Chapter

Information Elements

This chapter deals with the information elements of our languages:
events, conditions, and data-items. The data-items can be of simple
predefined types or compound user-defined types. All information ele-
ments are defined in the Data Dictionary, and they can be used in both
graphical charts and textual constructs. Each is defined as belonging
to a particular chart of a global definition set, that is, to one of the
specification components that make up the entire model. Information
elements obey certain scoping rules that are described in Chap. 13.

3.1 Information Elements in the Model

The interface of the entire system, as well as that of each component,
is an essential part of the specification and design, capturing the way
it communicates with its environment. In many methodologies (with
the exception of object-oriented design methods), a major part of the
interface consists of a set of information elements that flow to and
from the system or component. Very often the system development
starts with the interface already given, and the specifier has to con-
struct the model accordingly.

The interface specification must fit the nature of the system under
description and its environment. For example, if the system communi-
cates with a hardware environment, the interface may be specified in
terms of bits in a connector structure. In communication systems, the
interface description may consist of a message structure, sometimes
adhering to an industrial standard or a predefined protocol. The infor-
mation modeling can be on a very concrete level—listing the bits of the
connector or computer word—or on a higher level—involving abstract
events, conditions, and data-items. While the modeler in our approach
is encouraged to use abstractions, a bit is supplied as one of the pre-
defined types.

41

42 Chapter Three

For example, assume that one of the functional components of the EWS
is the operator panel driver, through which the OPERATOR inserts the
commands and the range limits. The driver interprets the OPERATOR
input and conveys it to the appropriate activity. The operator panel con-
sists of the following components:

@ Three command buttons:
Set-up For starting the setup procedure
Execute For starting the execution mode
Reset For transforming the system into an idle mode
a Ten digit keys, 0 to 9, for entering the range limits
u An Enter key for indicating the entry end of a range-limit value

e A Sensor Connected switch for indicating that the sensor is connected

These elements can be represented on various levels of abstraction.
The three commands can be referred to as events, or, alternatively,
they can be three-bit data-items. The range limits can be modeled by
a bit-array of ten bits presenting the ten digits sent one at a time
or by whole numeric values and so on. To some extent, the choices
depend on whether such decisions have already been made (.e.,
whether the interface is given or is awaiting the design or implemen-
tation phase).

As another example, the fault report of the EWS is basically a tex-
tual report consisting of the following information components:

s The time when the fault occurred

® The out-of-range value, which is the computed value after the pro-
cessing

s The legal range limits

Again, different levels of abstraction can be used here, depending
on where the borders of the specification are placed. The fault report
can be modeled as a string of limited length, as an array of strings—
one for each line in the report—or as a record of the numeric values
that specify the report contents without being too precise about the
implementation details.

Information elements are used not only in specifying interfaces
but in the detailed behavioral and functional specification. It is nat-
ural to use them to describe the logic and control of algorithms and
to specify computations, just as variables are used in programming
languages.

It is only natural to translate the requirement that the system
checks if the value of the result of the processing is within the speci-
fied range to a construct that contains a condition expression such as:

Information Elements 43

(SAMPLE > LEGAL_RANGE.LOW_LIMIT) and
(SAMPLE < LEGAL_RANGE.HIGH_LIMIT)

Here, SAMPLE denotes the processed value, and the allowed limits of
the range are captured by the two fields of the record LEGAL_RANGE .
All these elements are conventional real values, and they can be com-
pared using standard relation symbols such as < and >.

In our notation, information elements can appear along the flow-lines
of activity-charts and module charts, and in the textual constructs used
in behavioral and detailed functional descriptions. Information ele-
ments appear in reactions, triggers, and actions, and in other expres-
sions in statecharts, mini-specs, and combinational assignments, as
well as in the parameters of generic charts. We will see examples in the
coming chapters. '

Information elements and user-defined types are defined in the Data
Dictionary, where their type and structure are specified. The names
follow the naming rules of App. A.1. As for all kinds of elements
appearing in the Data Dictionary, we may attach additional informa-
tion to these elements, such as synonyms, textual description and
user-defined attributes, using the standard mechanisms of the Data
Dictionary. Some examples are given in the more detailed sections that
follow. We can also use information elements whose values depend on
other elements. Actually, these are named expressions, like macros
and aliases in conventional programming, and they are also defined
using the Data Dictionary.

The following sections describe the particular types of information
elements and the user-defined types. The way these elements are used
in behavioral descriptions will be discussed in Chaps. 4—8, particularly
Chap. 5.

3.2 Events

Events are communication signals that indicate that something has
happened. Very often they are used for synchronization purposes.
When they flow they do not convey any content or value, only the very
fact that they have occurred. They are thus instantaneous, and if not
immediately sensed, they are lost.

In the EWS example, the activity COMPARE sends the event
OUT_OF_RANGE to the control activity (through a control flow-line) to
indicate that the tested value is not in the expected range. This event
is an indication to the control activity that it should start its response
to a fault occurrence, that is, posting an alarm and issuing a fault
message.

Events are used extensively in the modeling of real-time systems to
indicate interrupts, clock ticks, timing, and synchronization signals
and to model cause/effect connections between different parts of the

44 Chapter Three

system. In communication protocol modeling they mark message
sending and acknowledge arrival. Events are also used in the model-
ing and implementation of interactive systems. Graphical user inter-
face systems (GUIs) are based on user-generated occurrences and
their subsequent responses and attached callbacks, all of which can
be mapped naturally into events and corresponding reactions in our
languages. This can be accomplished in a low-level fashion, referring
to mouse button clicks and motions and keyboard manipulations or on
a higher level, by abstracting them into menu selection and command
activation.

In the EWS example, the OPERATOR’s commands, EXECUTE,
SET_UP, and RESET, are defined as events that control the system’s
operation. Here we chose the names to be imperative verbs, but it is
also useful to use short phrases in the past tense for event names,
such as OPERATION_COMPLETED or BUTTON_PRESSED.

In object-based decomposition, where the functional components
consist of entities (or actors) and their associated operations, events
can implement the request for individual operations. For example, we
may model the request from the FAULT_HANDLER to DISPLAY_FAULT
(i.e., post an alarm and issue a fault message) by an event bearing
the same name; similarly, the event PRINT_FAULT will invoke the
PRINT_FAULT operation.

A set of similar events can be organized in an array structure. For
example, the EWS operator keyboard contains ten keys for digits,
which are used to enter the range limits. The events of pressing
these keys can be grouped in an array DIGIT_PRESSED consisting of
ten event components. The individual component is accessed by
its index in the array, just like in conventional programming lan-
guages, DIGIT_PRESSED (1) through DIGIT_PRESSED(10), where
10 stands for the digit 0. Chapter 5 shows how to detect that one of
these ten events has occurred, without referring to each one explic-
itly. Figure 3.1 shows the Data Dictionary entry defining the event
array. It shows that in addition to the array size designation we can
also incorporate a short description and a long description, as in other
Data Dictionary entries.

Other aspects of events, namely, event expressions and named event
expressions, are discussed in Chap. 5, where our expression language
is described in full.

3.3 Conditions

As with events, conditions are also used for control purposes. Conditions
are persistent signals, that is, ones that hold for continuous time spans.
They can be either true or false.

An example of a condition in the EWS is the signal SENSOR_
CONNECTED, which is generated by the OPERATOR and is sensed by

Information Elements 45

Event: DIGIT_ PRESSED
Defined in Chart: EWS
Structure: array 1 to 10

Short Description: Events of the digit keys being pressed
Long Description: An array of events depicting the
pressing of the digit keys on the operator keyboard.
The i‘th component stands for the digit i, where

10 stands for the digit 0.

Figure 3.1 An event array in the Data Dictionary.

the control activity. This condition is self-explanatory, and it indi-
cates whether the SENSOR is connected to the system—an essential
prerequisite to activating the signal processing. Here, it is beneficial
to use short phrases in the present tense as names of conditions to
describe a situation that holds currently and for some continuous
period of time.

Conditions are often used to describe the status of two-state entities,
as in the preceding example. For example, a switch can be modeled by
a condition SWITCH_ON that is either true or false. Conditions are also
used to “remember” that some event has occurred until the required
response is given.

Conditions, like events, can be organized in arrays to model the sta-
tus of several similar elements. The information on the array index
range is specified in the Data Dictionary.

Conditions, like other information elements, participate in detailed
behavioral and functional descriptions. In subsequent chapters we
shall see how they are manipulated, how they change values, and how
they can influence the flow of control.

3.4 Data-ltems

A data-item is a unit of information that may assume values of vari-
ous types and structures. Data-items are very similar to the data ele-
ments in conventional programming languages: variables, constants,
and so on. They maintain their values until they are explicitly changed
and assigned new values.

Data-items are defined via the Data Dictionary, where their type and
structure are specified, and other descriptive information can be added
(e.g., attributes such as units, resolution, or distribution). Data-items
can be of predefined types (integer, real, string, etc.), or records and
unions composed of fields of various types. They can also be structured
in arrays or queues. The modeler can also construct user-defined types

46 Chapter Three

that are based on predefined types and structures. These concepts are
described in the following sections.

3.4.1 Data-items of predefined types

The basic types of data-items are similar to those existing in pro-
gramming languages. A data-item can be numeric, either integer or
real. For example, in the EWS, the data-item SAMPLE, which is the
result of the processing performed by the PROCESS_SIGNAL activity,
has a numeric value and can be specified as real or integer. The value
of an integer data-item is usually limited by 2% It is also possible to
limit the values of an individual integer data-item by restricting its
range, or by shortening its actual length (in bits). For example, if the
EWS is extended to deal with five sensors, the identification number
of a sensor will be an integer whose value will be restricted to the
range 1 to 5. There is no limitation on real values.

When dealing with hardware systems, such as integrated circuits, it
is natural to speak in terms of bits and bit-arrays. For this purpose,
it is possible to define a bit data-item that can take on the values 0 and
1 or a bit-array data-item that consists of a sequence of bits. The defi-
nition of a bit-array data-item specifies its index range (which de-
termines the number of bits) and direction, to or downto, which
determines the most significant bit in its value. The index range lim-
its are nonnegative integers.

In the EWS example, the sensor is a hardware component whose out-
put, the SIGNAL, is described as a bit-array data-item. See Fig. 3.2.
The signal consists of 24 bits, with bit 23 being the most significant.
The syntax for such data-type expressions is described in App. A2.5.

Both bit and bit-array data-items are considered numeric, in the
sense that they can participate in numeric expressions with no need
of any explicit conversion, as discussed in Chap. 5. Values of bit-
arrays are usually displayed in binary (e.g., 0B00101111), octal
(00057), or hexadecimal (0x2F), with the most significant bit being
the leftmost one. A particular bit in the bit-array can be referred to
explicitly. For example, SIGNAL (23) is the most significant bit of the
sensor’s output. Similarly, one can refer to a bit-array slice, such as
SIGNAL(2..0), which are the three bits of least significance. Note

Data [tem: SIGNAL
Defined in Chart: EWS
Data-Type: bit~array 23 downto 0

Short Description; System’s input; comes from the sensor.

Figure 3.2 A bit-array data-item in the Data Dictionary.

information Elements 47

that if a bit-array is defined in the to (respectively, the downto) direc-
tion, the index range of its slices must be in ascending (respectively,
descending) order.

A data-item can also be of type string, denoting a string of charac-
ters. String data-items are used when alphanumeric characters are
involved, as in the EWS’s FAULT REPORT.

A string data-item can be used to introduce enumerated values. For
example, we may define a string data-item COMMAND with one of three
possible values, ‘execute’, ‘set-up’, or ‘reset’, that can be
issued by the operator. Notice that the string value is written between
single quotation marks. If needed, it is possible to specify the string
length. For example, a data-item denoting an identifier name limited
to 32 characters will be specified in the Data Dictionary with “Data-
type: string length=32".

3.4.2 Records and unions

In addition to the basic types, a data-item can be a composition of
named components, referred to as fields, each of which may be a data-
item of any type or a condition. We support two kinds of compositions:
records and unions. In a record, all components are present at any
time, while a union contains, in any given time, exactly one of the com-
ponents. Thus, a record can be viewed as an AND cluster of data, and
a union as an OR cluster. The entire construct, record or union, is ref-
erenced by its name (e.g., on a flow-line), while a particular field is
referenced using the dot notation:

record/union reference.field reference.

We mentioned that the LEGAL_RANGE data-item in the EWS is a record
composed of two real fields: LOW_LIMIT and HIGH_LIMIT. The defini-
tion of this data-item in the Data Dictionary is shown in Fig. 3.3. The
fields of LEGAL_RANGE are referenced by LEGAL_RANGE.LOW_LIMIT
and LEGAL_RANGE.HIGH_LIMIT. The array notations and dot notation
can be combined, so that if, for example, one of the fields of a record R is
the bit-array BA, we may refer to the particular bit R.BA (2) or to the
slice R.BA(1..3). .

A union construct is used when different types of values are relevant
to different situations. For example, a union is useful when specifying
a communication protocol that involves several kinds of messages,
each carrying a different type of data.

Assume that the operator’s input in the EWS example arrives via a
single communication line that transfer two types of messages, com-
mands and data (e.g., the range limits). Assume also that there is a
channel along which the system is told the type of the arriving mes-
sage. The data-item MESSAGE_DATA that carries the data can be-

48 Chapter Three

Data-Item: LEGAL RANGE

Defined in Chart: EWS_ACTIVITIES

Data-Type: record
Field Name: LOW_LIMIT Field Type: real
Field Name: HIGH_LIMIT Field Type: real

Figure 3.3 A record in the Data Dictionary.

defined to be a union of two possible fields: COMMAND of type string
(see Sec. 3.4.1) and LIMIT_VALUE of type real. The system will refer to
MESSAGE_DATA .COMMAND when it expects a string denoting the com-
mand, and to MESSAGE_DATA.LIMIT_VALUE when it expects the
numeric range limit value. As explained before, at any given moment
only one field of the union “exists,” and it is illegal to refer to any other.
The field type attached to every field of the record or the union in the
Data Dictionary can be of the following data-types: basic predefined
types (e.g., integer, real, etc.; see the preceding section); condition,
array, or queue (see the following section); or a user-defined type. The
field cannot be defined to be another record or union; this kind of con-
struction must be done with an intermediate definition of a user-
defined type. See App. A2.5 for the syntax of data-type expressions.

3.4.3 Data-item structure

Data-items can be organized in structures—arrays or queues—with
each component of the structure having one of the data-types
described earlier or a user-defined type, as will be discussed shortly.

An array is a sequence consisting of a fixed predefined number of
components. Assume, for example, that the EWS is enhanced to deal
with five sensors. It is then natural to talk about an array of the sen-
‘sor’s signals: SIGNALS, defined as an array of five components, each
of which is a bit-array, 23 downto 0. See Fig. 3.4.

Each array component can be of any of the basic predefined types, a
record/union construct, or a user-defined type. Each component is
accessed by its index (e.g., SIGNALS (2)), and double indexing is used
to refer to components of components (e.g., SIGNALS (1) (23)). If the
array component is a record, the dot notation can be combined with
indexing. For example, if AR is an array of records that have two fields,
x and Y, then we may use AR (2) .X to access the X field of AR (2).

The index range of the array is defined from left index to right index.
There is no limitation on the array size. The index range limits are
nonnegative integers, and the left index must be smaller or equal to
the right index. (It might be more appropriate to call them “lower

Information Elements 49

index” and “upper index,” but the names came from the range limits in
bit-arrays.) It is very common to define an array going from 1 to some
named integer constant (these are described in Chap. 5). Assume that we
have a constant definition NUMBER_OF_SENSORS = 5. Then SIGNALS
can be defined as array 1 to NUMBER_OF_SENSORS, to emphasize the
fact that the size of the array depends on some other value.

Sometimes the size of one array depends on the size or index range
of another. For example, we might want to set things up so that if the
system allocates memory for an array, then any copy of it must be of
the same size. In this case it is possible to use three predefined oper-
ators that apply to an array v: length_of (V), lindex(V), and
rindex (V) . The operators are evaluated to constant integer values.

A queue, as opposed to the fixed size arrays, is a dynamic list of com-
ponents. Queues are described in detail in Chap. 8, where communi-
cation mechanisms are discussed. As in the case of arrays, the
components of a queue can be of one of the predefined data types
described earlier or a user-defined type. The components cannot be
directly defined as records or unions; a queue of such components can
be defined with an intermediate user-defined type. Queues are defined
in the Data Dictionary just like the other data-items.

3.5 User-Defined Types

It is often the case that several data-items in the model have the same
characteristics, such as their data-type. It can be useful to define a
named data-type, called a user-defined type, that will be used to define
them all. In addition to providing clarity, this reusability is also effi-
cient because the full data-type definition appears in only one location
in the Data Dictionary.

In the EWS example, the range construct, with the low and high lim-
its, appears at least twice: in the current LEGAL_RANGE and in the
FAULT_REPORT that contains the values against which the faulty
processed signal was compared. We can have the Data Dictionary con-
tain the definition of a user-defined type RANGE, which will be used later
in the definition of these two data-items. This is shown in Fig. 3.5.

Data-Item: SIGNALS

Defined in Chart: EWS

Structure: array 1 to 5

Data-Type: bit-array 23 downto 0

Short Description: System’s input; comes from the sensor.

Figure 3.4 An array data-item in the Data Dictionary.

50 Chapter Three

User-Defined Type: RANGE

Defined in Chart: EWS

Data-Type: record
Field Name: LOW_LIMIT Field Type: real
Field Name: HIGH_LIMIT Field Type: real

Data-Item: LEGAL RANGE
Defined in Chart: EWS
Data-Type: RANGE

Data-Item: FAULT_ REPORT

Defined in Chart: EWS

Data-Type: record
Field Name: FAULT TIME Field Type: TIME
Field Name: FAULT VALUE Field Type: real
Field Name FAULT RANGE Field Type RANGE

Data-Item: SCREEN
Data-Type: array 1 to 300 of ROW

User-Defined Type: ROW
Data-Type: array 1 to 200 of PIXEL

User-Defined Type: PIXEL
Data-Type: bit-array 7 downto 0

Figure 3.6 A definition of multidimensional array.

User-defined types are specified in terms of predefined types,
record/union constructs, or data structures (arrays and queues). It is
also possible to define them as other user-defined types or as condi-

tions or arrays of conditions.

The user-defined type mechanism can also be used to define complex
types, with multiple-level structure. The data-item FAULT_REPORT
presented in Fig. 3.5 is a record, two of whose fields, FAULT_TIME and
FAULT_RANCE, are themselves records. To achieve this multilevel
structure, we must use the intermediate data-types, TIME and
RANGE. We do not allow the definition of a record with an explicit

record field.

Information Elements 51

There are no limitations on the multilevel usage of user-defined
types. We can define multidimensional arrays, arrays of records,
records with array fields, queues of records, etc., with any number of
nesting levels.

For example, to specify a display screen whose size is 200 X 300 pix-
els, each of 8 bits, we use the data-item SCREEN and the user-defined
types ROW and PIXEL, as shown in Fig. 3.6. A particular bit can be
accessed by indexing. For example, SCREEN(7) (2) (0) is bit 0 in
position (7,2) on the screen (i.e., pixel number 2 in row number 7).

In Chap. 13 we discuss the scope of elements (e.g., how their visi-
bility depends on the chart in which they are defined). User-defined
types are often required to be visible throughout the entire model,
so they are usually defined in a global definition set, as discussed in
Sec. 13.5.

