Chapter

Communication between
Activities

Specifying the communication between activities consists of the what
and the when, just as in other parts of the specification. The what is
described by the flow-lines in the activity-charts (see Chap. 2) and rel-
evant parts of the Data Dictionary (see Chap. 3). The “when” is to be
specified by the behavioral parts of the model, that is, the statecharts
and mini-specs. This dynamic aspect of communication is the subject
of the present chapter. We discuss the parts of our languages that con-
trol the communication between activities and discuss how they are
related to the flow-lines in the functional view. We also describe the
queue mechanism in some detail.

8.1 Communication and Synchronization
Issues

Functional components in systems communicate among themselves to
pass along information and help synchronize their processing. A num-
ber of attributes characterize the various communication mechanisms,
and different mechanisms are convenient for different application
domains. The communication can be instantaneous, meaning that it is
lost if not consumed immediately, or persistent, meaning that it stays
around until it gets consumed (which can be achieved by queuing, for
example). The communication can be synchronous (e.g., the sender
waits for an acknowledgment or reply from the listener) or asynchro-
nous (i.e., there is no waiting on the part of the sender). The commu-
nication can be directly addressed (i.e., the target is specified) or sent
by broadcasting. And there are other issues. A flexible modeling and
implementation environment will make it possible to use many vari-
ants of these communication patterns.

117

118 Chapter Eight

In our models, every element has a scope in which it is recognized.
The scoping depends on the element’s definition chart, and is described
in Chap. 13. The central point here is that every change in the value of
an element is broadcast to all activities and statecharts in the element’s
scope, and is thus “seen” by them all. These changes include the occur-
rence of an event, the assignment of a value to a data-item or condition,
‘a change in the status of an activity, and entering or exiting a state.

In addition to events, which are instantaneous and last for one step
only, all other elements keep their values until some explicit action
causes a change. Therefore, for all communicated elements other than
events, the receiver need not necessarily be active when the sender
assigns them a value. Moreover, in all cases other than queues, the
same information can be consumed an unlimited number of times.

The following sections discuss the elements related to the flow of
information in our languages and illustrate how they can be used to
model various communication patterns.

8.2 Controlling the Fiow of Information

The statecharts and mini-specs are responsible, among other things, for
controlling the flow of information between activities, and they are com-
plemented by certain elements in the textual language. The description
of the information flow given in the activity-charts completes the pic-
ture, and it should be consistent with the control specification.

8.2.1 Elements related to flow of information

Consider Fig. 8.1, in which X is specified to flow between activities A
and B. When does X flow, and what triggers the flow?

Assume first that X is an event, and that the behavior of A is
described by the statechart that constitutes 2A’s control activity. This
statechart may contain an action that generates X along a transition
or in a static reaction, and at that instant the controlling statechart of
B (or of any of B’s descendants) can sense X and modify its behavior
accordingly. See Fig. 8.2. Similarly, A and B can be described by mini-
specs, which, respectively, contain an action that generates X and some
reaction triggered by it. Many other alternatives are also possible.

If X is a condition or a data-item, it is considered to be continuous in
time. This means that the value of X may change at any point in time

Figure 8.1 An information element flowing
between activities.

Communication between Activities 119

A B

@B—S ‘ ‘

SEAESCRATE ATEC . “STATECRATE B EC
GL’D@.D

Figure 8.2 Producing and consuming an event.

K 4

as long as A is active, and B can sense and use this value at all times
(even when 2 is no longer active). The actions and events that were
described in the preceding chapters enable us to affect the values of
the conditions and data-items and to sense when changes in such val-
ues occur. More specifically, if X is a condition, the source activity A
(i.e., its controlling statechart or mini-spec and those of its descen-
dants) can change X’s value by the actions tr! (X) and £s! (X) . The
change itself (via the events ch (X), tr(X), or £s(X)), and the cur-
rent truth value of X, can be sensed anywhere in B. If X is a data-item
or condition, it can be assigned values in 2 by actions such as X: =E for
an expression E. In B, we can sense the event written (X) (abbrevi-
ated wr (X)), which may be viewed as occurring at the instant the
assignment takes place. The value of X can also be used in any con-
trolling statechart, mini-spec, or combinational assignment inside B.

If we are not interested in assigning a specific value to X, just in
stating that some value has been assigned, A may execute the action
write_data (X) (abbreviated wr! (X)), and B may sense the event
wr (X) . Thus, informally, the action wr! (X) means assign a value to
X but without specifying any specific value, and the event wr (X)
means that X has been assigned a value. In a dual fashion, the target
activity B of the data-item or condition X may perform the action
read_data (X) (abbreviated rd! (X)), signifying that it has read
the value of X, without using it in any particular computation. At the
same time, the source activity A can sense the corresponding event
read (X) (abbreviated rd (X)).

Note the following rules, which hold when the actions wr! and rd! are
applied to structures such as records and arrays and their components.
The general idea is that when dealing with structures all of whose com-
ponents exist in every occurrence of the structure, the special actions

120 Chapter Eight

and events that involve the structure as a whole apply to all compo-
nents, but the converse is not true. If R is a record, then the action
wr! (R) and an assignment to R trigger the event wr (R.X) , for each com-
ponent R.X of R, and the action rd! (R) triggers the event rd (R.X).
If A is an array, the action wr! (A) triggers the event wr (A(I)) for each
component of A, and the action rd! (a) triggers the event rd (A (I)).An
assignment to the entire array (e.g., A:=B), or to an array slice (e.g.,
A(1l..3):=T), triggers the event wr (A(I)) for each index I in the
assigned range but not vice versa; that is, an assignment to A (I) does not
cause the event wr (A).

For unions, in which the components have an exclusive nature, actions
on a component imply events related to the containing union data-item
but not vice versa. Thus if U. F is a component of the union data-item U,
then the action wr! (U.F) triggers the event wr (U), as does an assign-
ment to U.F. The action rd! (U.F) triggers the event rd (U).

The written and read events are relevant to the queue data-item,
too. This is discussed in Sec. 8.4.

8.2.2 Interface between “execution”
components

The actions and events described earlier provide a way to monitor
the behavior of the flow of information. An important issue related
to the information elements that appear in controlling statecharts,
mini-specs, and combinational assignments pertains to their origins
and destinations. In particular, the statecharts themselves do not
explicitly deal with the flow of information. The inputs and outputs
of a statechart are presented in the activity-chart as flowing to/from
the control activity associated with the statechart in question.

For example, refer to Fig. 4.3, the simplest version of the statechart
describing the EWS_CONTROL. The operator commands EXECUTE,
SET_UP, and RESET are input events to this statechart and are shown
as flowing from an external activity into the control activity (as compo-
nents of COMMANDS) in Fig. 2.5. Similarly, the event OUT_OF_RANGE,
which is also used in this statechart, is an input that comes from the
COMPARE activity.

Not all the elements used in the statecharts come from external
sources. We have seen that orthogonal components may communicate
via internal information elements. The events OPERATE and HALT,
shown in Fig. 4.14, are generated by an orthogonal component and, as
such, they do not appear in the external interface of the control activ-
ity in Fig. 2.5 at all.

In general, each element that appears in a behavioral description
unit (i.e., a statechart, mini-spec, or combinational assignment) may
be either used by or affected by this description unit. Some elements,
such as the events HALT and OPERATE and the event TICK in the mini-

Communication between Activities 121

spec of Sec. 7.4.1, are both used and affected by the same statechart or
mini-spec and are thus considered internal to it.

If X appears in a trigger (along a statechart transition or in a reaction
in a state or mini-spec), then we say that it is used by the statechart or
activity. The same applies if X appears in a conditional expression in
the if or when parts of an action. Data-items are also said to be used by
a statechart or an activity if they appear on the right-hand side of
assignment actions or combinational assignments.

Consider, for example, Fig. 8.3. The event E and the condition C are
used by the statechart because they appear in the transition’s trigger.
If C is a compound condition (say, it is defined as C1 or I=J), then its
components (in this case, C1, I, and J) are also used by the state-
chart. The data-items X and Z in Fig. 8.3 are also used because the for-
mer is tested and the latter participates in an assignment.

Similarly, if X is an event generated by an action (along a transition
or in a static reaction or a mini-spec) in the statechart or in an activity,
then it is affected by this behavioral unit. The same applies if X is a
data-item or a condition that is assigned a value in an action (e.g., Y
and K in Fig. 8.3), or in a combinational assignment (e.g., IN_RANGE of
Sec. 7.4.3).

In a complete specification, we expect all elements that are used by
a statechart or an activity (in its mini-spec or combinational assign-
ment), but are not affected by it, to be inputs to the corresponding con-
trol activity or the activity itself, respectively. Similarly, elements that
are affected by the statechart or the activity, but are not used inter-
nally, are expected to be outputs of the control activity or the activity.

We should remark that actions related to activities (e.g., st ! (A) and
sp! (A)), although they can be viewed as signals that flow out of the
control activity, have no corresponding flow-lines in the activity-chart.
The same goes for the events st (A) and sp(A), and the conditions
ac(a) and hg(A), which can be viewed as signals that flow from A
into the control activity.

8.3 Examples of Communication Control

We have seen several patterns by which activities communicate. For
example, the data-item LEGAL_RANGE was assigned a value by the
SET_UP activity, and this value was used later by the COMPARE function.
In this scheme of shared data, the exact timing of the production and
consumption of the values is not significant. On the other hand, we have

E[C] / if X=3 then Y:=Z; tr!(K) end if
s1 »| S2

Figure 8.3 Elements used and affected by a statechart.

122 Chapter Eight

seen several cases in which events were used to detect an occurrence in
which timing was important and an immediate response was required
(e.g., the OUT_OF_RANGE notification and the RESET command).

We shall now see examples in which the communication involves
synchronization aspects as well as data transfer.

8.3.1 Communication between periodic
activities
In distributed computation models, the functionality is often divided
among a number of periodic activities. Each of these has some mission
to carry out, and upon completion it transfers control to some other
activity. One activity might prepare data for processing and then notify
the consuming activity when the data is ready. Figure 8.4 shows
such a case from the EWS example, where we specify the activities
PROCESS_SIGNAL and COMPARE. The checking that takes place in the
latter is synchronized to the periodic rate at which signals are pro-
duced in the former. CHECK is a procedure-like activity that computes
the IN_RANGE value for the current SAMPLE and then terminates.

In this example, like other similar ones, some assumptions are made
about the processing time of the activities participating in the cycle.

OUT_OF_RANGE 4

PROCESS_SIGNAL RANGE_RhﬁGE COMPARE
@PS_CTRL | l@CMPRHCTRL I
SAMPLE

COMPUTE l CHECK

(a)

/TICK pg CTRL

Sp (COMPUTE) /wr! (SAMPLE)
COMPUTING Pl WAIT_FOR_
tm(TICK,N) /TICK NEXT
(b)
CMPR_CTRL
wr (SAMPLE)

WAIT_FOR_ sp (CHECK) /if (not IN RANGE) | CHECKING
SAMPLE then OUT OF RANGE end if

(c)

Figure 8.4 Communication between periodic activities. (¢) The communicating
activities. (b) The statechart of PROCESS_SIGNAL. (c) The statechart of COMPARE.

Communication between Activities 123

For instance, it is assumed that in every cycle the CHECK activity suc-
ceeds in completing its execution before the next SAMPLE is ready for
processing; otherwise, some data may be lost.

In Fig. 8.4 we have shown only the top-level behavior; there is no
explicit value assignment to SAMPLE, and no details about how it is
used in the CHECK activity. The timing of the data transfer and how it
influences the activity scheduling are expressed with the abstract
write_data action and the written event. Actually, the read_data
action and read event can be used in a dual manner to synchronize an
activity execution with the time the data is consumed, so that a cycle
of preparing new data can start.

8.3.2 Message passing

It is sometimes convenient to base the communication between activ-
ities on message passing. A good way to deal with this involves
queues, which are described in the next section. However, in many
cases, the mechanisms already discussed are sufficient. Dataless mes-
sages can be represented by events, while messages with data can
be modeled by record data-items, whose departure from the source
(or arrival at the target) can be sensed by the receiver using the
written event.

As an example, assume we have a simple client/server setup, where
the server waits in an idle state for a message that denotes a request
for some service. The server is able to deal with three different kinds
of messages, each with special data. This can be achieved using a
union data structure whose components are the various message
records, as follows.

First, we define a data-type MESSAGE as a record with two fields:

Field Name: TYPE Field Type: Integer min=1 max=3
Field Name: DATA Field Type: MSG_DATA

The first field, TYPE, holds the message type, one of three possible
values, while the second holds the accompanying data. The user-
defined type MSG_DATA is a union consisting of three fields, each corre-
sponding to one of the message types:

Field Name: D1 Field Type: POSITION
Field Name: D2 Field Type: BITS
Field Name: D3 Field Type: KEY

Each message transfers some data represented by a different user-
defined type. The client prepares and sends the message MSG (whose
data-type is MESSAGE) by carrying out the following actions:

MSG.TYPE:=1; MSG.DATA.D1l:=NEW_POSITION; wr! (MSG)

124 Chapter Eight

In Fig. 8.5 we see how the server may respond to the arrival
of the message. Each of the three services activated in response to
the respective message (i.e., service request) consumes its appropri-
ate data.

In this example we did not discuss whether the server is guaranteed
to be ready to respond when the request is sent, or how the client knows
whether the request was fulfilled. Our language does not contain any
built-in mechanism for identifying message senders so that replies can
be automatically addressed. However, when this is required (e.g., for
synchronization or confirmation purposes in a multiple-client environ-
ment), it can be implemented using explicit identification. Later, when
multiple instances of generic charts are discussed, we shall see that an
instance number can be used for this purpose.

8.4 Activities Communicating through
Queues

Queuing facilities for messages are virtually indispensable in model-
ing multiprocessing environments, especially multiple client/server
systems. We would like to be able to address situations in which an
unlimited number of messages is sent to the same address, while the
receiver is not always in a position to accept them. We also want to
arrange things so that no message is consumed before one that was
sent earlier. Moreover, we want it be possible for concurrently active
components to write messages to the same address at the same
moment and for concurrently active components to read different

SERVER
MSG MSG.TYPE @SRVE SC
CLIENT ___;.T > =

— B B
MSG.DATA.D1 MSG.DATA.D2 MSG.DATA.D3

OP1 or2 OP3

()

statechart SRVR_SC

sp (OP1)

{MSG.TYPE=1] /st! (OP1)

wr (MSG)
MSG.TYPE=2] /st ! (OP2)
IDLE > | DOING2
.| DOING3
[MSG.TYPE=3] /st ! (OP3 ‘

()

Figure 8.5 Server responding to three service requests.

Communication between Activities 125

messages from the same source, even at that very same moment. In
our language set, we use message queues for this, simply called queues
for short.

8.4.1 Queues and their operation

A queue is an ordered, unlimited collection of data-items, all of the
same data-type. The queue is usually shared among several activities,
which can employ special actions to add elements to the queue and
read and remove elements from it. Our queues are of unrestricted
length, which is in contrast to those used in some real-time kernels,
which are defined with a maximal number of components.

A queue is itself a structured data-item, just like an array, and when
defined in the Data Dictionary the data-type of its components must
be specified. This data-type can be any basic predefined type (i.e., inte-
ger, real, etc.), or a user-defined type. There are no limitations on com-
bining queues with other constructs, e.g., arrays, records/unions, or
other queues. This means that we can define an array of queues, a
record with a queue as a field thereof, or even a queue of queues. The
usage of such compound constructs will be presented further shortly.
A queue of records or unions, for example, is achieved by an interme-
diate definition of a user-defined type.

We supply several actions to manipulate a queue. The exact timing
of these actions during the execution of a step is a delicate issue, which
is discussed in Sec. 8.4.2.

The actions g_put (Q, D) (abbreviated put! (Q,D)) and g_urgent_
put (Q, D) (abbreviated uput! (Q,D)) add the value of the expression
D (a data-item or condition) to the queue Q. The former action adds an
element to the tail of the queue, while the latter adds it to the head of
the queue, allowing messages with higher priority to precede all others.
Both these operations cause the event wr (Q) to occur. The type of the
expression D must be compatible with the data type of the elements of
the queue, as in assignment actions.)

The action that is dual to these two is g_get (Q, D, S), abbreviated
get! (Q,D,S). It extracts the element residing at the head of the
queus Q and places it in D, removing it from the queue in the process.
The data type of D must be compatible with the data type of the ele-
ments in the Q. The third operand, the status condition S, is optional.
It is set to true if the queue contained elements when the action was
carried out, and to false if the operation failed to find data to extract.

The action g_peek (Q,D, S) (abbreviated peek! (Q,D, S)) is similar
to get !, but it is not destructive; it copies the element at the head of
the queue into D without removing it from the queue.

The actions get ! and peek! may succeed or fail, the latter being the
case if the queue is empty. If successful, D and S are assigned values,
and the events rd(Q) and wr (D)occur. The event wr (S) always

126 Chapter Eight

occurs, and if the values of D and S are changed from their previous
values in the process, then ch (D) and ch(S) occur, too.

In addition to these actions, a queue can be totally cleared by the
action g_flush(Q), abbreviated £1! (Q). It is also possible to exam-
ine the queue length by the operator q_length (Q), which returns
the length of the queue prior to the step. More about this issue in the
next section.

8.4.2 The semantics of queues

A queue is inherently sequential because the order in which the mes-
sages are put in the queue determines the order in which they are con-
sumed (with the exception of the order-overriding action uput!). A
problem arises when operations on the same queue occur in parallel
components during the same step. Because there is an element of non-
determinism in the order of the operations, which depends on the tool
implementing the execution of the model, the end result might not be
fully determined. We now describe a carefully defined semantics, whose
goal is to reduce this nondeterminism.

All get actions are performed when they are encountered. Actually, a
get action immediately removes the element read from the head of the
queue. However, the assignment to D in get! (Q,D,S) is performed
only at the end of the step, unless the assigned variable is a context
variable (i.e., $D instead of D, see Sec. 5.2.2). Several get actions in the
same step read the elements from the queue sequentially, and each
reads a different element one after the other in a nondeterministic
order. Because get fails when the queue is empty, some of the get
actions succeed and some fail. Using a context variable for the status
condition (i.e., $S instead of S) makes it possible to check in the current
step whether the operation succeeded.

In contrast to get actions, a put does not immediately affect the con-
tents of the queue. All put actions are accumulated and are performed
at the end of the step. This scheme reduces the chances of racing (see
Sec. 6.3.2) because it prevents the interleaving of get and put actions
in the same step. The order in which the put actions of the same step
are performed at the end of the step is also nondeterministic, and it
depends on the tool implementing the execution.

The clearing action flush also takes effect at the end of the step.
When issued in the same step with some put actions on the same
queue, £lush will be the last to be carried out, and it will result in an
empty queue. Of course, this situation is considered a racing condition.

Although the actual number of elements in the queue might change
during a step, the returned value of the g_1length operator is not up-
dated continuously. Rather, it returns a unique value per step retrieved
before all other queue operations of that step. The following example of

Communication between Activities 127

its use is inappropriate, and when started on a nonempty queue, it will
result in an infinite loop:

while g_length(Q)>0 loop
get! (Q, $MSG, $S) ;
if $S then

end if;
end loop

The following loop is more suitable for processing all messages in the
queue:

for $I in 1 to g_length(Q) loop
get! (Q, SMSG, $S) ;
if $S then

else
break

end if;
end loop

The status condition ¢S is checked during the loop, because there may
be several consumers reading from the queue in the same step.

Figure 8.6 illustrates the order in which operations on a queue are
performed during a step.

8.4.3 Queues in an activity-chart

Queues can be associated with data-stores just as data-items of other
types can be. To associate a queue with a data-store, both must have
the same name. Figure 8.7 illustrates the combined use of data-stores
and queues, and here, too, if the incident flow-lines are unlabeled, the
queue Q is considered an output of the source activity, PRODUCER, and
an input to the target activity, CONSUMER.

Note that P_MSG is not an output of PRODUCER and is therefore not
written on the emerging flow-line. It is best to view the put ! (Q, P_MSG)
action as the assignment queue-head:=P_MSG. In terms of Sec. 8.2.2,

retrieve . .
q_length q_get operations q_put operations q_flush

Figure 8.6 Operations on a queue during a step.

PRODUCER CONSUMER

put! (Q,P_MSG) Plget! (Q, P_MSG)

Figure 8.7 A queue associated with a data-store.

128 Chapter Eight

P_MSG is actually used by the put operation, and should thus flow into
the PRODUCER activity, or, alternatively, it should be assigned internally.
Moreover, P_MSG is not necessarily a variable data-item; it may be a com-
pound expression or a constant that cannot even move along a flow-line.
Dually, C_MSG is viewed as being affected by the CONSUMER activity, where
actually it can be viewed as being assigned by C_MSG:=queue-head.
Thus it is expected to be an output of CONSUMER, or used internally.

Sometimes a queue that transfers messages between activities is
marked just as a label on a flow-line between the sender and the
receiver. When messages flow among activities in both directions, two
oppositely flowing lines can be used.

8.4.4 Example of activities communicating
through queues

The special characteristics of queues make them suitable for model-
ing architectures consisting of several clients and servers. Before
sending a new request, a client does not need to check whether
its previous requests (and those of other clients) have already been
granted and a server is available because all requests are kept in
the queue until they are granted. However, the exclusive nature of the
get operation guarantees that only one server will handle an indi-
vidual request, although multiple servers may be available when the
request arrives.

Let us now assume we have a multiple-EWS system, consisting of sev-
eral EWS units of the kind described so far and connected to several
printers. Any of the printers may serve any one of the units. See Fig. 8.8,
which shows an activity-chart with four EWS units (the clients) con-
nected via a queue PRINTING_Q to two printers (the servers). The queue,
in addition to its appearance in the data-store, is defined in the Data
Dictionary as a data-item whose type is queue of PRINT_REQST.

EWS_1

i PRINT_ FAULT i\

PRINTER_1
EWS_2
| PRINT_FAULT |~

I PRINTING Q

EWS_3 /
I PRINT_ FAULT Iz

EWS_4
I PRINT FAULT r

PRINTER_2

Figure 8.8 Multiple clients served by multiple servers via a queue.

Communication between Activities 129

CONSTRUCT FAULT_MESSAGE;
put! (PRINTING_Q, FAULT MSG)

(@)
PRINTER
PRINTING MS
_Q ;[@PRINTER_CTRL ¢ I PRINT
PRINTER_CTRL
wr (MSG) /st ! (PRINT)
READING -
PRINTER sp (PRINT) PRINTING
\QUEUE>

entering/get! (PRINTING Q,MSG) ;;
wr(PRINTING_Q)/get!(PRINTING_Q,MSG)

(b

Figure 8.9 Writing and reading messages from a queue. (a) Mini-spec of PRINT_FAULT
activity. (b) Description of the PRINTER.

Each of the EWS units contains a PRINT_FAULT activity that con-
verts the OUT_OF_RANGE_DATA into a printing request (FAULT_MSG of
type PRINT_REQST) and sends it to the queue PRINTING_Q. A printer,
when ready, reads the next request from the queue, if there is one, and
performs the actual printing. See Fig. 8.9 for the mini-spec of the
PRINT_FAULT activity and the internals of each PRINTER.

8.4.5 An address of a queue

The preceding example is of loosely coupled (asynchronous) communi-
cation. Because the sender does not wait for a reply, the receiver does
not need to know the identity of its clients. When the server does not
have any prior knowledge of its clients and tightly coupled (synchro-
nous) communication is required; that is, the sender waits for a
response, and the address for reply should be contained in the original
request. This can be supported by referring directly to the queue data-
item that actually holds the address to the queue. This implies that if
01 and Q2 are both defined as queues of the same component type,
then Q1:=02 is a legal action, after which Q1 will point to the same
data that Q2 points to. Any put and get operation using either Q1 or
02 will affect the common queue. We should point out that two queue
data-items are considered equal only if they point to the same real
queue; e.g., 01=Q2 is true after the assignment Q1:=02. Otherwise,
even if all of their contents are the same, the two are not equal.

130 Chapter Eight

o . Static reactions in state:
' o l .../get! (SERVER_Q,RECV_MSG)
.. ./MSG.SOURCE : =MY_QUEUE; L e T

put! (SERVER_Q, MSG)

WAITING
FOR_ACK

wr (MY_QUEUE) : wr (RECV_MSG) /

A put! (RECV_MSG.SOURCE, ACK)

READING
QUEUE>

- I

(a)

Figure 8.10 Using a queue address for synchronous communication. Behavior of
(@) CLIENT and (b) SERVER.

When synchronous communication is required, each client may
have its own queue through which it receives replies. When sending
a message MSG, the client includes a field, say MSG.SOURCE, to
which it assigns its queue address, say, MY_QUEUE, by the action
MSG.SOURCE: =MY_QUEUE. Assume that the server reads the mes-
sage into RECV_MSG, and acknowledges its receipt by sending a
reply using the action put! (RECV_MSG.SOURCE, ACK) . The client
then waits for the event wr (MY_QUEUE) that results from this put,
and can then proceed with its work. See Fig. 8.10.

