Chapter

The Behavioral View

Statecharts

This chapter describes the language of Statecharts (Harel 1987b),’
which is used to describe the control activities in activity-charts. As
explained in Chap. 2, these activities constitute the behavioral view of
a model.

In this chapter and the two that follow, we concentrate on the pure
features of Statecharts and their semantics, leaving those parts that
pertain to the connection with Activity-charts to Chap. 7. Thus we do
not concern ourselves here with the way activities are controlled by
statecharts or with how statecharts are affected by activities, but only
with the internal features of the statecharts themselves.

This chapter describes how states are organized into an and/or hier-
archy and how they may represent levels of behavior and concurrency.
We also show how transitions are used (with the various connectors) to
describe changes in the states. In Chap. 5 we describe the textual
expression language used in Statecharts to specify triggers and actions,
and how it supports timing considerations. Chapter 6 describes the
dynamic semantics of Statecharts. Throughout, the reader will observe
that Statecharts constitute a powerful extension of conventional state-
transition diagrams.

4.1 Behavioral Description of a System

A behavioral description of a system specifies dynamic aspects of the
entire system or of a particular function, including control and timing.

Parts of our description here follow Harel (1987b), although our version reflects some
modifications and enhancements that were incorporated to make it better fit the
STATEMATE modeling approach.

53

54 Chapter Four

It specifies the states and modes that the system might reside in and
the transitions between them. It also describes what causes activities
to start and stop, and the way the system reacts to various events. The
functional and behavioral views complete each other, as explained in
later chapters.

A natural technique for describing the dynamic of a system is to use
a finite-state machine. The described system or function is always in
one of a finite set of states. When an event occurs, the system reacts by
performing actions, such as generating a signal, changing a variable
value, and/or taking a transition to another state. The events causing
the reaction are called triggers. For example, a simple mechanism that
controls a light bulb may be in one of two states, OFF and ON. The
event BUTTON_PRESSED might trigger the transitions from one of
these states to the other. On moving from OFF to ON, the mechanism
sends a signal TURN_ON to the light bulb, and similarly, the bulb is
turned off on the other transition (see Fig. 4.1).

Let us analyze the behavior of the EWS in terms of states or modes.
From the informal description of the EWS presented in Chap. 1 we can
identify several main states of the system:

WAITING_FOR_COMMAND The system is idle, waiting for an operator command o
start executing or to set up the range values.
SETTING_UP: The range values are being set by the operator.
COMPARING: The signal processing is being performed, and the
processed signal is being checked.
GENERATING_ALARM: The system is generating the alarm to indicate that

the value of the processed signal is out of range and
is awaiting the operator’s reset.

These states are exclusive, that is, when the system is accepting new
range limits, it is not performing signal processing or value compar-
isons. Similarly, the comparisons are not carried out when the alarm is
generated. Regarding the transitions between states, when in WATT-
ING_FOR_COMMAND, the EXECUTE command from the operator causes
the system to move to the COMPARING state, and the SET_UP command
causes a transition to SETTING_UP. This description implies that the
system moves to the GENERATING_ALARM state in the event that

button pressed

ON

button pressed

Figure 4.1 A finite-state machine that controls a light bulb.

The Behavioral View: Statecharts 55

G/A

Figure 4.2 A simple state-transition diagram.

the tested signal is out of range. More details about the transitions
between these states are given in the following sections.

In some of the states, certain functions from the functional descrip-
tion are performed (on the assumption that we are carrying out a
function-based decomposition; see Chap. 2). For example, the SET_UP
activity is performed in the SETTING_UP mode. In general, the func-
tional and behavioral views are combined to yield the entire concep-
tual description of the system under description. This subject is
discussed in Chap. 7.

Finite-state machines have an appealing visual representation in
the form of state-transition diagrams. These are directed graphs
in which nodes denote states and arrows denote transitions. The
transitions are labeled with the triggering events and caused
actions, using the following general syntax for a reaction:
trigger/action. Figure 4.2 shows a simple three-state diagram that
describes a system.

If, for example, the system is in state S and event F occurs, the system
is transformed into state U. If, in the same state, G occurs, the system
performs the action A and ends up in state T.

In our approach we use the Statecharts language to describe the
behavioral view. This language is similar to state-transition diagrams,
but includes many enhancements, such as hierarchy, orthogonality,
expressions, and connectors. As in Activity-charts, the elements
appearing in the charts have associated entities in the Data
Dictionary. In the following sections and in the two subsequent chap-
ters, we describe the details of the Statecharts language. The way in
which statecharts relate to activity-charts is dealt with in Chaps. 7
and 8.

4.2 Basic Features of Statecharts

As in conventional state-transition diagrams, statecharts are construc-
ted basically from states and transitions. The states in a statechart are

56 Chapter Four

depicted as rectilinear boxes with rounded corners. The names of the
states appear inside their boxes and obey the name syntax given in App.
A 1. The transitions are drawn as splined arrows, with the triggers serv-
ing as labels.

The main states of the EWS and the transitions and their triggers
are shown in Fig. 4.3.

The triggers of the transitions in Fig. 4.3 are all events, which are
regarded as instantaneous occurrences. There are two kinds:

® External events coming from external sources (such as the com-
mands coming from the operator via the control panel:
SET_UP, EXECUTE, and RESET).

8 Internal events coming from internal sources (such as
OUT_OF_RANGE, which is output from the COMPARE activity;
ALARM_TIME_PASSED, which is the output of some invisible clock;
and SET_UP_COMPLETED, which signifies that the SET_UP activity
has terminated).

We shall see later that the event ALARM_TIME_PASSED can be defined
to be more specific about the alarm duration, using the timing facili-
ties provided by our languages. Note that we do not show the source of
the triggering events in the statechart itself. We shall return to this
issue in Chap. 8.

The trigger of a transition may be an expression that combines some
events. It may also include a condition, enclosed in square brackets,
or it may consist of the condition only. Thus if a transition is labeled
E[C], the condition C is tested at the instant the event E occurs,
guarding the transition from being taken if it is not true at that time.
If the transition is labeled [C], the condition C is tested at each
instant of time when the system is in the transition’s source state, and
the transition is taken if it is true.

EXECUTE _
WAITING_FOR_ | RESET | COMPARING ’
COMMAND |

OUT_OF_RANGE

SET_UP

SET_UP_
COMPLETED

ALARM_TIME_PASSED

A4

[GENERATING
ALARM

v

SETTING_UP
: RESET

Figure 4.3 States, transitions, and event triggers.

The Behavioral View: Statecharts 57

EXECUTE [SIGNAL_EXISTS])
WAITING_FOR_ P COMPARING
COMMAND

Figure 4.4 A trigger with a condition.

EXECUTE
WAITING_FOR_ INO SIGNAL] COMPARING
COMMAND =

Figure 4.5 A condition as a trigger.

X

In the EWS example, we may want to prevent the transition between
WAITING_FOR_COMMAND and COMPARING from being taken unless the
sensor is connected to the system and there is a signal coming from
the sensor. We could do this as in Fig. 4.4, by enriching the statechart
of Fig. 4.3, with an appropriate condition.

In fact, a similar effect could be achieved differently by using a con-
dition to trigger a transition, rather than as a guard on a triggering
event. In Fig. 4.5, we take the transition to COMPARING when the EXE-
CUTE command is issued, but once in COMPARING, we continuously
monitor the condition NO_SIGNAL, returning to WAITING_FOR_COM-
MAND the instant we detect that it is true. In this way, if the sensor is
not connected and there is no signal coming from the sensor when we
enter COMPARING, we will immediately return to WAITING_FOR_COM-
MAND. However, if there is a signal, we will stay in COMPARING until
the sensor is disconnected and the signal ceases.

A transition can be labeled not only with the trigger that causes it
to be taken, but also, optionally, with an action, separated from the
trigger by a slash as follows: trigger/action. If and when the transi-
tion is taken, the specified action is carried out instantaneously.
Some actions simply generate an event, but they may also cause oth-
er effects. We shall see that actions can modify values of conditions
and data-items; they can start and stop activities, and more. Several
actions can be performed when a transition is taken. The actions are
written after the slash in a sequence, separated by a semicolon (e.g.,
E/A;B;C).

A simple action incorporated into the EWS example is shown in
Fig. 4.6. Here, we have decided that when the ALARM_TIME_PASSED
event occurs in the GENERATING_ALARM state, two things happen
simultaneously:

e The system returns to the WAITING_FOR_COMMAND state.

The event PRINT_OUT_OF_RANGE, which is really an internal com-
mand to print a fault report on a printing device, is generated.

58 Chapter Four

ALARM TIME_PASSED/
WAITING FOR | PRINT_OUT_OF_RANGE

COMMAND

GENERATING_ |
ALARM

Figure 4.6 A simple action.

[NO_SIGNAL] /ISSUE_DISCONNECTED_MSG

— ==\ EXECUTE SIGNAL EXISTS]
WAITING FOR | [- _ | comparine
COMMAND @ "

Figure 4.7 A condition connector.

Another way of using conditions to guard transitions is to employ the
condition connector. An arrow enters the connector, labeled with
the triggering event, and the connector may have several exit arrows,
each labeled with a condition enclosed in square brackets and option-
ally also with an action. In general, any number of exit arrows from a
condition connector is allowed.

Figure 4.7 shows how the EXECUTE event causes a transition from
WAITING_FOR_COMMAND, with the two mutually exclusive conditions
NO_SIGNAL and SIGNAL_EXISTS, that determine whether the system
enters COMPARING or returns to WAITING_FOR_COMMAND. In the latter
case, we have also specified that the event TSSUE_DISCONNECTED_MSG
will be generated, causing an error message to appear.

Although the mechanisms of states and transitions labeled by triggers
and actions allow rich and complex behavioral descriptions, they are not
always enough. Later we will discuss the ability to specify reactions that
do not involve transitions between states and to associate them with a
specific state. These reactions, as well as the information about the
activities that are active in a state, are attached to the state through
the Data Dictionary. Like the other elements appearing in statecharts,
such as triggers and actions, each state also has an associated entry in
the Data Dictionary. Transitions, however, do not have Data Dictionary
entries, mainly because they are not identifiable by name.

4.3 The Hierarchy of States

As it turns out, highly complex behavior cannot be easily described by
simple, “flat” state-transition diagrams. The reason is rooted in the
unmanageable multitude of states, which may result in an unstruc-
tured and chaotic state-transition diagram. To be useful, the state

The Behavioral View: Statecharts 59

machine approach must be modular, hierarchical, and well structured.
In this section we show how states can be beneficially clustered into a
hierarchy.

Recall Fig. 4.2. Since event F takes the system to state U from either
state S or state T, we may cluster the latter into a new state, call it v,
and replace the two F transitions with one, as in Fig. 4.8.

The semantics of the new state v is as follows: to be in V is to be,
exclusively, in either of its substates, S or T. This is the classical exclu-
sive-or applied to states. V is called an or-state, and it is the parent of
the two sibling states S and T. The F transition now emanates from
on V, meaning that whenever F occurs in V, the system makes a tran-
sition to U. But because being in V is just being in S or T, the new F
arrow precisely abbreviates the two old ones.

Applying this feature to our example, we may cluster the states COM-
PARING and GENERATING_ALARM into a new state (which does not
need to have a name), simply because of the common exit transition
triggered by the operator command RESET. (See Fig. 4.9.)

We can also achieve results similar to those shown in Figs. 4.8 and
4.9 not by clustering, which is a bottom-up operation, but by refine-
ment, which is top-down (as in the functional decomposition that is
presented in Chap. 2). For example, we could have started the EWS
behavioral description with the two-state decomposition of Fig. 4.10,
in which one top-level state, EWS_STATES, is decomposed into two

Figure 4.8 Clustering of states.

| WAITING FOR_|
| COMMAND |

| | comparineg |
[GENERATING |
| ALARM

RESET

Figure 4.9 Clustering of EWS states.

60 Chapter Four

substates, OFF and ON. These states are connected by two transitions,
labeled POWER_ON and POWER_OFF .

We specify that the initial state of the system is OFF by using a
default transition, specified by a small arrow emanating from
a small solid circle. We can then zoom in to the ON state, and show
the next-level state decomposition of the EWS. This results in the
multilevel statechart of Fig. 4.11. The EWS states from Fig. 4.3
appear here as substates of the state ON. The default transition to
WAITING_FOR_COMMAND indicates that this state is the default
entrance of the ON state. This means that when there is a transition
that leads to the borderline of the parent state, without indicating
which of the substates is to be entered, like the -one triggered by
POWER_ON, the system enters the default substate.

The main advantage of using default transitions is in cases where
there is more than one entrance to the parent state. Note that the top
level of each parent state can have only one default entrance. A default
transition usually leads to a substate in the first level of the state
decomposition, but it can be made to directly enter a state on a lower
level, as shown in Fig. 4.12.

Some terms and conventions that we use for the hierarchy of state-
charts are similar to those used for activity-charts. A state that has no
substates, such as WAITING_FOR_COMMAND, is referred to as a basic
state. The state EWS_STATES is an ancestor of its descendants, which
consist of all other states in Fig. 4.11. As in activity-charts, we say
that a transition exits from its source state and enters its target state.

’\ EWS_STATES poWER ON

OFF POWER_OFF oN

v

Figure 4.10 Top-level state decomposition of EWS.

/ EWS_STATES \
/"on

(WAITING FOR_ COMPART)
‘ FOR_ COMPARING
OFF POWER_OFF — ’ i} T

GENERATING |
ALARM ;

=

Figure 4.11 A multilevel statechart.

The Behavioral View: Statecharts 61

EWS_STATES
l "} POWER ON
OFF |
L
IDLE SHUTTING] POWER_OFF oN
DOWN J*A-

S

Figure 4.12 Default entrance to a lower-level state.

4.4 Orthogonality
4.4.1 And-states and event broadcasting

One of the main problems with descriptions of behavior is rooted in the
acute growth in the number of states as the system is extended. Consider
a statechart with 1000 states that describes certain control aspects of a
flight-control system. Suppose that the behavior is now enriched by mak-
ing its details depend to a large extent on whether the aircraft is in
autopilot mode. With the features we have so far we might have to dou-
ble the number of states, obtaining two versions of each of the old
states—one with autopilot and one without—altogether 2000 states. As
more additions are made, the number of states grows exponentially.

An additional problem arises when we want to describe independent
or almost independent parts of the behavior (e.g., the behavior of sev-
eral different subsystems) in a single statechart. ‘

Statecharts handle these cases by allowing the and-decomposition of
a state. This means that a state S is described as consisting of two or
more orthogonal components, and to be in state S entails being in all
of those components simultaneously. S is then called an and-state. The
notation used is a dashed line that partitions the state into its compo-
nents. The name of the and-state is attached to the state frame. The
orthogonal compenents are named like regular states.

Figure 4.13a shows a state S consisting of the two components R and
T, and being in S is being in both. However, because each-component
is an or-state, the first consisting of U and v and the second consisting
of W, X, and Y, it follows that to be in S is to be in one of U or V as
well as one of W, X, or Y. Such a tuple of states, each from a differ-
ent orthogonal component, is called a state configuration. We say that
S is the parent of its components R and T, or that R and T are the sub-
states of S, as in the case of or-decomposition. The components R and
T are no different from any other states; they may have their own sub-
states, default entrances, internal transitions, and so on.

Entering S from the outside is tantamount to entering the configura-
tion (U, X) by the default arrows. If E occurs in (U, X), the system trans-
fers simultaneously to (V,Y), a transition that is really a form of
synchronized concurrence—a single event triggering two simultaneous

62 Chapter Four

ﬂls_l
)

E Flin(Y)]

(®)

Figure 4.13 Orthogonality using and-decomposition. (a) An and-state. (b) A nonorthog-
onal equivalent. ‘

happenings. If K now occurs, the new configuration is (v, X), yielding a
form of independence—a transition is taken in the T component, inde-
pendently of what might be happening in the R component. Notice the
in(Y) condition appearing in R. It signifies that the F transition from
V to U is taken only if the system is in (v, Y). Thus one component is
allowed to sense which state the other is in.

Figure 4.13b is the conventional “and-free” equivalent of Fig. 4.13q,
and while it is not much larger than Fig. 4.13q, it illustrates the blow-up
in the number of states: if Fig. 4.13¢ had 100 states in each component,
giving a total of 200 bottom-level (basic) states, Fig. 4.13b would have
had to contain all 10,000 combinations explicitly!

Returning to our EWS example, consider Fig. 4.14. Here we have
added an orthogonal component to the ON state named PROCESSING.
Its role is to describe the processing aspects of the raw signal read from
the external sensor.

The Behavioral View: Statecharts 63

The conditions SENSOR_CONNECTED and SENSOR_DISCONNECTED in
the PROCESSING component indicate the status of the connection with
the sensor. They are set by the operator and are thus external. The
OPERATE and HALT events, on the other hand, being generated by the
MONITORING component, are internal. They are generated by actions
when the system enters and exits the COMPARING state, respectively,
and serve to indicate to the processing unit whether the system has
completed the comparing of the processed signal.

Notice how these events are sensed immediately by the orthogonal
component. Moreover, events generated by actions in one component are
sensed by all other orthogonal components. For example, if there were
more than one sensor, each with a corresponding signal processing unit,
we could have modeled each of them by its own component, and the
OPERATE and HALT events would have then been broadcast automati-
cally to each one of them.

4.4.2 Conditions and events related to states

It is interesting to note that some of the events and conditions that
label transitions in the EWS example now depend on and refer to
states in the orthogonal component. Thus we may replace the condi-
tions NO_STGNAL and SIGNAL_EXISTS in Fig. 4.14 with in (CON-
NECTED) and in (DISCONNECTED), respectively. In fact, we may refer
not only to the status of being or not being in a state as a condition but
to the moment of entrance or exit as an event. The syntax is
entered (S) and exited(S), with en and ex abbreviating the verbs.
We may thus replace the OPERATE and HALT events in the CONNECT -
ED state by en (COMPARING) and ex (COMPARING), respectively, and

[o]

ﬁONITORING [NO_SIGNAL] \

[SIGNAL_EXISTS]

EXECh /OPERATE
WAITING FOR_ »(C) :I COMPARING
COMMAND)

y RESET/HALT

a

OUT_OF_RANGE
/HALT

Y

GENERATING
ALARM

v

| SETTING UP |

PROCESSING

(" conNeCTED

[SENSOR_CONNECTED] W

- OPERATE

stcomu-:cmnl i @]:- OPERATING

»

K [SENSOR_DISCONNECTED] | { HALT : j]

Figure 4.14 An and-state in the EWS.

64 Chapter Four

[on]

rm—mrronmc {in (DISCONNECTED)] \
EXECD [in (CONNECTED)]

WAITING FOR_ > C) COMPARING

COMMAND)

A RESET

A4

&

OUT_OF RANGE

\

GENERATING
ALARM

A4

I SETTING_UP l

PROCESSING

fCONNECTED

'\ en (COMPARING)
DISCONNECTED >) pIOPERATING
< l IDLE Ly (COMPARING)
_ \ 7

J

A

Figure 4.15 Conditions and events related to states.

the two events need no longer be explicitly generated by actions along
transitions. The resulting statechart is shown in Fig. 4.15.

Note that the meaning of the and/or decomposition of states implies
the following:

m If the system is in a state S, then not only is in (S) true but in (T)
holds for each ancestor T of S.

Entering a state S will trigger the event en (S), as well as en (T) for
every ancestor T of S in which the system did not reside when S was
entered.

e Exiting a state S will trigger the event ex (S), as well as ex (T) for
each ancestor T of S in which the system does not reside after the
transition.

Even in cases where states are exited and entered by looping transi-
tions, such as the transition from or to WAITING_FOR_COMMAND shown
in Fig. 4.7, the corresponding events ex (S) and en (S) occur. Section
5.4 contains further explanation about when these events occur.

The condition in (S) and the events en (S) and ex (S) may not be
applied to an and-componrent such as PROCESSING. Instead, they
should be applied to the parent and-state (in this case, the state ON).

4.4.3 Multi-level state decomposition

Orthogonal break-up into components is not restricted to a single level.
For example, we might have further refined the OPERATING state of the

The Behavioral View: Statecharts 65

EWS, within CONNECTED, into two components: one deals with the
clock rate of the signal sampling and the other with the computation
mode. This is shown in Fig. 4.16.

Note that “high-level” transitions continue to apply, regardless of
whether a state has orthogonal components. Thus the HALT event, for
example, takes the system out of whatever state configuration within
OPERATING it is in and causes entry into IDLE.

An important point is that there are no scoping restrictions within a
single statechart, so any state can be referred to anywhere in the state-
chart, even if the state referred to appears in some level lower down.

As with activities, two states may have the same name if they have
different parent states, in which case their names are distinguished
by using path names, that is, by attaching their ancestors’ names sep-
arated by periods. Thus had we chosen to rename CONNECTED and
DISCONNECTED simply by ON and OFF, we would have to write
PROCESSING.ON and PROCESSING.OFF whenever they had to be
distinguished from the ON and OFF that reside within the top-level
state. This convention is not limited to a single level; a sequence of
several state names can be given, separated by periods, such as
S1.52.53. Notice that no particular relationship is implied
between states that have the same name.

4.5 Connectors and Compound
Transitions

As in activity-charts, we allow several kinds of connectors in state-
charts. They are used to help economize in arrows to clarify the
specification.

4.5.1 Condition and switch connectors

As mentioned earlier, statecharts may employ condition connectors,
also called C-connectors. Figure 4.7 showed an example. In general,
the conditions along the branches emanating from the C-connector

/r¢ONNECTED

|OPERATING I

e
OPERATE

TOLE COMPUTING SAMPLING
i <
K HALT _ /

Figure 4.16 And-decomposition on any level.

66 Chapter Four

S
(=] ©\[: »>

Figure 4.17 A condition connector and compound transitions.

COMPARING

COMMAND_ ENTERED

WAITING FOR_
COMMAND
SETTING_UP

Figure 4.18 A switch connector.

EXECUTE

(s)

must be exclusive, but there can be more than two such branches.
When the conditions are not exclusive, a situation of nondeterminism
ensues, which is discussed in more detail in Sec. 6.3.

Figure 4.17 shows a simple case of using the C-connector and the
equivalent logical transitions. Each logical transition is represented by
a compound transition consisting of two simple transitions. The tran-
sition labeled E is part of both.

Another connector, similar to the C-connector, is the switch connector,
also called the S-connector, which is usually used with events rather than
conditions. In our EWS example, we may define a named event, COM-
MAND_ENTERED, as the disjunction of three command events: EXECUTE
or SET_UP or RESET. (Named events are discussed in Chap. 5.) We may
then deal with the command-driven transitions of Fig. 4.3 as in Fig. 4.18.

4.5.2 Junction connectors

Transition arrows can be joined using junction connectors, and the
labels along them can be split as desired. This makes it possible to econ-
omize both in the number of lengthy arrows present in the chart and in
the number of identical portions of labels. For example, Fig. 4.19a shows

The Behavioral View: Statecharts 67

how to use a junction connector if the same event (RESET, in this case)
causes exit from two states, but we do not want to cluster the two states
into one.

Figure 4.19b shows a more subtle case, in which two events lead out
of a state into two separate states, but there is a common action that is
to be carried out along both. As this last example shows, the order in
which events and actions appear along the parts of the compound tran-
sitions formed by using junction connectors is unimportant. However,
all the triggers appearing along the parts of a compound transition
must occur at exactly the same time for the transition to be taken. If
and when that happens, all the actions appearing along the transition
are carried out. As an example, the two parts of Fig. 4.20 are actually
equivalent.

Multiple entrances and exits may be attached to a junction, and the
semantics prescribes creation of logical compound transitions from all
possible combinations of paths. The same is true of C-connectors and
S-connectors.

The different connectors are meant to visually emphasize the dis-
tinction between different kinds of behavior: a C-connector indicates
branching by conditions, an S-connector branches by events, and junc-
tion connectors are used for the remaining cases.

~

WAITING FOR_ COMPARING
COMMAND /

RESET

GENERATING
ALARM

(@)

WAITING FOR_ /HALT COMPARING
COMMAND

RESET

GENERATING
OUT_OF RANGE = | ALARM

()

Figure 4.19 Junction connectors.

68 Chapter Four

E1/Al E2/A2
| sl l >® / ='| s2 l

(a)

"S_l—] El and E2 / Al;A2 [sz

(®)

Figure 420 Two equivalent transition constructs.

WAITING FOR_
”| coMMaND

GENERATING
ALARM
ALARM_TIME_PASSED /

Figure 4.21 Diagram connectors.

4.5.3 Diagram connectors

As in activity-charts, statecharts also allow diagram connectors. These
are simply a means for eliminating lengthy arrows from the chart in
favor of marking two points in the chart and indicating that the arrow
flows from one point to the other. See Fig. 4.21.

Any legal name may be used to label the diagram connectors (see
App. A.1), as can any integer. Each occurrence must have only enter-
ing arrows or only exiting ones. Triggers and actions are concatenated
along all possible combinations of paths that constitute compound
transitions, as with other connectors.

4.6 More about Transitions
4.6.1 Transitions to and from and-states

Recall that being in an and-state is being in a configuration of states—
one from each component. As a consequence, the Statecharts language

The Behavioral View: Statecharts 69

allows splitting and merging arrows to denote entries to and exits from
state configurations.

Figure 4.22 shows an alternative way of describing the transition
from OFF to ON in our EWS example. Instead of having a default
entrance in each component (as in Fig. 4.14), we have a fork construct
that depicts the entrance to the default configuration directly. We may
view a fork as another kind of compound transition, with the splitting
point of the two branches as a special joint connector.

Such a transition is taken if and when all of its triggers occur, and when
taken, all of its actions are performed. Thus Fig. 4.23, for example (while
possibly misleading), shows a case in which the transition is not taken
unless all of E, E1, and E2 occur simultaneously. When it is taken, both
actions Al and A2 are performed. '

A dual kind of arrow can be used to exit a state configuration. Figure
4.24 shows a case in which the system will enter S5 if it was in the con-
figuration (S2, S4) and E occurred. This is a merge construct.

If one portion of the transition is missing, the meaning is quite dif-
ferent. Figure 4.25 illustrates this case, in which the and-state is
exited, and S5 is entered when E occurs and the system is in S2. The

4 [or]

MONITORING

WAITING FOR_ |
| COMMAND

POWER_ON SAMPLING

| DISCONNECTED
>

Figure 4.22 A joint connector in a fork construct.

=0 O
0 O

Figure 4.23 Triggers and actions on a fork construct.

70 Chapter Four

_ '—’CJ

Figure 4.25 A transition from an and-state.

- A

Figure 4.26 A transition into an and-state.

transition is performed independently of which of the substates in
the other component the system is in (S3 or S4).

Figure 4.26 shows a transition from S0 that causes entrance to the
configuration (S1, s3). The entrance to S1 is by the arrow itself, over-
riding any default that might exist, and the entrance to S3 is by the
default transition.

The Behavioral View: Statecharts 71

4.6.2 History entrances

An interesting way to enter a group of states is by the system’s history
in that group. The simplest kind of this “enter-by-history” feature is to
enter the state most recently visited within the group. This is depicted
by the special history connector, also called an H-connector.

Returning once again to our EWS example, consider Fig. 4.27. Here
we have decided that once the sensor is connected when we are in state
DISCONNECTED, we make a transition to state CONNECTED and enter
the inner state that was visited most recently, which will be either
IDLE or OPERATING. The arrow leads to an H-connector; thus the
mode the EWS reenters is the mode it left when the sensor was dis-
connected. Notice that the H-connector also has a regular outgoing
transition leading to IDLE. This signifies that IDLE is the state to
be entered if there is no history (e.g., when the CONNECTED state is
entered for the first time).

The history connector specified in Fig. 4.27 indicates an entrance by
history on the first level only. If state OPERATING, for example, had
substates SLOW and FAST, the history entrance would not extend down
to these. In other words, it would not “remember” which of these two
substates the system last resided in, and the entrance would be to the
one specified as default. To extend a history entrance down to all levels,
the H-connector can appear with an asterisk attached, indicating an
entrance to the most recently visited state (or configuration) on the
lowest level. This is a deep history connector, and it is illustrated in
Fig. 4.28. If the system was last in OPERATING . FAST, that would be the
state entered, despite the fact that SLOW is the internal default.

Once we have history entrances, we must provide the ability to
“forget” the history at will. In our example, we may wish to specify
that when the HALT event is generated the slate will be cleaned,
and the next entrance to OPERATING will be to the default state
SLow, regardless of past behavior. We have special actions for
this purpose, which can be used along the appropriate transitions:

PROCESSING

*;) CONNECTED
[SENSOR_CONNECTED]
DISCONNECTED <:>~\;
ERATING

~

IDLE oP

\\\ [SENSOR_DISCONNECTED] _

Figure 4.27 A history connector.

72 Chapter Four

PROCESSING

‘} /CONNECTBD
[SENSOR_CONNECTED] OPERATING
DISCONNECTED »(H*
[SENSOR_DISCONNECTED] \ @ /

Figure 4.28 A deep history connector.

history_clear(S) and deep_clear (S), abbreviated hc! (S)
and dc! (3), respectively. The former causes the system to forget the
history information of state S. That is, the next time a history con-
nector or a deep-history connector drawn in state S is entered, the sys-
tem will behave as if S was entered for the first time. The latter causes
the system to forget the history information of all of the descendants
of s, to any depth of nesting.

