGE: = (SAMPLE>LEGAL_RANGE . LOW__ LIMIT)
and (SAMPLE>LEGAL RANGE. HIGH LIMIT)

(c) Data-driven acnvnty descrlbed by combmatlonal a551gnments

Figure 2.10 Data Dictionary entries describing activities.

36 Chapter Two

EWS. It is invoked when the user has inserted the range limits, and
it checks the validity of the values, returning the check results.
A procedure-like activity can be described by a procedure-like
minispec, which is simply a list of actions; see Fig. 2.100.

= A data-driven activity is also continuously “active,” checking to
detect any changes in the values of its inputs. When any of them
changes value, the activity computes new output values and
resumes its waiting. A logical gate in an integrated circuit is an
example of a simple data-driven activity. In the EWS example, the
COMPARE function has a subactivity COMPUTE_IN_RANGE, which is
data-driven; it continuously monitors the processed signal and com-
pares it to the legal range limits to calculate an IN_RANGE condition.
(When this condition becomes false, the COMPARE function issues the
OUT_OF_RANGE event.) A data-driven activity can be described by a
collection of combinational assignments, which are ordinary-looking
assignment statements that continuously compute the activity’s out-
puts based on its inputs; see Fig. 2.10c.

Minispecs and combinational assignments are described in detail in
Chap. 7.

2.5 Connectors and Compound
Flow-Lines

Let us return to the technical mechanisms we provide for representing
the flow of information between activities. Flow-lines in activity-charts
can be combined using various types of connectors. The main motiva-
tion for this is to economize in the number of arrows, to reduce clutter,
and to provide a clearer and more intuitive graphical representation.
We refer to the resulting connected object, consisting of a number of
flow-lines and connectors, as a compound flow-line. We now discuss
the various types of connectors.

2.5.1 Joint connectors (fork and merge
constructs)

A fork construct allows us to represent a single information element as
flowing from one source to several targets. Instead of drawing separate
lines departing from the source, we can draw a single departing line,
which then splits up into separate arrows at a convenient place in the
chart. For example, instead of drawing two separate lines emanating
from COMPARE and labeled with OUT_OF_RANGE_DATA, as we did in
Fig. 2.5, we can abbreviate as shown in Fig. 2.11.

Similarly, we can represent common information flowing from sev-
eral sources to a single target by joining them at some convenient point
before they reach their target. This is called a merge construct, and it

The Functional View: Activity-Charts 37

DISPLAY_
FAULT

COM;ARE PRINT_
: OUT_OF RANGE DATA| FAULT

Figure 2.11 A joint connector (a fork construct).

indicates that the target may receive the information from either of
several sources.

In both constructs, fork and merge, we refer to the connection point
as a joint connector. The compound flow-line, consisting of the con-
nected segments, may have several sources and several targets but
only a single associated flowing element (which may actually be an
information-flow consisting of several data elements). As for location,
the flow element common to the entire construct can label any of the
compound flow-line’s segments.

2.5.2 Junction connectors

Another way of reducing the number of lengthy flow-lines in an activity-
chart is to use a junction connector. Several flow-lines conveying
different information elements may be connected using a junction con-
nector to form a single flow-line that emanates from or enters a com-
mon box or connector.

Figure 2.12 illustrates several uses of junction connectors. Figure
2.12a contains three actual flows: X flows from A1 to B, Y flows from A2
to B, and 7 flows from 23 to B. Notice that the line segment from the
junction connector to B is unlabeled because it is used only to connect
the different flowing elements to the common target.

The case of a common source is similar. In Fig. 2.125, the flow-line
that carries the three flow elements from A to the junction connector is
labeled xYZ. In the Data Dictionary we define the element XYz to be
an information-flow containing X, Y, and Z as components. Clustering
flowing elements in this way and using the combined information-flow
to label the common arrow is usually done when there is some logical
relationship between the flowing elements; the additional name helps
to clarify this relationship.

Figure 2.12c illustrates how a number of junction connectors may be
combined. Nine potential routes exist from the activities on the left to

38 Chapter Two

Al B1
X
X
A2 Y @—p| B A X—YZ> ___‘_f__. B2
Z Z
A3 B3
(a) (b)
Al X % B1
Y Y
A2] ~p| B2
Z
Z
A3) B3
(©)
Bl
XYZ
A B2
B3
(d)

Figure 2.12 Junction connectors.

those on the right. However, the labeling used excludes six. The only
three that represent actual flows are: X from A1 to BT, Y from A2 to
B2, and Z from A3 to B3. A compound line with contradicting flow
labels (such as the one composed of the segments labeled X and v) is
not considered a viable compound flow-line.

If we want to show more than one element flowing along a single line,
the elements can be combined using an information-flow. Consider the
example in Fig. 2.12d. It represents three ccmpound flow-lines, each of
which carries XYZ and has a single source and a single target. Notice
that the same diagram drawn with a joint connector instead of a junc-
tion connector represents a single compound flow-line with one source
and three targets. In this case the two are semantically equivalent, and
although we used a junction connector, a joint connector might be pre-
ferred because it emphasizes that the same information is available to
all three targets.

The junction connector is sometimes used with a record data-item
and its components. In the EWS example, the COMPARE activity can be
decomposed into two subactivities: one compares the processed signal
SAMPLE with the HIGH_LIMIT field of LEGAL_RANGE, and the other

The Functional View: Activity-Charts 39

compares it with the LOw_LIMIT field, as shown in Fig. 2.13. The junc-
tion connector is used here to direct the fields of the record to two dif-
ferent target activities.

2.5.3 Diagram connectors

When the source of a flow-line is far from its target, we can avoid
drawing a lengthy arrow by using a diagram connector. The arrow
emanating from the source ends in a named connector, and its contin-
uation emanates from a second connector with the same name, which
is positioned closer to the target. The pair of identically named con-
nectors are identified as the same logical entity, and the result has the
same meaning as a junction connector connecting the two arrows. It is
important to emphasize that the arrow segments are matched accord-
ing to the names of the connectors and not according to the labels
along the segments. As a consequence, the label can be omitted from
one of the segments.

Any legal name (see App. A.1) may be used to label the diagram con-
nectors, as can any integer number. Thus one can use names that indi-
cate the identity of the target (as in Fig. 2.14), flowing signal names,
or simply serial numbers.

To make life eéven easier, we allow more than two diagram connectors
to have the same name and thus denote the same logical junction.
Several arrows can then emanate from or enter a common diagram
connector, but all arrows connected to the same occurrence of the con-
nector must flow in the same direction.

2.5.4 Compound flow-lines

The various types of connectors presented earlier can be used to con-
struct a variety of compound flow-lines. The compound flow-lines are
really the logical flow-lines that depict the actual flow between activities

LEGAL _ COMPARE
». RANGE > »| COMPARE _
#£GAL, RANGE.HIGH LIMIT HIGH
| »| COMPARE
LEJAL RANGE.LOW LIMIT Low

Figure 2.13 A junction connector with record fields.

40 Chapter Two

l EWS_CONTROL |4

OUT_OF_RANGE
COMPARE S p(CNTRL

Figure 2.14 A diagram connector.

(or the other box-like entities in our other languages). When connec-
tors are not used, a simple arrow that flows directly from one box to
another depicts the actual flow, the logical flow-line consisting of a sin-
gle segment. In Fig. 2.5, for example, no connectors are used, and all
logical flow-lines are actually simple flow-lines (ones consisting of a
single segment).

We have seen that a joint connector yields a single compound flow-
line with multiple sources or multiple targets, while a junction con-
nector produces multiple compound flow-lines. Diagram connectors
are interpreted as junctions, and as such they can represent multiple
compound flow-lines, although they can also be used in a way that
results in a single flow-line.

The segments constituting a compound flow-line can be data flow-
lines or control flow-lines. When both types appear in a single com-
pound flow-line, the entire combination will be considered to be a
control flow-line if the final segment that leads to the target is a con-
trol flow-line. This is because the type of flow is determined by the way
the target uses the flowing information.

