A Multi-Scale Algorithm for the Linear
Arrangement Problem

Yehuda Koren and David Harel

Dept. of Computer Science and Applied Mathematics
The Weizmann Institute of Science, Rehovot, Israel
{harel,yehuda}@wisdom.weizmann.ac.il

Abstract. Linear ordering vertices of a graph is a common problem aris-
ing in diverse applications. In this paper we present a novel algorithm
for this problem. The algorithm is based on the multi-scale paradigm,
and runs in a linear time. Results are similar to those of the best known
approaches, while running time is significantly faster, enabling dealing
with much larger graphs. The paper contains a special multi-scale con-
struction, which may be used for a broad range of ordering problems.

1 Introduction

Many computational tasks are involved with the combinatorial problem of or-
dering the vertices of a graph as to optimize a certain objective functions. Appli-
cations range from speeding up computations related to sparse matrices to error
correcting codes, visualization, computational biology and even archaeological
dating. The reader is referred to [7] for a detailed survey.

We concentrate on a common variant of the problem, known as the minimum
linear arrangement problem (MinLA), which consists of placing the n vertices in
positions 1...n on a line, as to minimize the sum of the edge lengths. Putting
differently, we are given n pins, some of which are connected by wires, and we
want to lay the pins in a sequence of holes in a way that minimize the total wire
length. This variant arises in VLSI design, graph drawing, modeling nervous
activity in the cortex and job scheduling, see [7]. As most ordering problems,
MinLA was proved to be NP-hard and the corresponding decision problem is
NP-complete [8].

In this paper we suggest a linear-time heuristic algorithm for the MinLA
problem. An experimental study shows its attractiveness in terms of output
quality and running time. The proposed algorithm embodies a novel multi-scale
scheme for the MinL A problem. This multi-scale construction was crafted as to
suit many linear ordering tasks and hence may have applications beyond the
MinLA problem.

2 The Minimum Linear Arrangement Problem (MinLA)

Let G(V, E) be a graph, with V = {1...n} a set of n vertices, and E a set of
weighted edges, w;; being the weight of the edge (i, j) connecting vertices i and j.

Sometimes, when the context is clear, we will write simply (7, j) instead of (3, j) €
E. We denote the neighborhood of ¢ by: N (i) = {j | {i,j) € E}. Throughout this
paper we assume, without loss of generality, that G is connected. Otherwise, the
problem can be solved independently for each connected component.

Definition 21 (Linear arrangement) A linear arrangement of G is a bijec-
tion m:V — {1,...,n}. Equivalently, we can define ™ as a permutation of V.
We call 7(i) the location of vertex i.

Definition 22 (Arrangement cost) The cost of the linear arrangement 7 is
denoted by:
def . .
LA (G) = Z wyj - [m (i) — w(5)]

(i,j)EE

The objective of the MinL A problem is to find a permutation 7 that minimizes
LA, (G).

2.1 Algorithms

For certain classes of rather regular graphs, like trees, grids and hyper-cubes,
there exist polynomial time algorithms for solving the MinL A problem. However,
due to the NP-hardness of the problem, there is no polynomial time algorithm
for general graphs. Thus most research is carried on approximation and heuris-
tic algorithms. Before providing such algorithms, we want to describe an exact
algorithm, which is better than the naive ©(n!) algorithm that scan all possible
permutations. This exact algorithm will serve us in the sequel.

Dynamic Programming Exact Algorithm Using dynamic programming we
can find the minimum linear arrangement in time O(2" - |E|) and space O(2").
The algorithm is based on the fact that we dub as the locality of the minimum
linear arrangement problem. This fact states that the best ordering of a set of
vertices S, which is placed to the right of the vertices of L and to the left of the
vertices of R, is independent on the internal ordering of the vertices in L and in
R. We formalize this fact in the following Theorem:

Theorem 1. Let G(V, E) be a graph and L,S CV where |L| =1, |S| = s.

Let m, ¢ be two permutations of V', such that m(L) = o(L) = {1,...,1}, n(S) =
e(S)={l+1,...,1+s}.

Denote by 5 the permutation that minimizes the linear arrangement cost, over
all permutations that differ from m only with respect to the places of vertices in
S. (Le., for alli ¢ S, m(i) = w5().)

Define a permutation ¢ as follows:

w i) (d) i¢S
‘pS(Z){wg(i) ies

Then, ¢ minimizes the linear arrangement cost, over all permutations that
differ from o only with respect to the places of vertices in S.

For proving this theorem we use the following definition and lemma:

Definition 23 (Local arrangement cost) Let G(V, E) be a graph, L US U
R =YV, where L,S,R are mutually disjoint sets and let m be a permutation of
V, such that: 7(L) = {1,...,1}, n(S) = {l+1,...,l+s}, m(R) = {{+s+1,...,n}.
The local arrangement cost of the set S w.r.t. 7, denoted by LAS(QG), is defined
as:

LAJ(G) = Y wy- () =7+ D wy- (w(i) =D+

(i,3),4,J€S (1,7),1€S,jEL
+ Z w”(l-&—s—ﬂ(z))—i- Z Wij * S
(i,5),1€S,jJER (i,4),1€L,jER

Lemma 1. Let G(V, E) be a graph, LUSUR =V, where L,S,R are mutually
disjoint sets and let w be a permutation of V', such that: w(L) = {1,...,1}, =(S) =
{t+1,...,l+s}, 7n(R)={l+s+1,...,n}. Then,

LA(G) = LAE(G) + LAS (G) + LAR(G).

Proof. We decompose the cost associated with the permutation =, as follows:
Z Wsj - - 71—(])' =
Z wig |7 (@) =7+ D wyg - |w(D) — 7 ()] +

(i,4),%,J€L (4,9),,J€ER

+ Y wy e n@) —x()+ > wy e @) — 7)) +
(i,4),%,J€S (i,4),1€S,j€L

+ > wye @) -G+ YD wiy (@) — ()]
(i,5),1€S,jER (i,4),1€L,jER

Observe that:

—IfieS, jel:|r(i)—n()| = (xG) =)+ (1 —7(j))
- Ifie S jeR: |7r() N=U+s—7@)+(x(§) —1—35)
—ifiel,jeR: |n(@) —n(j)|=1—-7(@)+ (7)) =l —s)+s

Using these equations and rearranging rows, we can write:

LA(G) = LAE(G) + LAS (G) + LAR(G).

Now we are ready to prove Theorem 1:

Proof. Define the set R =V — (LU S), the set of vertices placed to the right
of S. Consider a permutation ¢g for which for every i ¢ S, ¢g(i) = (7). Using
lemma 1, the cost associated with the permutation ¢g is:

LA, (G) = LAL (G)+ LA (G) + LAZ (G).

Since for all i ¢ S, ps(i) = ¢(i), we can write:
LA, (G) = LAL(G) + LAS (G) + LAZ(G).

We conclude that minimizing LA, (G) over all permutations that differ from ¢
only in places of vertices of S, is equivalent to finding such a permutation ¢g
that minimize LA _(G).

Similarly, we can write:

L S R
LA (G) = LAX(G) + LAY, (G) + LAE(G).

Recall that 7§ is the minimizer of arrangement cost over all permutations
that differ from 7 only in places of vertices of S. LAfrg (@) depends only on the
ordering of vertices in S, and on the content of the set L (or, equivalently, R).
Hence, setting p = 7% minimizes LA§ (@) over all permutations satisfying that
the set of vertices to the left of S is L.

The permutation ¢ is defined such that LAZ. (G) = LAZ. (G). Thus, setting
s = @& minimizes LA, (G), over all permutations that differ from ¢ only with
respect to the places of vertices in S. a

The locality property implies that when one constructs a linear arrangement
by incrementally trying all partial arrangements growing from left to right, the
best ordering of the remaining vertices does not depend on the exact ordering of
the vertices that have already been placed. Hence, among all different orderings
of some L C V on places {1,...,|L|}, the ordering that minimizes the local
arrangement cost of L is also superior in a global sense, and there is no need to
remember the rest orderings.

This is the heart of the dynamic programming algorithm that stores for each
of the 2™ subsets of V' the best ordering which was found. The algorithm is
depicted in Figure 1. Its time complexity is O(2" - |E|), since when calculating
the best cost of a new subset, we scan each edge at most twice. Space complexity
is O(2").

To our best knowledge, this dynamic programming algorithm is not men-
tioned in papers dealing with the MinLA problem. This is probably due to its
impractical time and space demands. However, this algorithm will play a role in
our multi-scale algorithm.

Spectral sequencing Spectral information has been successfully applied to
vertex ordering problems, see e.g., [1],[3],[11]. We review here the basic idea of
these methods:

Given a graph G(V = {1,...,n}, E), the corresponding Laplacian is a sym-
metric n X n matrix L defined as follows:

Dliker Wik 1=]
Lij = —wi i#4, (ij)eE ij=1,...,n
0 i# 3, (i,5) ¢ E

Function MinLA _DP (G(V ={1,...,n}, E), Ordering)

% Input: A graph G(V, E)

% Output: vector Ordering containing the minimum linear arrangement of V
% Data structure: A table T" whose entries are indexed by subsets of V.

% For a S C 'V, T[S].cost holds the minimal local arrangement cost of S,

% T'[S].cut is the weighted sum of edges connecting S with V — S,

% T'[S].right_vtz is the rightmost vertex in the best local arrangement of S.
% The function Cut® (v, Nodes) returns the weighted sum of edges

% connecting vertex v and Nodes C V.

% Initialize table:

for every S CV
table[S].cost «— oo

end for

table[¢].cost «— 0

table[¢].cut — 0

% Fill table:
fori=1ton
for every SCV, |S|=i—1
cut® « tablelS].cut
new_cost « table[S].cost + cut®
for every j ¢ S
if table[S U {j}].cost > new_cost then
table[S U {j}].cost «— new_cost
table[S U {j}].right_vtx «— j
table[S U {j}].cut «— cut® — cut®(j, S) + cut(j,V — S)
end if
end for
end for
end for

% Retrieve optimal ordering:

SV

fori=ntol
v — table[S].right_ vtz
ordering[i] « v
S —S—{v}

end for

end

Fig. 1. An algorithm for finding optimal MinL A using dynamic programming

Let v be the normalized eigenvector of L corresponding to the second smallest
eigenvalue. Hall [9] has shown that v is the best non-trivial minimum of the
following quadratic energy:

E= Y wy-(vi—v) (1)

(i,§)EE

subject to: |[v]2 =1

As a matter of fact, v is a vector of fundamental importance to many fields as
it reflects connectivity properties of the graph, see, e.g., [16]. So fundamental to
be privileged in having a unique name — the Fiedler vector.

Sequencing the vertices is done by sorting them according to their compo-
nents in v. Fortunately, computation of v can be done very rapidly using the
multi-scale (or “multi-level”) methods of [4],[14]. In fact, in [14] we have com-
puted the two eigenvectors corresponding to the second and the third smallest
eigenvalues of the Laplacian of million vertex graphs in less than a minute (on
a Pentium 3 PC). Computing only v takes half of this time. Hence, spectral
sequencing is a very rapid heuristic for computing linear arrangements.

Simulated annealing Simulated annealing [13] is a powerful, general (if slow)
optimization technique that is appropriate for the MinLLA problem. This method
repeatedly changes the ordering as follows. Given the current candidate ordering
m, a new candidate 7 is generated that is close to w. If LAz < LA, the new
ordering — 7 is accepted. Otherwise, 7 may be accepted with a probability that
decreases as the process proceeds. Accepting an ordering that worsen the cur-
rent situation is called an up-hill move. Up-hill moves enable escaping bad local
minima, and enhance the search space.

Petit [17] has conducted extensive tests of many algorithms for the MinLA
problem, on several classes of graphs. We quote the conclusion of Petit:

...the best heuristic to approximate the MinLLA problem on sparse graphs
is Simulated Annealing when measuring the quality of the solutions.
However, this heuristic is extremely slow whereas Spectral Sequencing
gives results not too far from those obtained by Simulated Annealing,
but in much less time. In the case that a good approximation suffices,
Spectral Sequencing would clearly be the method of choice.

In the following sections, we will describe an algorithm, whose quality is
similar to that of simulated annealing, while running time is much faster.

3 The Median Iteration

In this section we describe the median iteration, a rapid randomized iterative
algorithm for decreasing the cost of a linear arrangement. The heart of this
method is a continuous relaxation of the MinLLA problem, where we allow vertices
to share the same place, or to be placed on non-integral points.

Given a graph G(V, E), a linear placement is a function p : V. — R. The
cost of the linear placement p is denoted by:

LP,(G) = Y wi-|p(i) = p(j)]

(i,)EE

Notice that linear arrangement, which was defined as a bijection V- — {1,...,n},
is a special case of linear placement.

It is obvious that the minimum of LP,(G) is when all the vertices are placed
at the same location. Hence, the minimal linear placement is not informative.
What will be useful is a process of minimizing LP,(G). Such a process can be
used for improving linear arrangements, as we shall describe.

We begin by defining the median of the places of i’s neighbors.

Definition 31 (Median) Let G(V, E) be a graph and p a linear placement.
Given some © € V, the median of i’s neighborhood is denoted by medg(i),
medg(i) is a usual median, hence it should satisfy:

Z Wij 2 Z Wij

JENG)pSmed§ (@) JENG).p(i)>medg ()
> wij 2 > Wij
JENG)p)Zmed§ (@) JEN().p(i)<medS ()

When equality holds in these two inequalities, the median can be any point inside
an open interval. In this case, we arbitrarily choose the middle point of this
interval as the median.

The main observation is the following Theorem:

Theorem 2. Let G(V, E) be a graph and p a linear placement. Fiz the places
of all vertices except a single i € V. A location of i that minimizes the linear
placement cost s medg(i). (This location is not unique, since there may be
infinite medians.)

Proof. Denote by p[i — z] a linear placement such that:
. . T j=1
pli —2](j) =19 .
p() JFi

Let € = ZjeN(in(ijedg(i) Wi — ZjeN(i)m(j»medg(i) w;;. By the definition of
the median, € > 0. Let 6 > 0. Observe that:

LPyji—medS (i)+8)(G) = LPyjimeag iy (G) + 6 * €
Hence, for every = > medg(i) we get:
LPp[z—w] (G) > LPp[iHmedf(i)](G)'

The proof for z < medf(i) goes along the same lines. O

Now we can define an iterative process for reducing the cost of a linear
placement, based on minimizing the cost associated with each vertex, separately.

Function Median_Iteration (G(V, E), p, k)
% Parameters:
% G(V, E) - a graph, p - a linear placement, k - no. of sweeps
repeat k times:
for every: € V
p(i) — medy (i)

% When a valid linear arrangement is needed:
Sort nodes according to respected entries in p
for every i € V

p(2) < (sorted place of i)

Suppose that the initial value of p is a valid linear arrangement. When k is
overly large, a significant fraction of V' will be placed in a single point, leaving
us very few information. But, for a not too large value of k, we will get many
small clusters of vertices placed together. This gives us important information
regarding the global structure of the linear arrangement. Hence, we can construct
a new valid linear arrangement by sorting the nodes according to their values
in the linear placement p. The decision about the internal order of vertices that
were placed at the same point is random.

We call this method the median iteration. Computation of a median can be
done in a linear time. Hence, the time complexity is O(k - |E|) for the k sweeps
plus O(nlogn) for sorting the nodes by their place. Since k is fixed (a usual value
is k = 50), the total time complexity is O(|E| + nlogn). When the initial p is a
linear arrangement, so all points are placed on integral coordinates, we can use
bucket-sort to order the nodes in linear time. This requires a slight modification
of the median definition: when the median is inside an open interval between
two integral points, we would pick one of these two points as the median. This
leads to a running time O(|E|).

The median iteration is a simple and rapid way for reducing the cost of a
linear arrangement. This method addresses the global structure of the ordering,
while making local decisions randomly. This sort of distinguishing between local
and global characteristics, is quite reasonable in the MinL A problem, due to
the locality property (Theorem 1), since we can perform later local refinements
without increasing the cost of the arrangement.

Relation to spectral sequencing There is a connection between the median it-
eration and spectral sequencing. The both methods relax the original ordering
problem as a continuous placement problem. However, the cost functions are
different. The median iteration minimizes LP,(G), which generalizes the origi-
nal cost function of linear arrangements — LA, (G). However, spectral sequenc-

ing minimizes Hall’s energy (Equation 1), which is a quadratic function unlike
LA, (G).

Interestingly, by differentiating Hall’s energy with respect to v;, we reveal a
version of Theorem 2, for Hall’s energy:

Fix the places of all vertices except a single ¢ € V. The location of i
that minimizes Hall’s energy is the (weighted) average of the places of
i’s neighbors.

Hence, in the minimizer of Hall’s energy, the Fiedler vector, each vertex is
placed, roughly, in the average place of its neighbors. While, for minimizing the
cost of a linear arrangement, it would be better to place each vertex in the median
place of its neighbors. Experiments with the median iteration, as described in
Section 5, validate the ability of the median iteration to improve upon spectral
sequencing.

4 Multi-Scale Algorithm

The multi-scale (or, multi-level) paradigm is a powerful general technique that
allows fast exploration of properties related to the ‘global structure’ of com-
plex objects, that depend on many elements within. Multi-scale algorithms have
proved to be successful in a variety of areas in physics, chemistry and engineering.
See, e.g., [18],[5],[6].

These techniques progressively express an originally high-dimensional prob-
lem in lower and lower dimensions in a process called coarsening of the problem.
In the coarsest scale the problem is solved exactly, and then starts a refine-
ment process in which the solution is progressively projected back into higher
and higher dimensions, updated appropriately at each scale, until the original
problem is reproduced. A multi-scale algorithm should be specifically designed
to a problem, such that the coarsening process keeps the essence of the problem
unchanged.

In terms of its use for dealing with graph-theoretic optimization problems, the
multi-scale approach is widely used for graph-partitioning, see, e.g., [12]. More
recently, Walshaw [19] has used this approach for the TSP and vertex-coloring
problems. We have used the multi-scale approach for the related problem of
drawing graphs aesthetically [10],[14].

4.1 Segment Graphs

One of the most prominent properties of multi-scale algorithms is that they keep
the inherent structure of the problem unchanged during coarsening. In our case,
the form of the MinLA problem as was introduced in Section 2 is not preserved
during coarsening. But, we can define a more general problem that is preserved
during coarsening, and which also contains the original problem as a special case.
Hence, we dedicate this first part to describe this general problem. In fact, this
general problem emerges naturally from trying to arrange a more general entity,
that we dub a segments-graph (s-graph).

Definition 41 (segments graph (s-graph)) An s-graph is a usual graph G(V, E),
whose vertices are line segments. The length of vertex i is denoted by l; (I; = 0).
Each edge (i, j) is associated with two coordinates: (1) The place of its endpoint
inside vertex i, denoted by p(i,j). (2) The place of its endpoint inside vertex j,
denoted by (i, j)p. Certainly, 0 <p (i,7) <I;, 0 < (i, j)p <.

In a linear arrangement of an s-graph, we place the vertices on a line, in such
a way that no two vertices intersect. Since we seek for an arrangement with short
edges, we can safely rule out unused gaps between consecutive vertices. Hence,
we define a linear arrangement of an s-graph as follows:

Definition 42 Let G be an s-graph. A linear arrangement of G is a bijection
m:V — {1,...,n}. The location of vertex i is denoted by pZ(i), and satisfy:
p&(0) = X2 n()<n(iy li- Often, when the identity of the related G is clear, we
abbreviate p% (i) by p™(3).

Definition 43 Given an s-graph G, and a linear arrangement w, the length of
edge (i,7), w.r.t. @, is defined as follows:

lenZ((i,5)) < ™ () + (i, j)p — ™ (0) —p (s)]

Often, when the identity of the related G is clear, we abbreviate lenl,((i, j)) by
len™((i,7)).

Now we generalize the notions of cost and of local-cost of a linear arrangement
(which were given in Definitions 22 and 23), as to handle s-graphs:

Definition 44 Given an s-graph G, the cost of the linear arrangement mw is
denoted by:

LA, (G) = Z wgj - len™ ({4, j))

(i,§)EE

Definition 45 Let G(V,E) be an s-graph, LU S U R =V, where L,S,R
are mutually disjoint sets and let m be a permutation of V', such that: w(L) =
{0, n(S)={l+1,....l+s}, 7(R) ={l+s+1,...,n}.

Denote by a, b the boundaries of p™(S), i.e., a = p™(x~ (I +1)), b=p" (I +
S)) + lﬂ—fl(lJrS).

The local arrangement cost of the set S w.r.t. 7, denoted by LAS(G), is defined
as:

LAY(G) = Y wij-len™((i,4)+ > wi - (P7(4) +p (i, §) — a)+

(i,5),%,J€S (i,5),1€S,j€L
+ > wy =P) —p)+ Y, wy-(b—a)
(i,7),1€S,jJER (i,5),1€L,jER

Given a regular graph G (not an s-graph), if we set the length of each vertex
to be 1, and for every (i,), p{i,j) = (i, j)p = 1, the definitions of the generalized

10

cost and local-cost of a linear arrangement coincide with the regular definitions
(Definitions 22 and 23). Hence, the newer definitions generalize the older ones,
and we can keep using the same notations.

It is easy to verify that Theorem 1 and Lemma 1 are still valid for s-graphs,
without any modification.

The dynamic programming algorithm can be applied for s-graphs, with slight
modifications. In this algorithm we are computing for each subset S C V the best
local arrangement cost of S in places {1,...,|S|}. What is needed is to change
the algorithm, as to compute the local arrangement according to Definition 45,
instead of Definition 23. Actually, this is a simple modification.

Given an s-graph G(V, E) and a linear placement p, in order to activate
the median-iteration on (G, we need to take into account the exact location of
edges, as follows. For an edge (7, j), define the directed distance from ¢ to j as
dij = p(j)+ (i, 5)p —p(i) —p (i, j). Adding to the place of ¢ the weighted median
of the directed distances from ¢ to its neighbors (distance d;; is weighted by w;;),
is the best move when only movements of i are allowed. The median iteration
should be modified accordingly.

4.2 The Coarsening Process

During the coarsening, we iteratively represent an initial s-graph as smaller and
smaller s-graphs. Let GG be such an s-graph containing n nodes. A single coarsen-
ing step would be to replace G with another s-graph G containing only m < n
nodes (typically, m = %n) Of course, the structure of G should be strongly
linked to that of G, such that both will describe approximately the same en-
tity, but in different scales. Moreover, a good linear arrangement of G, should
correspond to a good linear arrangement of G.

Our attitude to coarsening, is by posing restrictions on the possible arrange-
ments. These restrictions reduce the search space, so the restricted problem is of
a “lower dimension”, and can be formulated using a smaller graph. More specif-
ically, the restrictions that we use are imposing certain pairs of vertices to be
placed sequentially together. We hope that those pairs of vertices are arranged
fairly close in the minimal arrangement of G. In this optimistic situation, there
exist a solution in the restricted subspace, which is quite close to the optimal
solution, up to some local refinement that does not change the global structure
of the arrangement, but only affects local portions of the arrangement.

Now we elaborate the details of this approach.

Restricting the search space We want to restrict the search space in a way that
satisfies two conflicting goals:

1. The degrees of freedom should be significantly reduced, enabling a represen-
tation by a much smaller graph.

2. The minimal arrangement is affected only locally; while its global structure
is preserved. Putting it more formally, let 7* be the minimal arrangement.
There exist an arrangement 7 satisfying the restrictions, such that for every
vertex i, |7(i) — 7*| is bounded by some constant.

11

Is the formal expres-
sion useful??

discuss advantages of
coarsening based on a
given solution, rather
than based on the
structure of the graph

We have found a way that attempts to achieve these two competing goals.
Consider some initial arrangement 7, which was constructed by some fast algo-
rithm like spectral sequencing or median iteration (or both together). For sim-
plicity assume that the number of vertices, n, is even. For every pair of vertices
v1,vg such that 7(v1) = 2i — 1, w(vy) = 21 for some 7 > 1, introduce a restriction
that any feasible linear arrangement ¢ would have to satisfy: ¢(vs) = ¢(v1) + 1.
The restricted problem is of arranging n/2 restricted vertex pairs. Hence, the
size of the restricted search space is (n/2)! while the size of the original search
space was n!.

In a case that n is odd, we choose randomly some odd k, 1 < k < n.
Then we restrict consecutive pairs in the series 7=1(1),..., 7 Yk — 1), 7 1 (k +
1),...,7m Y(n). Vertex 7~ (k) is not restricted.

In a case that the initial arrangement 7 was not too far from the minimal
arrangement, the restrictions we have introduced affect the solution only locally,
as desired.

Now we are showing how to formulate the restricted problem again as a linear
arrangement problem, but of a much smaller graph.

Formulating the restricted problem as a coarser MinLA problem Given an s-
graph G(V,E), and a set R C V x V of restricted vertex pairs, we build a
coarser graph GF(VE EF) such that there is a 1-1 correspondence between
linear arrangements of G and linear arrangements in the restricted search space
of G.

Before describing G, we want to remark that throughout this section we
assume that if (¢, j) ¢ E then w;; =0 and p(i,5) = (¢, 5)p = 0.

G* is produced by contracting pairs of restricted vertices. Vertex lengths and
edge weights are preserved, by accumulating them. Places of the new edges are
calculated by averaging old places. We give here formally the construction of
GP. For simplicity, we assume that n is even, so every v € V appears in a single
restricted pair.

— The coarse vertex set V' is simply the set of restricted vertex pairs, R.
— The length of a coarse vertex (vi,v2) i8 Iy, v5) = lv, + lu,
— The coarse edge set is defined as follows:

(Ulva)a ('U37U4) € VR’
ER = { ((v1,v), (vs,v4)) | (v1,v3) € E or (v1,v4) € E
or (ve,v3) € E or (v1,v4) € E

— The weight of a coarse edge ((v1,v2), (vs3,v4)), denoted as usual by Wy, v,)(vg,v4)
is Wy vg + Wy vy + Wyyvs + Wygvy -

— The place of endpoints of coarse edge ((v1,v2), (vs,v4)) is the weighted av-
erage of endpoints of the corresponding fine edges:

<(U v) (”U v)> . (Zie{vl,vz),jE{vg,U4}wij'P<i’j>)+l'U1'(w”2v3+u}'v21’4)
PAVL, B2), 13, V4 Wy vg TWoy vy TWogvg TWuguy

(Z {vy,v0},i€{v3, }wij'<i7j)P)+lv '(w'v vy TWosw)
((v1,v2), (v3,v4))p = S fuilj,z12,,11,4+w,,21,3+wi21,4 — =

12

When n is odd, there exist a single unrestricted vertex — v. In this case we
add a vertex (v,v) to VE, where l(v,v) = ly. Definitions regarding edges adjacent
to (v, v) should be slightly changed.

There is a simple 1-1 correspondence between the restricted linear arrange-
ments of the fine graph G’ and the linear arrangements of the coarse graph G:

Definition 46 (Correspondence) Let G be a graph, R a set of restricted ver-
tex pairs, m a restricted linear arrangement of G and let ¢ be a linear arrange-
ment of the respected coarse graph GT. The two arrangements are corresponding
if:
For every (vi,v2) € R: w(vy) =1+ Z [(i,7)]
©((1,9))<e((v1,v2))
where,
. oydef |2, 1#]

|(Zv.]) - {17 Z:]

Or equivalently, in the inverse direction:
For every (v1,v2) € R: ¢((v1,v2)) = Z 1
(i,4)ER, m(i)<m(v1)

Notice that when n is even: (i,j) € R = i # j, so we can simply write the
condition for correspondence as:

For every (v1,v2) € R: w(v1) = 2% o((v1,v2)) — 1

Using the close relationship between length of vertices in G and G, observe
that for two corresponding linear arrangements, 7 and ¢, the actual locations of
the vertices are related as follows:

For every (vi,v3) € R: P&(vy) = PgR((vl,UQ)) (2)

During coarsening several edges become self-loops, and are canceled. We
calculate the cost related to these lost edges:

Definition 47 Given a graph G(V, E) and a set of restricted vertex pairs R, we
define the internal cost of R as:

CR)= > wi-((i,d)p+1i+p (i,]))

(i,4)€E,(i,j)€R

The most important fact is that the costs of two corresponding linear arrange-
ments are identical, up to adding C(R) which is independent on the specific
arrangements.

Lemma 2. Let G be a graph, R a set of restricted vertex pairs, and let T and

@ be two corresponding linear arrangements of G and G, respectively. Then,
LA (G) = LA,(GR) + C(R).

13

The proof is rather technical and is given in Appendix B.

We conclude that given a set of restricted vertex pairs, R, we can construct
a coarser graph G with ™27 vertices. Linear arrangements of G correspond to
linear arrangements in the restricted search space of G, and have the same costs
(up to adding a uniform constant). For reasonable restrictions, the restricted
search space contains arrangements of similar structure to that of the minimum
cost arrangements. Hence, we hope that a good arrangement of G corresponds
to a quite good arrangement of G. This quite good arrangement of G can become
a real good one, by the local refinement process.

4.3 Local Refinement Process

Given a linear arrangement 7 of a graph G, we are seeking for a method that
improves the quality of 7. Such a candidate method can be the median iteration
described in Section 3. However, often we are dealing with a case where 7 has a
good global structure, as a result of minimizing the problem on restricted search
space. For such a case, the inability of the median iteration to make clever local
decisions may be a serious disadvantage. For this reason we have constructed a
local refinement process, which specializes in optimizing locally an arrangement.

Our idea is to take each k consecutive vertices in 7 and to rearrange them
such that their local arrangement cost (see Definition 45) is minimized. Such
an optimal arrangement is achieved using a close variant of the dynamic pro-
gramming algorithm described in Section 2. By the locality property this local
strategy is feasible. We can be sure that optimizing small vertex sets, separately,
can only decrease the cost of the arrangement. For improving the results, the
process can be iterated few times.

The local refinement process is depicted in Figure 2. Taking k as a constant
(in our experiments we usually set k = 6), the time complexity is O(|F|) and
space demands are also linear in the input size.

4.4 Putting it all Together

At this stage we have all the elements needed for constructing the multi scale
algorithm.

Preprocessing stage Prior to running the algorithm we want to obtain, very
quickly, a reasonable linear arrangement. For achieving this, we first order the
vertices using spectral sequencing (see Section 2) and then improve the result
by applying the median iteration for about 50 sweeps. We have no evidence that
performing spectral sequencing prior to the median iteration is superior to a
simple greedy initialization. Anyway, since we have an extremely fast multi-scale
implementation of spectral sequencing [14], it was very comfortable for us to use
it. However, the reader that finds the implementation of spectral sequencing too
complicated, may replace it with a greedy vertex-by-vertex successive addition
algorithm. Such algorithms are described in [17],[15].

14

Function Local Refine (G(V = {1,...,n}, E), Ordering)

% Parameters:

% G(V,E) - An s-graph , Ordering — a linear arrangement of V/

% Constants:

% interval[= 6] — number of consecutive vertices to optimize together

% iterations[= 5] — number of iterations the algorithm should run

% Auxiliary function:

% MinLA_local(G(V, E), Ordering, j, j + k — 1) — finds best internal

% ordering of the k vertices placed in: Ordering[j], ..., Orderinglj + k — 1].
% Implemented using dynamic programming

for ¢ =1 to iterations
for j =1 to n —interval + 1
MinLA local(G(V, E), Ordering, j, j + interval — 1)
end for
end for

Fig. 2. The local refinement process

The V-cycle Our basic multi-scale tool is the V-cycle. The V-cycle starts by
refining locally the arrangement. The intention of the refinement is not only to
minimize the arrangement cost, but also to improve the quality of the following
coarsening step. The next step is to coarsen the graph based on restricting con-
secutive vertex pairs of the current arrangement. Then we solve the problem in
the restricted solution space, by running recursively on the coarse graph. Once
we have found a good solution in the restricted solution space, we refine this
solution locally (in the full solution space).

In the most optimistic case, in each scale the optimal solution is reachable
via local optimization from the best restricted solution, what ensures finding it.
Our hope is that in a realistic case, a pretty good solution is reachable via local
optimization from the restricted solution we have found. Of course, this depends
on the quality of the refinement process and on the restrictions we impose.

In Figure 3 we are showing the V-cycle algorithm. The V-cycle uses several
functions. The function ‘coarsen(G, 7, G, 7%)’ gets an s-graph - G and a linear
arrangement of its vertices - m. Based on this, ‘coarsen’ produces a coarse graph
- G and a linear arrangement its vertices - 7%, 7 and 7% are corresponding
linear arrangements in terms of Definition 46. The way to construct G* and
7 is described in Subsection 4.2. The function ‘interpolate(GF®, 7%)", gets a
coarse graph - G and a linear arrangement- 7%, and produces the corresponding
linear arrangement of the fine graph - 7.

The stopping condition can be when the graph is small enough to facilitate
finding the optimum linear arrangement. In all the graphs that we have tested,
the local refinement was useless after more than five levels of recursion, due to

15

a needless repetition
of the same idea???

the good global structure of the arrangement. Anyway, the coarsest graphs are
so small that the exact stopping point has only a negligible effect on the running
time.

All the functions that the V-cycle use run in a linear time and space, and
the recursive call is to a problem of approximately the half size. Thus, the time
and space complexity of the V-cycle algorithm are O(|E|).

Function V-cycle (G(V, E), Ordering)
% Parameters:
% G(V,E) - An s-graph , Ordering — a linear arrangement of V'

Local _Refine(G, Ordering)

if G is ‘large enough’ then
coarsen(G, Ordering, G*, Ordering™)
V-cycle(GT, Ordering™)
interpolate(G%, Ordering™, Ordering)
Local_Refine(G, Ordering)

end if

Fig. 3. The V-cycle (multi-scale) algorithm

Iterating the V-cycle The V-cycle can benefit from initialization with a better
arrangement. Thus, a repetitive activation of the V-cycle can improve the results.
In fact, this kind of iteration is common in multi-scale algorithms, see [18].
Iterating the V-cycle can only decrease the cost of the arrangement. We have
noticed that frequently, after few iterations the process converges and then im-
provement is very slow, if at all. We can obtain better results by initiating the
median iteration, for few (e.g., 10) sweeps, before entering each new V-cycle. The
median iteration perturbs the arrangement and provides the next V-cycle with a
different starting point, overcoming premature convergence. An interesting point
is that since the arrangement may be quite good, the inability of the median
iteration to optimize local regions of the arrangement become significant. Thus,
the median iteration, may perturb the arrangement into a “worse” arrangement
of a higher cost. This reminds “uphill moves” of simulated annealing. But, the
median iteration is much better than arbitrary uphill perturbations, as it inher-
ently tends to the global optimum. Hence, we have found that few sweeps of the
median iteration are quite effective, even when they temporarily increase the ar-
rangement cost. Furthermore, the resemblance with simulated annealing may be
extended. Accepting uphill perturbations can be subjected to a probability that
decreases as the process goes on. Similarly, we may gradually reduce the number
of sweeps of the median iteration, lessening the effect of uphill perturbations.
In Figure 4 we depict the full multi-scale linear arrangement algorithm.

16

Function MS_MinLA (G(V, E), Ordering, Iterations)
% Parameters:
% G(V,E) - An s-graph
% Ordering — a linear arrangement of V'
% Iterations — no. of V-cycle iterations
% Variables:
% ki[= 40] — no. of sweeps in first median iteration
% k2[= 10] — no. of sweeps in rest median iterations
Spectral_Sequencing(G, Ordering)
Median Tteration(G, Ordering, k1)
for i = 1 to Iterations
Median Iteration(G, Ordering, ko)
V-cycle(G, Ordering)
Decrease(ks)
end for

Fig. 4. The full multi-scale algorithm

4.5 A Case Study

We want to demonstrate the benefit of embedding the local refinement process
inside the multi-scale scheme. For this demonstration we have chosen the 10-
dimensional hyper-cube, which consist of 1024 vertices and 5120 edges. The
results for this graph reflect what have been observed with many other graphs.
The optimal linear arrangement of this graph, denoted by 7*, can be computed
efficiently, and its cost is: 523776, see [17].

As the first stage we have applied spectral sequencing to the hyper-cube,
resulting in an arrangement of cost 659490. Then, we improved the arrangement
using 40 iterations of the median iteration. We call the resulting arrangement 7,
its cost is 599958. We should note that this is the random part of the experiment,
and other runs provide quite different arrangements (while the median iteration
consistently significantly improves the initial arrangement).

We have tried to improve 7° in two ways. First, we have applied our Lo-
cal_Refine function for 100 iterations (setting the local constant iterations to
100), and we have got an arrangement of cost 593120. More iterations of Lo-
cal_Refine cannot decrease the cost further. Second, we have applied a single
V-cycle to 7°. In this case, the Local_Refine function has performed only 5 iter-
ations in each of its executions during the V-cycle, thus running time is much
faster than the first way. The result was the optimal linear arrangement, 7* of
cost 523776. Clearly better than the direct application of Local Refine.

Hence, embedding the local refinement process in the V-cycle multi-scale
scheme has strong impact in terms of both running time and quality. In fact,
embedding a local refinement process in a multi-scale scheme adds global con-
siderations to the refinement process. This is because each local movement on

17

a coarse graph, expresses a more global move at the original graph. Thus, in
some sense, the “wisdom” of a multi-scale algorithm can be divided into two
parts: One part is related to local optimization and is encoded inside the local
optimization process. The second part deals with the global properties of the
problem, and is encoded in the coarsening construction.

5 Experiments

We have implemented our algorithm using C++ and used ACE [14] for spectral
sequencing. The program runs on a 700MHZ Pentium 3, under Windows NT.
We test our algorithm using a test suite collected by Petit [17]. The graphs were
chosen as to represent several graph families. This test suite was also used by
[2]. In Table 5 we describe the graphs.

Petit has computed linear arrangements of these graphs using many algo-
rithms. The best results were obtained by first running spectral sequencing, and
then refining using simulated annealing (SA). The SA process was run for C -n?
iterations (C' > 1 is a constant related to the rate of temperature decrease in
SA). This is quite a long run. We cannot directly compare running times with
ours, since platforms are different. Anyway to get an impression, for the largest
graph — whitaker3, running time of SA was over 11 hours. We provide the costs
computed by SA in Table 5.

For each graph, we have run our multi-scale algorithm (of Figure 4) with
Iterations = 1 (a single V-cycle) and also with Iterations = 10. We provide
the results of these runs in Table 5. We also provide the results of spectral se-
quencing and median iteration, which are the first stage of our algorithm. It
should be mentioned that this first stage (i.e., spectral sequencing and median
iteration) is randomized, thus we have run it 10 times for each graph and picked
the best result. It can be seen that the quality of our results (after 10 iterations)
is very similar to that of Petit’s SA (though our linear running time is signifi-
cantly faster). In fact, the results may be further improved by executing more
iterations and/or by enlarging the value of the constant interval in the function
Local_Refine. However, the rate of improvement would be slow.

The table also shows the ability of the median iteration to be an efficient
improvement over spectral sequencing. Its rapid running time makes it very
attractive for huge graphs. Notice that for the graph randomA3, the median
iteration increased the arrangement cost. This happens due to inability of the
median iteration to make clever local decisions. Thus, in cases where the ar-
rangement is close to optimal and local improvements are needed, the median
iteration is inappropriate.

6 Related Work

Bar-Yehuda et al. [2] have applied a divide-and-conquer approach to the MinL A
problem. Their idea is to divide the vertices into two sets, then to recursively ar-
range each set internally on consecutive places and finally to join the two ordered

18

Graph Size Degree Diameter Result of
Name |[V| |E| min/avg./max SA
randomA1l 1000 4974 1/9.95/21 6 900992
randomA2 1000 24738 28/49.47/72 3 6584658
randomA3 1000 49820 72/99.64/129 4 14310861
randomA4 1000 8177 4/16.35/29 4 1753265
randomG4 1000 8173 5/16.34/31 23 150940
hcl0 1024 5120 10/10/10 10 548352
mesh33x33 1089 2112 2/3.88/4 64 34515
bintreel0 1023 1022 1/1.99/3 18 4069
3elt 4720 13722 3/5.81/9 65 375387
airfoill 4253 12289 3/5.78/10 65 288977
whitaker3 9800 28989 3/5.91/8 161 1199777
cly 828 1749 2/4.22/304 10 63858
c2y 980 2102 1/4.29/327 11 79500
c3y 1327 2844 1/4.29/364 13 124708
cdy 1366 2915 1/4.26/309 14 117254
c5y 1202 2557 1/4.25/323 13 102769
gd95¢c 62 144 2/4.65/15 11 509
gd96a 1076 1676 1/3.06/111 20 104698
gd96b 111 193 2/3.47/47 18 1416
gd96¢c 65 125 2/3.84/6 10 519
gdoe6d 180 228 1/2.53/27 8 2393

Table 1. Test suite of Petit [17]. For each graph we provide the cost of the linear
arrangement computed by Petit using simulated annealing

Graph Spectral Median Multi-Scale Multi-Scale Time (sec.)
Name Sequencing Iteration 1 Iteration 10 Iterations of a single
arrangement-cost / time (sec.) V-cycle
randomA1l 1156890/.08 1020028/.03 938168/2.39 909126/22.94 2.28
randomA2 7377237/.27 7284497/.42 6755035/7.02 6606174/63.94 6.33
randomA3 15279645/.38 16543660/.96 14731040/12.12 14457452/109.17 10.78
randomA4 2167121/.11 1955837/.05 1807038/3.15 1765217/30.04 2.99
randomG4 195054/.06 175879/.06 154990/2.11 149513/18.97 1.99
hcl0 580910/.02 542476/.03 523776/1.9 523776/18.51 1.85
mesh33x33 35750/.04 34118/.01 32486/1.04 31729/9.91 .99
bintreel0 52992/.09 6114/0 4246/.88 3950/7.96 79
3elt 429086/.43 394238/.11 385572/6.55 373464/61.24 6.07
airfoill 352897/.37 312387/.11 305191/6.53 291794/61.02 6.05
whitaker3 1259607/.92 1238557/.28 1226902/13.86 1205919/127.79 12.66
cly 103224/.02 71359/.01 66836/.92 64934/8.88 89
c2y 95346/.03 84259/.01 82070/1.12 80148/10.81 1.08
c3y 175700/.04 145332/.02 137131/1.58 127315/15.3 1.52
cdy 133044/.05 124576/.02 121460/1.62 118437/15.57 1.55
cb5y 144603/.04 115239/0.02 109280/1.39 104076/13.33 1.33
gd95¢ 599/.02 5950 509/.08 509/.61 .06
gd96a 170700/.04 122567/.01 115525/1.24 106668/11.94 1.19
gd96b 1836//0 1825/.01 1435/.11 1434/.98 1
gd96¢ 701/0 601/0 522/.06 519/.6 .06
gd96d 3691/0 2807/.01 2438/.16 2420/1.53 15

Table 2. Results of: spectral sequencing, median iteration, multi-scale with a single
V-cycle and multi-scale with 10 iterated V-cycles. The times for multi-scale include
spectral sequencing, median iteration and V-cycles. We also provide the time of a

single V-cycle

19

sets deciding which set will be put to the left of the other. The computed order-
ing is specified by a decomposition tree that describes the recursive partitioning
of the subproblems. At each node of the tree there is a degree of freedom, re-
garding the order in which the two vertex sets are glued together. Thus, the goal
of the algorithm is to decide for each node of the decomposition tree the order of
its two children. Bar-Yehuda et al. [2] have suggested a dynamic programming
algorithm for computing the best possible ordering for a given decomposition
tree. They also applied their algorithm iteratively, starting each iteration with
the result of the previous iteration. After few tens of iterations, they have got
very good results similar to those of Petit’s SA [17] and of ours.

It is interesting to compare our algorithm with that of [2], since both algo-
rithms are hierarchic, one being divide-and-conquer (DAC) and the other being
multi-scale (MS). A main difference between MS and DAC is expressed nicely in
the following observation. In DAC, the nodes are first divided into two groups,
which cannot be mixed during the entire process, a kind of a global constraint.
In contrary, at MS there is no such a global constraint, except on the coarsest
scale, where the vertices are restricted into few groups. Instead, MS imposes
many local constraints, restricting small sets of vertices together, throughout
all the hierarchy. Interestingly in the heart of the DAC approach of [2] lies a
multi-scale algorithm of [12] that is used for building the decomposition tree.

Regarding running time, the method of [2] has a time complexity of O(n??)
for bounded degree graphs, while our method runs in time O(|E|), which is
O(n) in the bounded degree case. This complexity gap is quite meaningful as
graphs become large. For example consider the largest graphs in the test suite:
3elt, airfoill and whitaker3; the size of whitaker3 is slightly more than twice
the size of 3elt or of airfoill. Executing 10 iterations of [2] on these graphs take
534, 434 and 1652 seconds, respectively, comparing with 61,61 and 128 seconds,
respectively, of our method. Times for [2] were taken from their paper, and reflect
running a non-parallel program on a dual processor Pentium 3 600MHz, which
is comparable with our platform. Notice that it is fair to compare 10 iterations
of the both methods, since for these 3 graphs as for most graphs in the test suite
our method produces better arrangements when using 10 iterations.

7 Discussion

We have presented a multi-scale algorithm for the minimum linear arrangement
method. The algorithm delivers arrangements on a par with best known algo-
rithms, using significantly less time, allowing to deal with much larger graphs.
The heart of the multi-scale algorithm is a novel construction of a hierarchy
of coarse graphs, representing the problem in various dimensions. The coarse rep-
resentations of the graph correspond to restricted parts of the original problem.
A local refinement scheme was considerably amplified, when embedded inside
the multi-scale construction. In fact, the multi-scale construction is independent
on the specific refinement heuristic, and we believe that many heuristics may
benefit from embedding inside a multi-scale scheme that allows them to traverse

20

the search space in several scales. Moreover, variants of the proposed multi-scale
construction can be used for other vertex ordering problems such as Bandwidth
minimization, and minimum Cutwidth [7].

We believe that several principles of our algorithm might be applicable for
other combinatorial optimization problems. Especially, the process of construct-
ing coarser representations of a problem by restricting the original problem.

Another contribution of our paper is the median iteration, which is an ex-
tremely fast method for decreasing arrangement cost, using a continuous relax-
ation of the original problem. This method may be applied for huge graphs of
millions of vertices.

A Demonstration of the Coarsening Process

We illustrate the coarsening process, which was described in Subsection 4.2,
using a specific example.

We begin with a graph G. All vertices of G are of length 1, all its edges
are of weight 1 and for every edge (i,7): p(i,j) = (i,j)p = 1. An initial linear
arrangement of G, denoted by 7 is depicted in Figure 5(a). Notice that in a
linear arrangement, as it was defined in Definition 42, there is no gap between
consecutive vertices. However to make the figure clearer we put small gaps be-
tween the vertices. As the reader can verify, the cost of this linear arrangement
is LA, (G) = 43.

The second step of the coarsening process is to restrict consecutive vertex
pairs in 7, to be adjacent in all the linear arrangements. Hence, the restricted
pairs set is R = {(1,2),(3,4),(5,6),(7,8)}. Three edges lie within a restricted
pair: (1,2), (3,4), (7,8). Thus the internal cost, as defined in Definition 47 is
C(R) = 3.

Based on the restriction R, we build a coarse graph — G, such that there
is a 1-1 correspondence between its arrangements and the arrangements of the
restricted search space. The vertices of G are the restricted pairs of R. The
length of each vertex is 2, and weights and coordinates of edges were calculated
as to preserve the information of the original graph.

In Figure 5(b) we show ¢, a linear arrangement of G corresponding to 7
(see definition 46). The cost of ¢ is LA,(GF) = 40. This value is in agreement
with Lemma 2, as LA, (G) = LA,(G®) + C(R).

As can be seen, the visual complexity of G is much lower than that of G. In
fact, it is not too hard to compute the minimum linear arrangement of G® — *,
which is depicted in Figure5(c). The cost of this arrangement is LA, (GT) = 24.

After solving the problem in the coarse graph, we interpolate the resulting
arrangement to the original graph, and get the corresponding linear arrangement
of G — 7* shown in Figure 5(d). In accordance with Lemma 2 LA;(G) =
LA,«(GR) + C(R) = 24 + 3, a significant decrease of the arrangement cost,
which can be also appreciated visually.

We should remark that this demonstration reflects only the coarsening pro-
cess and not the full multi-scale algorithm, for two reasons. First, in the multi-

21

scale algorithm we perform refinements also on the fine graph, before the coars-
ening and after the interpolation. Second, in the multi-scale algorithm we do not
start with an arbitrary arrangement of the fine graph, but with a hopefully good
arrangement of G produced by the median iteration.

B Proof of Lemma 2

We provide here a proof of the following lemma, which is stated in Subsection 4.2

Lemma 2. Let G be a graph, R a set of restricted vertex pairs, and let w and
@ be two corresponding linear arrangements of G and G, respectively. Then,
LA (G) = LAL(G®) + C(R).

For simplicity we assume that the number of vertices in the fine graph, n,
is even. Thus, |R| = n/2, (i,j) € R = i # j. Otherwise, the proof should be
slightly changed.

Proof. By definition,

LAR(G) = Xy wiy - Ten({0,)) =
(vi,v2)ER Wy vy lenﬁ(<v1, U2>)+

+ Z(U17U2)7(U3,U4)ER Zie{vl,vg},je{vg,m} Wij - lenﬁ(@a]>)

Let (v1,v2), (v3,v4) € R be two restricted pairs. Analyze their joint contribution
to LAz (G), which is: T'= 3" c 0, 001 iefvs o0} Wis * len” ({2, 7))

Assume, without loss of generality, that 7 (v1) < 7(vs).

Recall that for an edge (i, j), for which 7(i) < w(j), we defined len™({i,j)) =
P7() + (i, d)p — P7(d) —p {is).

Use also the fact: P™(ve) = P™(v1) + Ly, P™(v4) = P™(v3) + ly,.

Rewrite T as follows:

T =

Wy vg Pﬂ(v3) + Wy vy (Pﬂ—(v3) + lv3) + Woysvg Pﬂ—(v3) + Woysvy * (Pﬂ—(v3) + lv3)+
W vg - (U1, V3) P+ Wy - (U1, 04) P+ Woyuy - (U2, V3) P+ Woyo, - (U2, 04) p—
—Wyqvg 'PW(Ul) — Wyyvy - PW(Ul) — Wyyvg - (Pﬂ—(vl) + lUl) — Wysvy - (Pﬂ<v1) + l'Ul)_
— Wy v P (V1,V3) = Wy vy *P (V1,V4) — Wanpy P (V2,V3) — Wyye, P (V2,V4) =

= (wvlvs + Wy vy T Woyvy + wv2v4) X
X (PW(U:;) — PW(U1)+

4 (Z’iG{’U1,v2},j€{v3,v4} wij'<i7j>P)+lvs'(wvl’u4+wv2v4) N
W vg T Woy vy TWogvg TWoguy
N (Zie{vl.vz}.je{v3,v4} u”ij'P<i7j>)+lv1'(w02u3+wv21}4)>

Wyyvg T Wop vy FWogug TWoguy

22

(a) Graph G

l Coarsening

3 3

(b) Graph &*

(1,2) (7,8)

(3,4) (5,6)
2

l Refinement
(c) Graph Cf

(5,6) (1,2) (7,8) (3.4)

Fig. 5. The coarsening process

23

As observed in Equation 2, P™(v;) = P¥((v1,v2)), P™(v3) = P¥((vs,v4)). By
the construction of GE, we deduce:

T = Wvy,05)(v5,04) X
X <P‘”((v3,v4)) — P?((v1,v2))+
+ ((v1,v2), (vs, v4)) p—
—p ((v1,v2), (v3,v4)) | =

w(vl,vg)(v3,vJ4) . lengR(«vlz U2)7 (U3, U4)>)

Hence,

LAR(G) = C(R) + X4, 1), (vs,00)€ R Wiwn 02)(v5,00) - Lengr ({(01,02), (v3,04))) =

= C(R) + LA, (GF)

References

1.

10.

11.

J. E. Atkins, E. G. Boman and B. Hendrickson, “A Spectral Algorithm for Seriation
and the Consecutive Ones Problem”, SIAM Journal on Computing 28 (1998), 297—
310.

. R. Bar-Yehuda, G. Even, J. Feldman and Seffi Naor, “Computing an Optimal

Orientation of a Balanced Decomposition Tree for Linear Arrangement Problems”,
Journal of Graph Algorithms and Applications 5 (2001), 1-27.

S. T. Barnard, A. Pothen, and H. D. Simon, “A Spectral Algorithm for Enve-
lope Reduction of Sparse Matrices”, Numerical Linear Algebra with Applications
2 (1995),317-334.

S. T. Barnard and H. D. Simon, “A Fast Multilevel Implementation of Recursive
Spectral Bisection for Partitioning Unstructured Problems”, Concurrency: Practice
& Ezxperience 6 (1994), 101-117.

A. Brandt, “The Gauss Center Research in Multiscale Scientific Computation: Six
Year Summary”, Report WI/GC-12, Weizmann Institute of Science, May, 1999.
A. Brandt, “Multiscale Scientific Computation: 2000”, Proc. Yosemite Educational
Symposium, Lecture Notes in Computational Science and Engineering, Springer
Verlag, 2001, to appear.

J. Diaz, J. Petit and M. Serna, “A Survey on Graph Layout Problems”, Tech-
nical report LSI-00-61-R, Universitat Politecnica de Catalunya, Departament de
Llenguatges i Sistemes Informatics, 2000.

M. R. Garey and D. S. Johnson, Computers and Intractability: a Guide to the
Theory of NP-Completeness, W. H. Freeman, San Francisco, 1979.

K. M. Hall, “An r-dimensional Quadratic Placement Algorithm”, Management
Science 17 (1970), 219-229.

D. Harel and Y. Koren, “A Fast Multi-Scale Method for Drawing Graphs Nicely”,
Proceedings of Graph Drawing’00 , LNCS 1984, Springer Verlag, pp. 183196, 2000.
M. Juvan, B. Mohar, “Optimal Linear Labelings and Eigenvalues of Graphs”,
Discrete Applied Math. 36 (1992), 153-168.

24

12

13.

14.

15.

16.

17.

18.

19.

. G. Karypis and V. Kumar, “A Fast and High Quality Multilevel Scheme for Par-
titioning Irregular Graphs”, SIAM Journal on Scientific Computing 20 (1999),
359-392.

Kirkpatrick, S., Gelatt, Jr., and Vecchi, M.P., “Optimization by Simulated An-
nealing”, Science 220 (1983), 671-680.

Y. Koren, L. Carmel, and D. Harel “ACE: A Fast Multiscale Eigenvectors Compu-
tation for Drawing Huge Graphs”, Technical Report MCS01-17, Faculty of Math-
ematics and Computer Science, The Weizmann Institute of Science, 2001.

A. J. McAllister, “A New Heuristic algorithm for the Linear Arrangement Prob-
lem”, manuscript.

B. Mohar, “The Laplacian Spectrum of Graphs”, Graph Theory, Combinatorics,
and Applications 2 (1991), 871-898.

J. Petit, “Experiments on the Minimum Linear Arrangement Problem”, Technical
report LSI-01-7-R, Universitat Politecnica de Catalunya, Departament de Llen-
guatges i Sistemes Informatics, 2001. (Preliminary version in Alex 98 — Building
Bridges between Theory and Applications, pp. 112-128, 1998.)

S. H. Teng, “Coarsening, Sampling, and Smoothing: Elements of the Multilevel
Method”, Algorithms for Parallel Processing, vol. 105 of IMA Volumes in Mathe-
matics and its Applications, Springer Verlag, pp. 247276, 1999.

C. Walshaw, “Multilevel Refinement for Combinatorial Optimisation Problems”,
Technical Report 01/IM/73, Comp. Math. Sci., Univ. Greenwich, London, UK,
2001.

25

