Appendix

Names and Expressions

This appendix presents the syntax rules for names and expressions in
the languages described in the book.

A.1 Names

A.1.1 Reserved words
ac active all and any
break
ch changed
dc deep_clear downto
else en end entered entering ex exited exiting
false for fs f1l
get
hanging hc hg history_clear
if in
length_of lindex loop
make_false make_true
nand nor not ns nxor
or
put peek
g_put g _urgent_put g _get g _peek g_flush g_length
rd read read_data resume rindex rs
schedule sd sp st start started stop stopped

suspend

then timeout tm to tr true

uput

wr write_data written when while
XOr XS

A.1.2 Textual element names

® A legal name of a textual element is a sequence of alphanumeric
characters, excluding blanks, and possibly including _ (underscore).
It must begin with a letter.

8 The maximal length of a name is 31 characters.

225

226 Appendix A

2 Names are not case-sensitive.

Synonyms contain at most 16 characters.

® A name cannot be a reserved word.

® A name cannot be the same as the name of a predefined function.

8 User-defined types cannot have the following names: integer,
real, bit, array, queue, record, union, bit_array,
string, condition, single.

When referring to a textual element in an expression (e.g., in a tran-
sition label), names can be spread out over multiple lines and \
(back slash) must be written before the “new-line” inside the name.

® A textual element can be referred to outside the model prefixed by
the chart name in which it is defined: chart-name:element -name
(e.g., MAIN: X).

A.1.3 Box element names

® A legal name of a box element is a sequence of alphanumeric char-
acters, excluding blanks, and possibly including _ (underscore). It
must begin with a letter.

® The maximal length of a name is 31 characters.
B The names are not case-sensitive.

® Synonyms contain at most 16 characters.

#@ The name cannot be a reserved word.

A box element can be referred to by pathname, i.e., preceded by its
parents’s name: ...grandparent-name.parent-name.box-name
(e.g., A.B.C) and optionally also with the chart-name in which it is
defined: chart-name:pathname (e.g., MAIN:A.B).

& The pathname of a top level box is: . box-name (e.g., . TOP)

8 When referring to a box element in an expression (e.g., in a transi-
tion label), names can be spread out over multiple lines, and \ (back
slash) must be written before the “new-line” inside the name.

A.1.4 Names of elements in generic instances

An element in a generic instance is referred to by:
instance-name”unique-element-name-in-instance.

B An instance name can have several levels of nesting (instance in
instance in instance, etc.), in which case, several » signs are used.

B An instance name (box name) on each level of the nesting and the
element name in the instance must be unique. Therefore, each may
contain a chart name. For example, A:XK"L"B:M"C:X.

Names and Expressions 227

A.2 Expressions
A.2.1 Event Expressions
Atomic event and array of events An atomic event is one of the fol-
lowing:
® Named single (nonarray) event.

® E(K), the kth component of an event array E;
expression.

K is any integer

An array of events (also referred to as an event array) is one of the
following:

® Named event array.

® Array slice, E(K. .L), of an event array E;
expressions.

K and L are integer

Events related to other elements The following operators, which are
related to various types of elements, produce a single (nonarray) event.

Event Abbreviation Occurs when Note
entered(S) en(S) State S is entered Used only in statecharts
exited(S) ex(S) State s is exited Used only in statecharts
entering ns Current state is Used only as trigger of

being entered reaction in state
exiting XS Current state is Used only as trigger of
being exited reaction in state
started(A) st (A) Activity A is started Used only in statecharts
started st Current activity Used only as trigger in
is started reactive activity
stopped (A) sp (A) Activity A is stopped Used only in statecharts
changed (X) ch (X) The value of X X is data-item or condition
is changed expression or array (including
array slice); can be
structured, or a queue
true(C) tr (C) The value of C is condition expression
condition C is (not array)
changed to true
false (C) fs(C) The value of C is condition expression
condition C is (not array)
changed to false
read (X) rd(X) X is read by action X is primitive (not alias)

rd!, or from a
queue, by peak!
or get!

data-item or condition; X can
be array (not slice), array
component (not bit-array
component), structured

and queue

228 Appendix A

Event Abbreviation Occurs when Note
written (X) wr (X) X is written by X is primitive (not alias)
actionwr!, by data-item or condition; X can
assignment, or be array (not slice), array
by put! in queue component (not bit-array
component), structured
or queue
timeout (E,N) tm(E,N) N clock units passed E is event expression

all(E)

any (E)

from last time
event E occurred

All components
of event array
E occurred

At least one
component of event
array E occurred

(not array); N is numeric
expression

E is event array

E is event array

Compound events
The following operations use only single (nonarray) events and condi-
tions and produce a single event.

Event Occurs when
E[C] E occurred and the condition C is true
[c] Condition C is true
not E E did not occur
El and E2 E1 and E2 occurred simultaneously
El or E2 El, E2, or both, occurred

The list presenting operations is in descending order of precedence.
Parentheses can be used to alter the evaluation order.

A.2.2 Condition expressions

Atomic condition and array of conditions An atemic condition is one of

the following:

® Literal constant: true, false (not case-sensitive).

B Named single (nonarray) condition (can be of user-defined type).

8 C(K), the kth component of a condition “indexable” array C;
any integer expression.

K is

B R.C, a field expression of type condition in a record or union R, for
example, A.B.C, where C is a field of type condition in the field B
(with a record structure) in the record 2.

Names and Expressions 229

An array of conditions (also referred to as condition array) is one of the
following:

8 Literal constant: {C1,C2,...,K*CN, ..., *CL};each Ci is a literal
constant condition, and K is a literal constant integer.

8 Named condition array (can be of user-defined type).

B R.C, a field expression in a record or union of a type condition
array.

® Array slice, C (K. .L), of a condition indexable array C (defined next);
K and L, are integer expressions.

An indexable condition array is one of the following:

@ Named condition array (can be of user-defined type)

@ R.C, a field expression in a record or union of a type condition
array. :

B A component of an array, whose type is a condition array, for exam-
ple: RRC (I), where RRC is an array of condition arrays. RRC (I) is an
array of conditions, and RRC(I) (K) is a condition.

Conditions related to other elements The following operators, which
are related to various types of elements, produce a single (nonarray)
condition.

Condition Abbreviation True when Note
in(S) System is in state S Used only in statecharts
active (A) ac (A) Activity A is active Used only in statecharts
hanging (A) hg (A) Activity A is Used only in statecharts
suspended
X1 R X2 The values of X1 and X1 and X2 are data-item
X2 satisfy the or condition expressions;
relation R When numeric, R may
be=,/=,>, <, =<, =>;
When strings,

arrays, structured, or
queues, R may be =, /=

all(c) All components of C is a condition array
condition array C
are true

any (C) At least one C is a condition array

component of
condition array C
is true

230 Appendix A

Compound conditions The following logical operations use only single
(nonarray) conditions and produce a single condition.

Condition True when

not C C is not true
Cl and C2 Both C1 and C2 are true
Cl or C2 C1 or C2 or both are true

The list presents the operations in descending order of precedence.
Parentheses can be used to alter the evaluation order.
Logical operations have lower precedence than comparison relations.

A.2.3 Data-item expressions

Data-item expressions are converted to the required type when
needed:

Bit-arrays shorter than 32 bits to integer and vice versa.

& Bit to integer.

® Integer to real.

Therefore, integer expression means also expression of type bit and bit-
array (with length less than 32); numeric expression means real

expression and integer expression, including bit-array expressions
(with length less than 32).

Atomic, array, and structured data-items An atomic numeric data-item is
one of the following:

B Literal constant:
integer: decimal integer (of value less than 2%%31)
bit-array: 0X. . .(hexadecimal); 0B. . . (binary); 00. . . (octal)
real: dec.dec[(Ele) [+]-] dec] (dec=decimal integer).

® Named real, integer bit-array, or bit (can be of user-defined type).
B Named data-item defined as numeric expression.

B D (K), the kth component of a numeric indexable array or bit-array
D, where K is any integer expression.

® R.C, a field expression in a record or union of numeric type. For
example: A.B.C, where C is a field of numeric type in the field B
(whose type is record), in the record 2.

An atomic string data-item is one of the following:

Names and Expressions 231

m Constant literal: sequence of characters enclosed by single quotation
marks (e.g. *ABC "); maximal length is 79 characters.

® Named string (can be of user-defined type).
® Named data-item defined as string expression.

® S (K), the kth component of a string indexable array S, where K is
any integer expression.

® R.C, a field expression in record/union of string type.
An array of data-items is one of the following:

® Literal constant: {D1,D2,...,K*DN, ..., *DL}, where each Di is
a numeric or string literal constant data-item, and K is a literal con-
stant integer.

8 Named bit-array, array of any type, or user-defined array type.

® R.D, a field expression in a record/union, whose type is a data-item,
array, or bit-array.

8 Array slice, D (K. .L), of an indexable data-item array or bit-array D,
where K and L are integer expressions.

g A component of an array, whose type is a data-item, array, or bit-
array.

®# Named data-item defined as an array or bit-array expression.
An “indexable” data-item array is one of the following:

& Named bit-array, array of any type, or user-defined array type.

® R.D, a field expression in a record/union, whose type is a data-item,
array, or bit-array.

B A component of an array, whose type is a data-item, array, or bit-
array.

A structured data-item, record, or union, is one of the following:

8 Named data-item defined as record or union (can be a structured
user-defined type).

B R.S, a field expression in a record/union of a type structured data-
item.

® A component of an array, whose type is a structured data-item.
Queue data-items are data-items, array components, or record or union

fields defined in the Data Dictionary as having the structure queue
(directly or via a user-defined type).

232 Appendix A

Data-items related to other elements The following operators are applic-
able to strings, arrays, and bit-array data-items and to user-defined
types that are defined as string, array, or bit-array. The result is a con-
stant integer.

Operator Meaning

length_of (A) Length of array, bit-array and string A (data-item or user-defined type)
rindex (A) Right index of array or bit-array A (data-item or user-defined type)

lindex (A) Left index of array or bit-array A (data-item or user-defined type)

The following operator is applicable to queues:

Operator Meaning

a_length(Q) Current number of elements in queue Q

Compound data-item expressions

Numeric operations. The following operations are relevant to integer,
bit, bit-arrays (of length less than 32), and real operands; the result is
numeric:

+EXP, -EXP
EXP1**EXP2
EXP1*EXP2, EXP1l/EXP2
EXP1+EXP2, EXP1-EXP2

The list presents the operations in descending order of precedence.
Parentheses can be used to alter the evaluation order.

Numeric operations have higher precedence than comparison rela-
tions and logical operations.

Bitwise operations. The following operations are relevant to integer,
bit, and bit-array operands; the result is a bit-array:

not EXP1

EXP1 & EXP2 (denotes concatenation)
EXP1 and EXP2, EXP1 nand EXP2
EXP1l or EXP2, EXP1l nor EXP2
EXP1 xor EXP2, EXP1l nxor EXP2

The list presents the operations in descending order of precedence.
Parentheses can be used to alter the evaluation order.

Bitwise operations other than the not operation have lower prece-
dence than comparison relations and numeric operations. The not
operation has higher precedence.

A.2.4 Action expressions
Actions manipulating other elements

Names and Expressions 233

Action Abbreviation Does Note
E Generates the event E E is primitive single
event (not array)
make_true (C) tr! (C) Assigns true to C is primitive single
condition C condition (not array)
make_false (C) fs!(C) Assigns false to C is primitive single
condition C condition (not array)
X:=EXP Assigns the value X is primitive or alias
of EXP to X data-item, array or
bit-array, condition
or array condition
(including slices)
start (A) st!(A) Activates activity A Used only in
statecharts
stop (A) sp! (A) Stops activity A Used only in
statecharts
stop Stops the current Used only in
activity mini-spec of reactive
activity
suspend (A) sd! (a) Suspends activity A Used only in
statecharts
resume (A) rs! (A) Resumes activity A’ Used only in
statecharts
read_data (X) rd! (X) Reads data-item or X is primitive (not
condition X alias) data-item or
condition, or array
(including slices);
bit-array components
or slices are not
allowed
write_data (X) wr! (X) Writes to data-item or X is primitive (not
condition X alias) data-item or
condition, or array
(including slices);
bit-array components
or slices are not
allowed
history_clear(S) - hc!(S) Forgets history Used only in
information of stat S statecharts
deep_clear (S) dc! (3) Forgets history Used only in
information of statecharts
descendants of state S
schedule (K, N) sc! (K,N) Performs action K N is numeric
delayed by N expression
clock units
q_put (Q, X) put! Adds data-item or X’s type is compatible

condition X to tail
of queue Q

with type of queue
components

(Continued)

234 Appendix A

Actions manipulating other elements (Continued).

Action Abbreviation Does Note
g_urgent_put (Q,X) uput! Adds data-item or X’s type is compatible
condition X to head with type of queue
of queue Q components
g_get (Q,X,S) get! Moves head of the X’s type is compatible
queue Q into data-item with type of queue
or condition X; components;
returns status S condition S is optional
g_peek(Q,X,S) peek! Copies head of queue X’s type is
0 to data-item or compatible with type
condition X; returns of queue components;
status S condition S is
optional
q_flush(Q) f1! Clears queue Q

Compound, conditional, and iterative actions Action expressions may
contain context variables: $legal-name, of no more than 16 charac-
ters (see Sec. A.1). Context variables are allowed for any type of data-

item or condition.

Action expression

Note

AN1 ; AN2

if C then ANl else AN2 end if

when E then ANl else AN2 end when

for $I in K toldownto L loop AN
end loop

while C loop AN end loop

break

The actions are performed sequentially;
the ; is optional at the end of the list

C is a condition expression; the else part
is optional

E is an event expression; the else part

is optional

$1 is a context variable; K and L are
integer expressions; AN is an action
expression

C is a condition expression; AN is an
action expression

Causes the containing loop action to
terminate

A.2.5 Data-type expressions

Data-types of a record or union’s fields can be defined (textually) in
the Data Dictionary entry of the record or union using the following
syntax. Note that fields of a structured type (record and union) can-
not be defined directly but only via user-defined types.

The keywords and the element identifiers are not case-sensitive. N
below is a constant integer expression, that is, literal integer constant,
named integer constant, or operation returning a constant value.

Names and Expressions 235

Square brackets denote an optional segment.

Basic types

integer
integer length=N
integer min=N1 max=N2

real

string [length=N]
bit

bit-array [N1 to N2]
condition

<user-defined type> (identifier)

Compound types
array [N1 to N2] [of <basic type>]
queue [of <basic type>]

A.3 Predefined Functions

A predefined function call has the following syntax:

returned-value :=

function(argl,arg2,...)

To describe the arguments’s type and the returned value in the follow-
ing table, we use the following abbreviations: I=Integer, R=Real,

S=String, W=Bit-array, B=Bit.

Conversion of the arguments’s type is carried out when needed.

A.3.1 Arithmetic functions

Function Arguments Returns Meaning
MAX Mixed RandI Input’s type Maximum value
MIN Mixed Rand1 Input’s type Minimum value
TRUNC R I Truncated value
ROUND R I Rounded value
ABS IorR Input’s type Absolute value
MOD 11,12 1 11 modulus 12
A.3.2 Trigonometric functions
Function Arguments Returns Meaning
SIN R R Trigonometric sine
cos R R Trigonometric cosine
TAN R R Trigonometric tangent

236 Appendix A

A.3.3 Random functions

Function Arguments Returns Meaning
RAND_EXPONENTIAL R R Random exponential
RAND_BINOMIAL LR I Random binomial
RAND_POISSON R I Random poisson
RAND_UNIFORM R,R R Random uniform
RAND_TIUNIFORM LI I Random integer uniform
RAND_NORMAL R,R- R Random normal
RANDOM I R Random
A.3.4 Bit-array functions

Function Arguments Returns Meaning

SIGNED w 1 Signed value (m.s.b. of W is a sign bit)

ASHL W, I W Arithmetic shift left by I, enters 0s

ASHR W, 1 \ Arithmetic shift right by I, preserves sign

LSHL W, I w Logical shift left by I, enters Os

LSHR W, 1 W Logical shift right by I, enters Os

BITS_OF W1, 11,12 W Slice of bit-array expression; l.s.b of W1 is 0

EXPAND_BIT B,I W Expand bit; creates a bit array of I bits, all

equal B

MUX W1, W2, B w Returns: W1 if B=0, W2 if B=1

A.3.5 String functions

Note: the index of the leftmost character in a string is 0.

Function Arguments Returns Meaning

STRING_EXTRACT S, 11,12 S Extracts a string of length 12 from index
I1ofS

STRING_INDEX S1,1, 82 1 Index of substring S2 within S1; —1 if
not found

STRING_CONCAT S1, S2 S Concatenates strings

STRING_LENGTH S 1 String length

CHAR_TO_ASCII S I ASCII value of first character of S

ASCII_TO_CHAR I S Returns S of one character with ASCII
value I

INT_TO_STRING I S Converts I to decimal string; I can be
negative

STRING_TO_INT S 1 Integer value of a decimal string

Names and Expressions 237

A.4 Reactions and Behavior of Activities

A.4.1 Statechart labels

A statechart label is one of the following:

® trigger, which is a single event expression; note that [condition]
is a legal event expression.

® reaction, which is of the form trigger/action.

® /action.

A.4.2 State reactions and reactive mini-specs

A state reaction and a reactive mini-spec is a list of one or more reac-
tions (i.e., of the form trigger/action) separated by ; ;:

reaction;; reaction;;
reaction;;

The ; ; is optional at the end of the list.
Restrictions on events, conditions, and actions depend on whether
they are used in a state or activity. See Sec. A.2.

A.4.3 Procedure-like mini-spec
A procedure-like mini-spec has the syntax of an action. See Sec. A.2.4.

A.4.4 Combinational assignments
A combinational assignment has the following syntax:

CE :=EXP1 when COND1l else
EXP2 when COND2 else

EXPN

Here, CE (the combinational element) is a primitive data-item or con-
dition, or it is an alias data-item. EXPi is a data-item or condition
expression. CONDi is a condition expression. N can be equal to 1 (in
which case the assignment is just CE: =EXP1) or more.

Combinational assignments in a sequence are separated by ;, like
actions in a sequence.

A.5 Flow of information
A.5.1 Flow labeis and information-flow components

Flow labels in activity-charts and module-charts and information-
flow components can be any primitive (variable) data element (event,

238 Appendix A

condition, data-item) or information flow. In addition they can be com-
ponents on any level of a primitive data element (array component,
array slice, and record or union field). Array components can use only
literal constants.

A.5.2 Actual bindings of generic parameters

Actual bindings of parameters in generic instances have the same syn-
tax as flow labels. See Sec. A.5.1.

Appendix

Early Warning
System Example

Functional
Decomposition
Approach

B.1 Textual Description of the System

The early warning system (EWS) receives a signal from an external
sensor. When the sensor is connected, the EWS processes the signal
and checks whether the resulting value is within a specified range. If
the value of the processed signal is out of range, the system issues a
warning message on the operator display and posts an alarm. If the
operator does not respond to this warning within a given time interval,
the system prints a fault message on a printing facility and stops mon-
itoring the signal. The range limits are set by the operator. The system
becomes ready to start monitoring the signal only after the range lim-
its are set. The limits can be redefined after an out-of-range situation
has been detected or after the operator has deliberately stopped the
monitoring. See Fig. 1.1.

B.2 The Model
B.2.1 The hierarchy of charts
Figure B.1 depicts the hierarchy of charts in the EWS model.

239

240 Appendix B

I TIME DEFS (Gnﬂ

EWS_ACTIVITIES (ac)|

{—{ Ews_cowroL (sc))

(sET_up_sTaTES (sc)]

| DXSPLAY_FAULT (ac) |

—{conTROL_PAULT MESSAGE (sc) |

L—{CONTROL_ALARM_SIGNAL (sc))

Figure B.1 Hierarchy of charts in the EWS model.

B.2.2 The charts
Figures B.2—B.8 depict the charts in the EWS model.

BWS
MONITOR
USER_INPUT
KEY PRESSING !
KEYBOARD
: OPERATOR MSGS_TO DT

. .T l

Figure B.2 Module-chart EWS model.

Early Warning System Example: Functional Decomposition Approach 241

[o e e e T T TS Teme B
l |
| EWS_ACTIVITIES 1
1]
\ SENSOR_CONMETTEG, |
b himams | e |
GET_ |... A
II ¥ INPUT comapz R T :
| SET_UP_DONE #° - 1
: RANGE _ T © 1 OUT_OF_RANGE ALARM :
! LIMITS : eDISPLAY NOTIFICTION
\ @SET_UP : FAULT l, |
1 SU_M3G : |
DISPLAYED e :
1 su SéG - JTO_DISPLAY : peseeees Ty
[- : : OPERATOR. |
| DISPLAY <LEGAL _: OUT_OF_RANGE_DATR . . i
! 8U_MSGS> ‘RANGE - ! Trretra” !
! } : i
1 R |
! PROCESS COMPARE> PRINT ¢
! SIGNAL> | SAMPLE FAULT FAULT_REPORT |
1 |
| I
| SIGNAL |
1 |
1 SR K I
X . SENSOR i
1 I
o e e e e e e T e e bl
[1
1 1
i 1
i {not POWER_ON] |
t 1
1 1
| 1
1 |
1 I
[1
1 1
1 _ - 1
' (READY] /OPERATE [(o) maninG> "
1 WAITING_FOR_ "L 1
1 COMMAND & !
! Yy 4 RESET/HALT !
] SET_UP 1
1 1
1 1
1 1
1 < Sp(SET_UP) |
1 i
I SETTING_UP> ALARM_TIME_PASSED 1
: /st! (PRINT_FAULT) :
| s oo e r wmm e emw mm e N GEe emm GID UNR GND WAS R MR SN0 eTD WD G0 G2 Ml GXE SR GRR oW @o GED oo omm 4 i
\ PROCESSING i
: ﬁomcrgb :
| [SENSOR_CONNECTED] X
! DISCONNECTED — OPERATE !
| L IDLE OPERATING> \
1 !
\ [not SENSOR_CONNECTED) TALT !
1 1
i !
e T T T T L L L L T T L T T T T S T L L T S T T T e —— - J

Figure B.4 Statechart EWS_CONTROL.

242 Appendix B

o ———— —————————— B ettt et
! teeeneraeeaes
1 . ot
! sET_UP LEGAL_RANGE| ; LEGAL_ 1
| @SET_UP_STATES = Ly RANGE Y
] eeeecereeaan - Gececcsascsnast]
| : .qsumMsGg_ M e b poNE | e ee i
N i DISPLAY_ 70" DISBLAY [prower SET -uE_DONE .p EWS .
: SU_MsGS & - " .
! s : RANGE> . CONTROL -
1 VALIDATE_ o
1 : : RANGE> !
I RANGE_LIMITS :
VT) DISPLAY_ |SU_MSG_TO_DISPLAY| :pISPLAY_ : |
i SU_ERROR> % sU Msas .
| bBecoessvonccal I
] !
] 1
Figure B.5 Activity-chart SET_UP
e e ——— e
|]
: SET_UP_STATES :
) DATA_ENTERED :
1
] VALIDATION> '
|]
] i
] [SET_UP_DONE] /WRITE_RANGE. 1
1 sp (VALIDATE_RANGE)]
i]
1]
' [not SET_UP_DONE]/ '
1 st! (DISPLAY_SU_ERROR); i
] CLEAR_RANGE "
1 i
e o e e e 2 S s e o e s s o e e e S e S o e i S S D e L L P Spigup——]
Figure B.6 Statechart SET_UP_STATES
r——-=- T ——————— oo -—=1
1 1
! DISPLAY_ FAULT '
Preereeeeenns DISPLAY FAULT MESSAGE PRODUCE_ALARM_SOUND !
| | COMPARE . = - - -]
b . !
! DISPLAY, '
! oe .]
1T OF RANGE_ FAULT_ I
! FAULT_MSG_ | MESSAGE '
' TO_DISPLAY X
!]
| DISPLAYED H
] 4 FAULT_MSG]
\ R LTy - SO . |
| . OPERATOR : .
I, Ry O |

Figure B.7 Activity-chart DISPLAY_FAULT.

Early Warning System Example: Functional Decomposition Approach 243

CONTROL_FAULT_MESSAGE CONTROL_ALARM SIGNAL>
/PREPARE_MESSAGE

DISPLAYING_ GENERATING_
FAULT _MSG> SdJND)

Figure B.8 Statecharts CONTROL_FAULT_MESSAGE and CONTROL_ALARM_SIGNAL.

B.2.3 The Data Dictionary

Modules

Module: EWS

Defined in Chart: EWS

Described by Activity-Chart: EWS_ACTIVITIES

Module: OPERATOR
Defined in Chart: EWS
Defined as: environment

Module: SENSOR
Defined in Chart: EWS
Defined as: environment

Activities and data-stores

Activity: COMPARE

Defined in Chart: EWS_ACTIVITIES

Termination Type: reactive controlled

Mini-spec:

wr (SAMPLE) /
if ((SAMPLE < LEGAL_RANGE.LOW_LIMIT) or
(SAMPLE > LEGAL_RANGE.HIGH_LIMIT)) then

OUT_OF_RANGE;
OUT_OF_RANGE_DATA.VALUE: =SAMPLE;

OUT_OF_RANGE_DATA.LIMITS: =LEGAL_RANGE
end if

Implemented by Module: CCU

Activity: CONTROL_ALARM_SIGNAL
Defined in Chart: DISPLAY_FAULT
Implemented by Module: CCU

Activity: CONTROL_FAULT_MESSAGE
Defined in Chart: DISPLAY_FAULT
Implemented by Module: CCU

Activity: DISPLAY_FAULT_MESSAGE
Defined in Chart: DISPLAY_FAULT
Implemented by Module: SCREEN

244 Appendix B

Activity: DISPLAY_SU_ERROR
Defined in Chart: SET_UP
Termination Type: procedure-1like
Mini-spec:
SU_MSG_TO_DISPLAY:="Range error; try again’

Activity: DISPLAY_SU_MSGS

Defined in Chart: EWS_ACTIVITIES
Termination Type: reactive controlled
Combinational assignments:

DISPLAYED_SU_MSG:=SU_MSG_TO_DISPLAY
Implemented by Module: SCREEN

Activity: GENERATE_ALARM._SOUND

Defined in Chart: DISPLAY_FAULT
Termination Type: reactive controlled
Implemented by Module: ALARM_SYSTEM

Activity: GET_INPUT

Defined in Chart: EWS_ACTIVITIES v
Description: Transforms key pressing to data
Termination Type: reactive controlled
Implemented by Module: KEYBOARD

Data-store: LEGAL_RANCE
Defined in Chart: ENS_ACTIVITIES
Resides in Module: ccu

Activity: PRINT_FAULT
Defined in Chart: EWS_ACTIVITIES
Description: Issues fault data to the printer

Activity: PROMPT_RANGE
Defined in Chart: SET_UP
Termination Type: procedure-1like
Mini-spec:
SU_MSG_TO_DISPLAY:='Enter range limits~’

Activity: PROCESS_SIGNAL

Defined in Chart: EWS_ACTIVITIES
Termination Type: reactive controlled
Mini-spec:

started/TICK; ;
TICK/ SVALUE:=SIGNAL;
SAMPLE : =COMPUTE ($VALUE) ;—— ext. function

sc! (TICK, SAMPLING_INTERVAL)

Implemented by Module: STGNAL_PROCESSOR

Early Warning System Example: Functional Decomposition Approach

Activity: SET_UP

Defined in Chart: ENS_ACTIVITIES

Termination Type: reactive self-terminated
Implemented by Module: CCU

Activity: VALIDATE_RANGE
Defined in Chart: SET_UP
Termination Type: procedure-1like
Mini-spec:
fs! (SET_UP_DONE) ;
if RANGE_LIMITS.LOW_LIMIT<RANGE_LIMIT.HIGH_LIMIT

then tr! (SET_UP_DONE)
end if

States

State: COMPARING

Defined in Chart: EWS_CONTROL

Activities in State: COMPARE (throughout)

State: CONTROL_ALARM_SIGNAL
Defined in Chart: CONTROL_ALARM_SIGNAL
Static Reactions:

ns/tr! (ALARM_SIGNAL) ;;
xs/fs! (ALARM_SIGNAL)

State: DISPLAYING_FAULT_MESSAGE
Defined in Chart: CONTROL_FAULT_MESSAGE
Activities in State: DISPLAY_FAULT_MESSAGE (throughout)

State: GENERATING_ALARM
Defined in Chart: EWS_CONTROL
Activities in State: DISPLAY_FAULT (throughout)

State: GENERATING_SOUND
Defined in Chart: CONTROL_ALARM_SIGNAL
Activities in State: GENERATE_ALARM_SOUND (throughout)

State: ON

Defined in Chart: EWS_CONTROL

Static Reactions: ns/fs! (SET_UP_DONE)

Activities in State: DISPLAY_SU_MSGS (throughout)

State: OPERATING
Defined in Chart: EWS_CONTROL
Activities in State: PROCESS_SIGNAL (throughout)

State: SETTING_UP
Defined in Chart: EWS_. CONTROL
Static Reactions: ns/st! (SET_UP)

245

246 Appendix B

State: VALIDATION
Defined in Chart: SET_UP_STATES
Static Reactions: ns/st ! (VALIDATE_RANGE)

State: WAIT_ FOR_RANGE_DATA
Defined in Chart: SET_UP_STATES
Static Reactions: ns/st ! (PROMPT_RANGE)

Events

Event: ALARM_TIME_PASSED

Defined in Chart: EwWS

Definition: tm(en (GENERATING_ALARM) , ALARM_DURATION)

Event: DATA_ENTERED
Defined in Chart: SET _UP_STATES
Definition: wr (RANGE_LIMITS)

Event: EXECUTE
Defined in Chart: EWS

Event: EXECUTE_KEY
Defined in Chart: Ews

Event: HALT
Defined in Chart: EWS_CONTROL

Event: OPERATE
Defined in Chart: EWS_CONTROL

Event: OUT_OF_RANGE
Defined in Chart: EWS_ACTIVITIES

"Event: RESET
Defined in Chart: EwWs

Event: RESET_KEY
Defined in Chart: EWS

Event: SET_UP
Defined in Chart: EWS

Event: SET_UP_KEY
Defined in Chart: EWS

Event: TICK
Defined in Chart: EWS_ACTIVITIES

Conditions
Condition: ALARM_SIGNAL
Defined in Chart: EWS

Condition: POWER_ON
Defined in Chart: EWS

Early Warning System Example: Functional Decomposition Approach

Condition: READY
Defined in Chart: EWS_CONTROL
Definition: SET_UP_DONE and in (CONNECTED)

Condition: SET_UP_DONE
Defined in Chart: EWS_ACTIVITIES

Data-items

Data-Item: ALARM
Defined in Chart: EWS
Data-Type: real

Data-Item: ALARM_DURATION
Defined in Chart: EWS_CONTROL
Data-Type: real

Defined as: constant
Definition: 30.

Data-Item: DISPLAYED_ FAULT_MSG
Defined in Chart: EWS
Data-Type: string

Data-Item: DISPLAYED_SU_MSG
Defined in Chart: EWS
Data-Type: string

Data-Item: FAULT_MSG_TO_DISPLAY
Defined in Chart: EWS
Data-Type: string

Data-Item: FAULT_REPORT_TO_PRINT

Defined in Chart: EWS

Data-Type: record
Field Name: FAULT_TIME Field Type: TIME
Field Name: FAULT_VALUE Field Type: integer
Field Name: FAULT_RANGE Field Type: RANGE

Data-Item: FAULT_REPORT
Defined in Chart: EWS
Data-Type: string

Data-Item: HIGH_LIMIT_ SLIDER
Defined in Chart: EWS
Data-Type: integer

Data-Item: LEGAL_RANGE

Defined in Chart: EWS_ACTIVITIES
Data-Type: RANGE

Data-Item: LOW_LIMIT_SLIDER
Defined in Chart: EWS
Data-Type: integer

247

248 Appendix B

Data-Item: RANGE_LIMITS
Defined in Chart: EWS
Data-Type: RANGE

Data-Item: OUT_OF_RANGE_DATA

Defined in Chart: EWS_ACTIVITIES

Data-Type: recorad
Field Name: VALUE Field Type: integer
Field Name: LIMITS Field Type: RANGE

Data-Item: SAMPLE
Defined in Chart: EWS
Data-Type: integer

Data-Item: SAMPLE_INTERVAL
Defined in Chart: ENS_ACTIVITIES
Data-Type: real

Defined as: constant

Definition: 2.

Data-Item: SIGNAL
Defined in Chart: EWS
Data-Type: bit-array 23 downto 0

Data-Item: SU_MSG_TO_DISPLAY
Defined in Chart: EWS
Data-Type: string

Actions

Action: CLEAR_RANGE

Defined in Chart: SET_UP_STATES
Definition:

LEGAL_RANGE.LOW_LIMIT:=0;
LEGAL_RANGE.HIGH_LIMIT:=0

Action: PREPARE_MESSAGE
Defined in Chart: CONTROL_FAULT_MESSAGE
Definition:

SVALUE_STR: =INT_TO_STRING (OUT_OF_RANGE_DATA.VALUE) ;
SOUT_STR: =STRING_CONCAT (SVALUE_STR, ' is out of range:\n'’);
SLOW_STR: =STRING_CONCAT (

INT_TO_STRING (OUT_OF_RANGE_DATA.LIMITS.LOW_LIMIT),

-)

SHIGH_STR:=INT_TO_STRING (OUT_OF_RANGE_DATA.LIMITS.HIGH_LIMIT) ;
SRANGE_STR: =STRING_CONCAT (SLOW_STR, S$HIGH_STR);
FAULT_MSG_TO_DISPLAY:=STRING_CONCAT ($SOUT_STR, SRANGE_STR) ;

Action: WRITE_RANGE
Defined in Chart: SET_UP_STATES
Definition: LEGAL_RANGE: =RANGE_LIMITS

Early Warning System Example: Functional Decomposition Approach 249

User-defined types
User-Defined Type: RANGE
Defined in Chart: EWS
Data-Type: record

Field Name: LOW_LIMIT Field Type:
Field Name: HIGH_LIMIT Field Type:

User-Defined Type: TIME
Defined in GDS: TIME_DEFS
Data-Type: record

Field Name: HOURS Field Type:
Field Name: MINUTES Field Type:
Field Name: SECONDS Field Type:

Iinformation-flows

Information-Flow: ALARM_NOTIFICATION
Defined in Chart: EWS_ACTIVITIES
Consists of:

ALARM
DISPLAYED_FAULT_MSG

Information-Flow: COMMANDS
Defined in Chart: EWS
Consists of:

SET_UP

EXECUTE
RESET

Information-Flow: COMMAND_KEYS
Defined in Chart: EWS
Consists of:

SET_UP_KEY

EXECUTE_KEY
RESET_KEY

Information-Flow: DISPLAYED_MSGS
Defined in Chart: EWS
Consists of:

DISPLAYED_FAULT_MSG
DISPLAYED_SU_MSG

Information-Flow: KEY_PRESSING
Defined in Chart: EWS
Consists of:

COMMAND_KEYS

RANGE_SLIDERS

ENTER_KEY
SENSOR_CONNECTED_SWITCH

integer
integer

integer min=0 max=23
integer min=0 max=59
integer min=0 max=59

250 Appendix B

Information-Flow: MSGS_TO_DISPLAY
Defined in Chart: EWS
Consists of:

SU_MSG_TO_DISPLAY
FAULT_MSG_TO_DISPLAY

Information-Flow: MSGS_TO_PRINT
Defined in Chart: EWS
Consists of:

FAULT_REPORT_TO_PRINT

Information-Flow: RANGE_SLIDERS
Defined in Chart: EWS
Consists of:

LOW_LIMIT_SLIDER
HIGH_LIMIT_SLIDER

Information-Flow: USER_INPUT
Defined in Chart: EWS
Consists of:

COMMANDS

SENSOR_CONNECTED
RANGE_LIMITS

References

M. Alford, “SREM at the Age of Eight: The Distributed Computing Design System,”
Computer (April 1985), pp. 36—46.

B. Boehm, “Software Engineering,” IEEE Transactions on Computers (December 1976),
pp. 1226-1241.

, “A Spiral Model of Software Development and Enhancement,” Computer (May
1988), pp. 61-72.

G. Booch, Object-Oriented Analysis and Design with Applications, 2d ed., Benjamin/
Cummings, Redwood City, CA, 1994.

W. Bruyn, R. Jensen, D. Keskar, and P. T. Ward, “ESML: An Extended Systems Modeling
Language Based on Data Flow Diagram,” ACM Software Engineering Notes 13
(January 1988), pp. 58-67.

J. Cameron, JSP and JSD: The Jackson Approach to Software Development, 2d ed.,
IEEE Computer Society Press, Los Alamitos, CA, 1989.

A. M. Davis, Software Requirements: Analysis and Specification, Prentice Hall, Englewood
Cliffs, NJ, 1990.

T. DeMarco, Structured Analysis and System Specification, Yourdon Press, New York, 1978.

M. Dorfman and R. H. Thayer, System and Software Requirements Engineering, IEEE
Computer Society Press, Los Alamitos, CA, 1990b.

, Standards, Guidelines, and Examples on System and Software Requirements
Engineering, IEEE Computer Society Press, Los Alamitos, CA, 1990a.

N. Francez, Program Verification, Addison-Wesley, Reading, MA, 1991.

H. Gomma, “Prototypes—Keep Them or Throw Them Away?,” State of the Art Report on
Prototyping, Pergamon Infotech Ltd., 1986.

, Software Design Methods for Concurrent and Real-Time Systems, Addison-

Wesley, Reading, MA, 1993.

and D. Scott, “Prototyping as a Tool in the Specification of User Requirements,”
Proceedings of the Fifth International Conference on Software Engineering, 1981, pp.
333-342.

D. Harel, “Statecharts: A Visual Formalism for Complex Systems,” Science of Computer
Programming 8 (1987), pp. 231-274. (Preliminary version appeared as Technical
Report CS84-05, The Weizmann Institute of Science, Rehovot, Israel, Feb. 1984.)

, Algorithmics: The Spirit of Computing, Addison-Wesley, Reading, MA, 1987,

2d ed., 1992a.

, “On Visual Formalisms,” Communications of the ACM 31 (1988), pp. 514-530.

, “Biting the Silver Bullet: Toward a Brighter Future for System Development,”

Computer (January 1992b), pp. 8-20.

and E. Gery, “Executable Object Modeling with Statecharts,” Computer (July

1997), pp. 31-42. (Also in Proceedings of the 18th International Conference on

Software Engineering, Berlin, IEEE Press, March 1996, pp. 246-257.)

, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman, A. Shtull-Trauring,

and M. Trakhtenbrot, “STATEMATE: A working Environment for the Development of

Complex Reactive Systems,” IEEE Transactions on Software Engineering 16 (1990),

pp. 403-414.

and A. Naamad, “The STATEMATE Semantics of Statecharts,” ACM Transactions

on Software Engineering and Methodology 5 (October 1996), pp. 293-333. (Preliminary

version appeared as Technical Report, I-Logix, Inc., 1989.)

and A. Pnueli, “On the Development of Reactive Systems,” Logics and Models of

Concurrent Systems (K. R. Apt, editor), NATO ASI Series, Vol F-13, Springer-Verlag,

New York, 1985, pp. 477-498.

251

252 References

D. Hatley and I. Pirbhai, Strategies for Real-Time System Specification, Dorset House,
New York, 1987. :

International Telecommunication Union, CCITT Specification and Description Language
(SDL), ITU-T Recommendation Z.100, 1995.

M. Jackson, System Development, Prentice-Hall, Englewood Cliffs, NJ, 1983.

I. Jacobson, M. Christerson, P. Jonsson, and G. Overgaard, Object-Oriented Software
Engineering: A Use-Case Driven Approach, Addison-Wesley, Wokingham, UK, 1992.
dJ. Z. Lavi and J. Kudish, “Systematic Derivation of Operational Requirements Using the
ECSAM Method,” Proceedings of the IEEE Computer Society Israel 7th Conference on

Computer-Based Systems and Software Engineering, June 1996.

dJ. Z. Lavi and M. Winokur, “ECSAM—A Method for the Analysis of Complex Embedded
Computer Systems and their Software,” Proceedings of the 5th Structured Techniques
Association Conference, Chicago, May 1989.

dJ. Z. Lavi, M. Winokur, R. Gallant, and J. Kudish, Embedded Computer Systems
Specification and Design—the ECSAM Approach, IAI Technical Report, October 1992.

dJ. Loeckx and K. Seiber, The Foundations of Program Verification, John Wiley & Sons,
New York, 1984.

D. McCracken and M. Jackson, “Life Cycle Concept Considered Harmful,” ACM Software
Engineering Notes, (April 1982), pp. 29-32.

Z. Manna and A. Pnueli, The Temporal Logic of Reactive and Concurrent Systems:
Specification, Springer-Verlag, New York, 1992.

Military Standard: Defense System Software Development, DOD-STD-2167A, U.S.
Department of Defense, Washington, DC, February 1988.

Military Standard: Software Development and Documentation, MIL-STD-498, U.S.
Department of Defense, Washington, DC, December 1994.

dJ. L. Peterson, Petri Net Theory and Modeling of Systems, Prentice-Hall, Englewood Cliffs,
NJ, 1981.

Rational Corp., Documents on UML (the Unified Modeling Language), Version 1.1
(http://www.rational.com/uml/), 1997.

W. W. Royce, “Managing the development of large software systems: Concepts and tech-
niques,” Proceedings IEEE WESCON, August 1970, pp. 1-9.

J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen, Object-Oriented
Modeling and Design, Prentice-Hall, Englewood Cliffs, NJ, 1991.

B. Selic, G. Gullekson, and P. T. Ward, Real-Time Object-Oriented Modeling, John Wiley
& Sons, New York, 1994,

D. J. Smith, HDL Chip Design: A Practical Guide for Designing, Synthesizing and
Simulating ASICs and FPGAs using VHDL or Verilog, Doone Publications 1996 (2d
1997, with minor revisions).

R. H. Thayer and M. Dorfman, System and Software Requirements Engineering, IEEE
Computer Society Press, 1990.

P. T. Ward, “How to Integrate Object Orientation with Structured Analysis and Design,”
IEEE Software (March 1989).

and S. J. Mellor, Siructured Development for Real-Time Systems, Yourdon Press,
New York, 1986.

D. P. Wood and W. G. Wood, “Comparative Evaluations of Four Specification Methods for
Real-Time Systems,” Technical Report CMU/SEI-89-TR-36, Software Engineering
Institute, Carnegie-Mellon University, Pittsburgh, PA, 1989.

E. Yourdon and L. Constantine, Structured Design, Prentice-Hall, Englewood Cliffs,
NJ, 1979.

P. Zave, “The Operational Versus the Conventional Approach to Software Development,”
Communications of the ACM (February 1984), pp. 104-118.

$ (see context variable)
@ 103, 165
(See also box-is-chart)
; (see action, compound)
5 112, 237
> 88,106, 113
< (see generic chart)
A (see name, in generic instances)
/ (see reaction, syntax of)

a-flow-line, 2629
ac (see active)
action, 54, 80-85
assignment, 84, 129, 233
basic, 80
compound, 82-84
conditional, 80, 83
expression, 233-234
iterative, 80, 84-85
manipulating data-items, 84, 119
scheduled, 86-87
sequential, 84
active, 108, 110, 229
active throughout, 108-110
active within, 109-110
activity, 19-40
allocating to module, 140-142, 145-149
ancestor, 24
basic 20, 24, 111-116
behavior of, 33-34, 103-106, 111-116
communication between, 117-130
control, 33-34
controlling of, 106111
data-driven, 36, 114
descendant, 24
environment, 167-169
event-driven, 35
external, 25, 167-169, 178-179
hierarchy of, 24-25
implemented by module, 145-148
internal, 25
mapping to activity, 142, 148-149
nonbasic, 24

iIndex

activity (Cont.):
occurrence of, 149
parent, 24
periodic, 122-123
perpetual, 105-106
principal, 149
procedure-like, 35-36, 113-114
reactive, 35, 112-113
resuming, 110-111
source, 27
suspending, 110-111
target, 27
termination of, 104-105
top-level, 25
activity-chart, 19-40
(See also Activity-charts)
Activity-charts, xiii, xv, 19-40
overview of, 9
queues in, 127
Ada, 16
affected by, 121
alias, 78
all, 75, 76, 228, 229
and, 74, 76, 228, 230, 232
and-decomposition, 61
and-state, 61-63
transition to/from, 68-70
animation of diagram, 15
any, 75, 76, 228, 229
architectural view (see structural
view)
array, 48-49, 77, 227, 229, 231
assignment, combinational (see combina-
tional assignment)
assignment action, 84, 129, 233
asynchronous time scheme, 99
attribute pair, 34

behavioral view, 6-7, 53—-72
and functional view, 101-116

bit-array data-item, 46, 77, 79
slice of, 78

bit data-item, 41, 46, 79

253

254 Index

bitwise operations, 232
Booch method, 202, 211
box-is-chart, 155

break, 85, 234
broadcasting, 61-63, 117

C (programming language), 16
C-connector (see condition connector)
ch (see changed)
chain reaction, 93
changed, 82, 115, 119, 126, 227
channel, 135
chart:
ancestor, 166
definition, 155
descendant, 166
generic, 14, 187-199
hierarchy of, 166—-167, 191-192
instance, 155
logical, 153, 166
offpage, 155-162, 163-166, 189
physical, 153, 166
splitting up, 153-162
(See also activity-chart; module-chart;
statechart)
code generation (see code synthesis)
code synthesis, 2
combinational assignment, 36, 114-116,
237
combinational element, 111
communication (between activities),
117-130
communication system, 41
comparison condition, 75-76, 229
conceptual model, 7
condition, 29, 44-45
comparison, 75-76
compound, 76, 230
constant, 228
expression, 75-76, 228-230
related to state, 63-64
condition connector, 58, 65-66, 67
configuration of states, 61
connector:
in activity-chart, 36-39
condition (C-connector), 58, 65—66, 67
deep history, 71-72
diagram, 39, 161
history (H-connector), 71-72
joint, 36-37, 69
junction, 37-39, 66—67
in module-chart, 136-137
offpage, 160-162
in statechart, 65-68
switch (S-connector), 66, 67
termination (T-connector), 104
consists of, 30-31, 135
constant, 78
numeric, 77
string, 77

context:
of system, 22-23
variable, 84, 126
control flow-line, 27
controlled termination, 104

Data Dictionary, xiii, 15
activity in, 34-36

combinational assignments in, 114

mini-spec in, 111-114
module in, 133
parameter binding in, 196
state in, 58
static reaction in, 87
data-flow diagram, 9
data flow-line, 27
data-item, 29, 45-49
array, 48-49, 77
bit, 46, 79
bit-array, 46, 77, 79
expression, 76—78, 230-232
integer, 46, 77, 79
numeric, 46, 77
of predefined type, 46-47
queue, 49, 120, 124-130
real, 46
record, 47-48, 77, 120, 123
string, 47, 77
structured, 47-49, 77
union, 47-48, 77, 120
of user-defined type, 49-51
data-store, 29, 31-32
occurrence of, 149
principal, 149
data-type:
predefined, 41
syntax of, 234
user-defined, 14, 41, 49-51
dc! (see deep_clear)
decomposition:
of activity, 24-25
function-based, 21
object-based, 22
process of, 23—24
of state, 62, 64-65
deep_clear, 72, 233
deep history connector, 71-72
default entrance, 60
default transition, 60
definition (of an element), 77
design, 1, 217-223
diagram connector, 39
direct addressing, 117
document generation, 15

DOD-STD-2167A, 203, 213-216

dynamic test, 16

early warning system (EWS), xiii, 1

brief description of, 4
model of, 239-250

ECSAM method, 142, 169, 203,
207-208
element:
combinational, 111
compound, 78
constant, 78
defined in chart, 174
global, 174
primitive, 78
reference, 175-176
resolution of, 173—-185
scope of, 173-185
unresolved, 175
en (see entered)
entered, 63-64, 227
entering, 87, 106, 108, 227
ESML method, 202
event, 29, 43-44
broadcasting of, 61-63
compound, 74, 228
derived, 93
expression, 74-75, 227-228
external, 56
internal, 56
related to data-item, 83, 119
related to state, 63—-64
timeout, 86
EWS (see early warning system)
ex (see exited)
execution:
exhaustive, 16
of model/specification, 2, 15, 91-97,
218
scenario of, 93
time in, 97-99
exited, 63-64, 227
exiting, 87, 106, 108, 227
expression:
action, 80-85, 233-234
condition, 75-76, 228-230
data-item, 76-78, 230-232
data-type, 234-235
event, 74-75, 227-228
named, 78-79
textual, 73-89
time-related, 86-87
external change, 91

false, 81, 119, 227, 228
field of record/union, 47
finite-state machine, 53
£1! (see g_flush)
flow-line:
in activity-chart, 26-29
compound, 39-40
control, 27
data, 27
label of, 26, 237-238
in module-chart, 135-137
simple, 40

Index

flow of information:
between activities, 26—-32
controlling of, 118-120
between modules, 134-136
for .. loop, 84-85, 234
fork construct, 36-37, 69
fs (see false)
fs! (see make_false)
function:
arithmetic, 235
bit-array, 236
predefined, 77, 235236
random, 77, 236
string, 236
trigonometric, 77, 235
user-defined, 77
function-based decomposition, 21
functional decomposition, 20, 239-250
functional view, 19-40
and behavioral view, 101-116
and structural view, 139-151

generic chart, 14, 187-199

get ! (see gq_get)

global definition set, 14, 163, 173,
184-185

graphic editor, 15

H-connector (see history connector)
hanging, 110, 229
hardware, activiation style of activity,
105
Hatley/Pirbhai method, 33, 205-207
hc! (see history_clear)
hg (see hanging)
hierarchy:
of activities, 24-25
and/or, 53
of charts, 166-167, 191-192
of states, 58-60
higraph, 27
history_clear, 72, 233
history connector, 71-72
history entrance, 71-72, 110-111

I-Logix, xiii—xv, 3, 16

if .. then .. else, 83,234

implementation, 1

in, 63, 75, 229

incremental development, 1

information element, 41-51

information-flow, 30-31, 135

information hiding, 154, 173-174

instance box, 155

instance (of generic chart), 155,
197-199

integer data-item, 46, 77, 79

is activity, 149

is data-store, 149

iterative action, 84-85

255

256 Index

joint connector, 36-37, 69
JSD method, 202
junction connector, 37-39, 66—67

label:
of flow-line, 26
of transition, 57
language:
modeling, 1-250
of STATEMATE, 1-250
textual, 73-89
length_of, 232
long description, 34

m-flow-line, 135
maintenance, 1
make_false, 81, 119, 233
make_true, 81, 119, 233
merge construct, 36-37, 69
message, 123-124
methodology, 2-3, 201-216
MIL-STD-498, 203, 213-216
mini-spec, 80
procedure-like, 35-36, 113-114, 237
reactive, 35, 112-113, 237
model, 2
analysis of, 169-171
behavioral, 6-7, 53—72
characteristics of, 4-5
conceptual, 7
execution of, 2, 15, 91-97, 218
physical, 7
reference, 169
modeling, 3-8
heuristics for, 7-8
languages for, 1-250
views of, 5-7
module, 131-137
allocating activities to, 140-142,
145-149
ancestor, 132
basic, 132
descendant, 132
described by activity-chart, 142-145, 166
environment, 167-169
execution, 133
external, 132-133, 167-169, 178-179
functional description of, 140
internal, 132-133
parent, 132
storage, 133
module-chart (see Module-charts)
Module-charts, xii, xv, 131-137
overview of, 11

name:
in generic instances, 197-199, 226
of graphical element, 226
(See also path name)
of textual element, 181, 225-226

nand, 232
nondeterminism, 99-100
nor, 232

not, 74, 76, 228, 230, 232
notation, 2

ns (see entering)
numeric data-item, 46
numeric expression, 77
numeric operations, 232
nxor, 232

object-based decomposition, 22, 208-213

object-oriented analysis, 142, 149-151,
208-213

OMG, 212

OMT method, 202, 211

OOSE method, 211

operation precedence, 74

or, 74, 76, 228, 230, 232

or-state, 59

orthogonal component, 61

orthogonality of states, 61-63

parameter, 188, 192-197
binding of, 196-197
constant, 193
formal, 193-195
in/out, 193-194

path name, 65, 226

peek! (see g_peek)

physical model, 7

port, 193

precedence of operations, 74

predefined type, 41

primitive element, 78

priority of transitions, 99-100

process activation table, 33

prototype code, 16

prototyping 1, 217, 218

put! (see g_put)

q_flush, 126, 234
q_get, 125, 234
g_length, 126, 232
q_peek, 125, 234
q_put, 125, 233
g_urgent_put, 125, 234
queue, 49, 120, 124-130

racing, 100
rd (see read)
rd! (see read_data)
reaction, 91-95, 112
chain, 93
static, 80, 87-89, 106
syntax of, 55, 237
reactive system, 3—4
read, 82, 119-120, 123, 227
read_data, 82, 119-120, 123, 233
real data-item, 46

real-time system, 3

record data-item, 4748, 77, 120, 123
requirements analysis, 1
requirements traceability, 15
reserved words, 225

resume, 110, 233

reusability, 187-188

reusable software, 1

Rhapsody, 203, 212-213

ROOM method, 22, 202, 210-211
rs! (see resume)

RTSA methods, 202

run (in model execution), 93

S-connector (see switch connector)
sc! (see schedule)
scenario, 93
schedule, 86-87, 233
scheduled action, 86-87
scope:
of chart, 176-177
of element, 118, 173-185
of graphical element, 176-178
of textual element, 180-184
sd! (see suspend)
SDL method, 208-210
self-termination, 104
semantics:
of queues, 126-127
of statecharts, 91-100
short description, 34
sp (see stopped)
sp! (see stop)
specification, 1-2
execution of (see execution)
spiral model, 217
SREM/DCDS method, 202
st (see started)
st! (see start)
start, 106, 233
started, 108, 112, 227
state, 54
ancestor, 60
and-, 61-63
basic, 60
condition related to, 63—64
configuration of, 61
descendant, 60
event related to, 63-64
hierarchy of, 58-60
or-, 59
orthogonal, 61-65
parent, 59, 61
source, 60
target, 60
state-transition diagram, 53, 55,
58
statechart, 53-72, 91-100
as control activity, 33-34, 103-105
(See also Statecharts)

Index 257

Statecharts, xiii-xv, 1, 33, 53-72
overview of, 10
in Rhapsody, 213
semantics of, 91-100
STATEMATE, xiii—xv, 1, 192, 206-207
description of, 14-17
languages of, 1-250
static reaction, 80, 87-89, 106
static structure of charts, 166
status:
of activity, 108
of system, 95-97
step, 92-97
stop, 106, 233
stopped, 104, 108, 227
string data-item, 47
structural decomposition, 133
structural view, 131-137
and functional view, 139-151
Structured Analysis, 3, 202, 203-208
subchart, 166
submodule, 132
substate, 59, 61
super-step, 99
suspend, 110, 233
switch connector, 66, 67
synchronization, 117-118
synchronous time scheme, 98
synonym, 34
synthesis, 1
system:
communication, 41
computer-embedded, 4
context of, 22—-23
control, 4
large-scale, 13-14
life cycle of, 1, 217-218
reactive, 3—4
real-time, 3

T-connector (see termination connector)
temporal requirements, 170-171
termination connector, 104
termination of activity, 104-105
testbench, 169-171
testing (a model), 169-171
textual expression, 73-89
time (in model execution), 97-99
time-related expression, 86-87
time scheme, 98-99
timeout, 86, 228
timeout event, 86
tm (see timeout)
tools, 2

STATEMATE (see STATEMATE)
tr (see true)
tr! (see make_true)
transition, 54, 57

compound, 65-66

default, 60

258 Index

transition (Cont.):
enabled, 99-100
high level, 65
label of, 57, 237
logical, 66
priority of, 99-100
to/from and-state, 68—70
transition to design, 217-223
trigger, 54
enabled, 92
true, 81, 119, 227, 228

UML, 202, 211-212

union data-item, 47-48,
77, 120

uput (see g_urgent_put)

used by, 121

user-defined type, 14

variable, 78

context, 84, 126
verfication, 222

ABOUT THE AUTHORS

Verilog, 16

VHDL, 16, 221

view, 5-7
behavioral, 6-7, 563-72
functional, 6, 19-40
functional vs. behavioral 101-116
functional vs. structural 139-151
structural, 7, 131-137

Ward/Mellor method, 203-204, 206-207
watchdog, 170

waterfall model, 1, 217

when .. then .. else, 83,234
while .. loop, 85,234

wr (see written)

wr! (see write_data)

write_data, 82, 119-120, 123, 233
written, 81-82, 119-120, 123, 228

XOM method, 203, 212-213
xor, 232
xs (see exiting)

David Harel is the Dean of Mathematics and Computer
Science at the Weizmann Institute of Science in Rehovot,
Israel. Dr. Harel is also the founder and chief scientist of
I-Logix, Inc., the global firm that developed the STATEMATE
system, and has been a visiting researcher and scientist at
Carnegie-Mellon and Cornell Universities, as well as at
Lucent Technologies, NASA, and IBM.

Michal Politi, formerly Vice President of Development
for I-Logix Israel, Ltd. was responsible for the methodology
and implementation of STATEMATE. She has headed computer
research and development projects for the Israeli Defense
Forces.

