
Drawing Graphs with Non-Uniform Vertices

David Harel
harel@wisdom.weizmann.ac.il

Yehuda Koren
yehuda@wisdom.weizmann.ac.il

Dept. of Computer Science and Applied Mathematics
The Weizmann Institute of Science, Rehovot, Israel

ABSTRACT
The vertices of most graphs that appear in real applications are non-
uniform. They can be circles, ellipses, rectangles, or other geomet-
ric elements of varying shapes and sizes. Unfortunately, current
force directed methods for laying out graphs are suitable mostly
for graphs whose vertices are zero-sized and dimensionless points.
It turns out that naively extending these methods to handle non-
uniform vertices results in serious deficiencies in terms of output
quality and performance. In this paper we try to remedy this situ-
ation by identifying the special characteristics and problematics of
such graphs and offering several algorithms for tackling them. The
algorithms can be viewed as carefully constructed extensions of
force-directed methods, and their output quality and performance
are similar.

1. INTRODUCTION
A graph ������ is an abstract structure that is used in the real

world to model an entity-relationship structure; the entities are rep-
resented by set of the vertices � and the relationship by the edges
� � � � � . Since real graphs are usually intended to be compre-
hended by humans, the usefulness of a graph depends on the clarity
of its layout. Achieving a clear, aesthetic picture of a graph is not
an easy task, and for many years now researchers have been moti-
vated to seek automated means for drawing graphs “nicely”. The
state of the art is surveyed comprehensively in [3].

A central graph drawing problem is that of laying out an arbitrary
undirected graph. The most common approach for drawing such
graphs is apparently the force-directed approach [4, 9, 1, 5]. Algo-
rithms based on this approach consist of two components. The first
is the heuristic force (or energy) model that quantifies the quality
of a drawing, and the second is an optimization algorithm for com-
puting a drawing that is locally optimal with respect to this model.

In practice, the vertices of graphs are non-uniform. There are
applications with different types of vertices that are depicted using
different geometric shapes. Also, a vertex in a graph often repre-
sents an entity that is associated with some information — a name
or a parameter – and we would like to provide this information
inside the drawing of the vertex. We thus often have varying sized

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AVI ’2002 Trento, Italy
Copyright 2002 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

circles, ellipses or rectangles as the vertices. Unfortunately, most of
the force directed methods represent vertices by zero-sized dimen-
sionless points in the plane, and naive extensions to handle non-
uniform vertices are seriously deficient in terms of output quality
and performance.

In this paper we present several algorithms for drawing undi-
rected graphs with vertices of various shapes and sizes. The algo-
rithms can be viewed as enhancements and generalizations of ex-
isting force-directed methods, and unlike the naive extensions their
output quality and performance are comparable to the originals.

2. FORCE-DIRECTED GRAPH DRAWING
The force-directed approach is apparently the prevalent attitude

for drawing general graphs. Algorithms based on this approach
consist of two components. The first is the force (or energy) model
that quantifies the quality of a drawing. The second is an optimiza-
tion algorithm for computing a drawing that is locally optimal with
respect to this model. The resulting final layout brings the system to
equilibrium in which the total force on each vertex is zero, or equiv-
alently, the potential energy is locally minimal with respect to the
vertex positions. Regarding the drawing standard, force-directed
methods draw the edges as straight-line segments, so the issue re-
duces to the problem of positioning the vertices.

Here we outline some notable work on force-directed graph draw-
ing. In the following sections we introduce our enhancements to
these methods, which enable us to deal with variably sized and
shaped vertices.

2.1 The Spring Embedder Method
The spring embedder method is the earliest viable algorithm for

drawing general graphs. It was proposed by Eades [4], and was
later refined by Fruchterman and Reingold [5]. This method likens
a graph to a mechanical collection of electrical charged rings (the
vertices) and connecting springs (the edges). Every two vertices
reject each other by a repulsive force and adjacent vertices (con-
nected by an edge) are pulled together by an attractive force. The
method seeks equilibrium of these conflicting constraints. Spring
based methods are very successful with small-sized graphs of up to
around 50 vertices.

2.2 Kamada and Kawai’s Method
Kamada and Kawai [9] modelled a graph as a system of springs

that act in accordance with Hooke’s Law: Every two vertices are
connected by a spring, whose rest length is proportional to the
graph-theoretic distance between its two endpoints, and its stiffness
is inversely proportional to the square of its rest length. The opti-
mization procedure tries to minimize the total energy of the system,

that is:

� �
�

�����

�

����
����� ��� 	�����

where ���� �� is the length of the spring between � and �, 	 is
the length of a single edge, and ��� is the graph-theoretic distance
between � and �.

Kamada and Kawai’s method treats all the aesthetic criteria that
the spring-embedder method addresses, and produces drawings with
a similar quality. An advantage of this method is that it can be ap-
plied straightforwardly to drawing weighted graphs, assuming that
edge lengths have to reflect their weights.

2.3 Multi-scale Graph Drawing
The multi-scaleapproach is a vast improvement of the force-

directed technique, which facilitates the drawing of much larger
graphs (containing over 10,000 vertices), see e.g., [7, 8]. These
methods consider a series of abstractions of the graph called coarse
graphs, in which the combinatorial structure is significantly simpli-
fied, but important topological features are well preserved. The
energy minimization is divided between these coarse graphs, in
such a way that globally related properties are optimized on coarser
graphs, while locally related properties are optimized on finer graphs.
As a result, the energy minimization process considers only small
neighborhoods at once, yielding a quick running time.

3. DEFINING THE PROBLEM
Seeking a nice layout of a graph, we first have to define what

we mean by “nice”. There are several known aesthetic criteria for
graphs, whose relevance has been demonstrated in the literature,
such as uniform and small edge lengths. When dealing with ver-
tices that are no longer zero-sized points, all the regular criteria still
hold, but two additional constraintsare needed, to prevent overlaps
that involve vertices:

C1 Vertices are not to overlap.

C2 Edges are not to cross vertices.

What kind of vertices do we allow? Well, most of the meth-
ods we describe can be adapted easily to take care of any common
shape, but we have implemented them for ellipses or rectangles.
We also assume that the user has oriented the vertices, so they are
not to be rotated or reflected. This means that laying out a vertex
entails only deciding on the location of its center.

As for the edges, we have chosen to use the straight-line stan-
dard, whereby edges are drawn as straight-line segments connect-
ing the boundaries of the vertices. For the actual choice of this seg-
ment our implementation offers two possibilities: (i) the boundary-
connecting segment that lies on the line connecting the centers of
the vertices, or (ii) the shortest straight-line segment connecting
the two boundaries. Having adopted one of these possibilities, the
problem of drawing a graph reduces to the problem of deciding on
locations for its vertices. Hence, a layout is defined as follows:

DEFINITION 3.1. A layout of a graph������ is a mapping
of the graph’s vertices to the two dimensional Euclidean space:

 � � �� �

� . When the vertices are not points,
��� is taken to
be the location of the center of�.

Trivial solutions
A couple of naive methods for drawing such graphs come to mind.
The easiest one is to consider the graph as having conventional
zero-sized vertices, to construct a nice layout of it using some known

method, and then to scale-up the entire resulting drawing until there
is enough space for all the vertices, without violating constraints
C1 and C2 above. This method will always work. However, some
important aesthetic criteria are not achieved. Because the scaling-
up is carried out globally, the edges will not be of uniform length,
and many might be very long. Except for very simple cases, the
drawing will not be compact and will look extremely distorted.

We should stress that the ability to achieve a compact picture
is of great importance, since area-efficient drawings are essential
in practical visualization applications where screen space is one of
the most valuable commodities.

A better approach is to first bound the vertices from the outside
by circles. Drawing a graph with circular shaped vertices can be
carried out easily using a simple variant of virtually any known
force-directed method, by increasing the length of each edge by the
lengths of the radii of its incident vertices. For more details see Sec-
tion 6, where we call such graphs “wt-graphs”. This method will
quickly produce drawings without vertex overlaps. However, the
edge lengths would still be non-uniform, and the resulting drawing
would not be satisfactorily compact because of the wasted space
between enclosing circles and the original vertices. For example,
many applications have rectangular vertices that are long and nar-
row.

Our intention when describing these two trivial solutions is to
convince the reader that we can handle large sized vertices quite
easily when allowing long and non-uniform edges. In the rest of
this paper we will show methods that deal with large vertices, while
producing pleasingly compact drawings.

4. SPRING BASED METHODS
The simplicity of the underlying principle of the spring method

makes it flexible enough to be adapted for non-uniform vertices by
redefining the forces. Our modifications will be seen to prevent
vertex overlaps, while achieving the aesthetic criteria that the orig-
inal method addressed. When edge lengths are short and uniform
edge-vertex overlaps will be eliminated too (see Section 8). We
strongly believe in methods that tightly integrate the achievement
of aesthetic issues with trying to impose the constraints, because
this way we do not have to separately address the aesthetics and
the constraints and to trade-off between the two. As a result, our
methods will not move two vertices away from each other without
considering the aesthetic implications of this action.

The Elliptic Spring Method
Ellipses are better than circles in bounding the kinds of shapes that
appear in real applications, like rectangles and parallelograms, so
it makes sense to deal with elliptical vertices. Hence, we propose a
generalization of standard spring based methods for elliptic-shaped
vertices. We restrict ourselves to ellipses whose radii are parallel to
the axes.

The method uses forces with elliptic and inverse-elliptic force
fields, which are related to the shapes of the vertices. The forces
are defined as follows:

For any two elliptical vertices �� and �� with centers ���� ��� and
��� � ��� and radii �
�� �

�
� � and �
�� �

�
� �, respectively, we define the

amount of repulsive force between their centers to be:

�	 � � �
�

��� � ����
�
�� �
�� � 	����

�
��� � ����

�
�� �
�� � 	����

���

If the vertices are adjacent, they attract each other by an attractive

force of strength:

�
 �
��� � ����

�
�� �
�� � 	����
�

��� � ����
�
�� �
�� � 	����

The intuition is that we do not want the center of �� to lie inside
the ellipse whose center is ��� � ��� and its radii are �
�� �
�� �
	���
�� �
�� � 	���.

When two ellipses overlap, the repulsive force is very large and
the attractive force is small. When two adjacent ellipses are far
away we have the opposite behavior. Here, � is a weighting con-
stant typically set to 1, in which case at adjacent vertices the two
forces cancel each other out when the two ellipses are approxi-
mately at distance 	��. If the resulting layout still contains vertex
overlaps, one should increase the value of � (or of 	��) so that the
vertices are placed further apart. This may be done automatically,
and focused locally on the overlapping vertices.

To find the layout itself, we use the optimization method of Fruch-
terman and Reingold [5]: In the initial configuration, all the ver-
tices are placed randomly in the frame, and the final configuration
is achieved by a predefined number of sweeps. In each sweep every
vertex moves in the direction that is determined by the total effect
of all the forces exerted on it. The amount of the displacement is
decreased in each iteration, which is like decreasing a temperature.

The method can be applied to graphs with zero-sized vertices
by setting all the radii to 0, and it achieves results comparable to
other known spring based methods. We thus call the algorithm the
Elliptic Spring Method, since it generalizes the traditional spring
based approach to elliptically shaped vertices.

Figure 1 exhibits results of the Elliptic Spring Method, and demon-
strates the flexibility of the algorithm in allocating the necessary
area for the vertices while achieving an aesthetic layout. Graphs A
and A1 have the same structure, but different vertex sizes. Various
statistics regarding these results are given in Table 1.

The Modified Spring Method
An alternative approach to adopting the spring-embedder for our
needs, is to take the distance between vertices to be the shortest
distance between their boundaries (and not between their centers).
As a consequence, we redefine the strengths of the forces in the
Fruchterman-Reingold method [5] to be:

�
��� �� �
����� ��

�

	��
�	��� �� � � � 	���

��	������ ��� ��

Here ����� �� is the shortest distance between the boundaries of �
and �, and � �
 is a small constant. When � and � overlap, we let
����� �� �
. Also,� is a constant, typically set to �. The direction
of the forces is between the centers of gravity of the two vertices.
The two forces cancel each other out when ����� �� � 	��. The
repulsive force is dominant and subsumes the attractive force when
the two vertices are tangential or when they overlap. This prevent
overlaps, since when two vertices are too close a strong repulsive
force detaches them.

We call this algorithm the Modified Spring Methodand it can
be easily applied to rectangular vertices. A practical problem that
may arise when implementing this method for various shapes (like
ellipses) is that the computation of the shortest distance between
their boundaries is too costly, especially considering that it is inside
the innermost loop of the algorithm. We can overcome this problem
by devising a variant of the algorithms in which we measure the
distance between the boundaries of two vertices on the straight-
line segment that connects their centers of gravity. The distance is
defined to be 0 when vertices overlap on this straight-line.

Figure 2 shows layouts of rectangular versions of the graphs of
Figure 1, as produced by the Modified Spring Method.

Comparison
In Table 1, we provide various statistics regarding the results of the
Modified Spring Method (MSM) and the Elliptic Spring Method
(ESM), both applied to elliptic vertices. For comparison, we also
give the statistics of the Fruchterman-Reingold Method (FRM) [5]
applied to the same graphs, but with dimensionless vertices. For
each graph we give the number of sweeps needed for achieving
an aesthetic picture. The actual running time on a Pentium III
700MHz PC is also provided. One can see that the running time
of the ESM is slightly better than that of the MSM. This should
be attributed to the fact that the forces in the ESM are milder, and
hence easier to optimize. Moreover, the forces of the ESM can be
computed more efficiently. However, it is very clear that the run-
ning time of the FRM is much faster than those of MSM and ESM.
We will discuss this point in the next section.

Regarding output quality, for each graph we supply the average
edge length (���	��), the standard deviation of the edge length
(������), and the ratio ����������	��. This ratio is a normal-
ized measure of the uniformity of the edge lengths, independent of
the edge lengths. From these results it is obvious that the MSM is
superior to the ESM regarding uniformity of edge-length. More-
over the uniformity of edge lengths of the MSM is comparable to
this of the FRM, so in this sense the MSM is an optimal generaliza-
tion of the FRM to handle non-uniform vertices. Another advan-
tage of MSM over ESM is its ability to handle directly a variety of
shapes, while the ESM can only approximate them by ellipses.

Our conclusion is that there is no clear winner between MSM
and ESM. In the following sections we shall be describing better
methods, and the central role of the two methods described here
will be as a final beautification of an “almost nice” picture. For this
kind of use, the MSM may have some advantage.

The Paradox or Why Convergence is Slow?
The relatively slow convergence rate of the ESM and the MSM,
comparing with the FRM, should not be attributed to a flaw in
their design, but to a fundamental problem. Apparently, any force-
directed algorithm that deals with sized vertices is doomed to slow
convergence if its cost function is to prevent overlap between ver-
tices. The reason is that when the vertices take a significant fraction
of the drawing area, there is less space for maneuver when seeking
a nice layout, and this slows convergence considerably. For an il-
lustration of this see Figure 3, in which some of the vertices are
blocked from achieving their proper place, because of the preven-
tion of vertex overlap.

It seems that there is an unavoidable tradeoff between the ability
to prevent vertex overlaps and the convergence rate. Paradoxically,
we cannot get a robust drawing algorithm, because the aspiration
for nice layout contradict the need for fair convergence rate, and
one that will not be trapped easily in local minima. We want to
remark that the same kind of problem may arise in many common
cases, when the cost function tries to deal with a rich set of aes-
thetic criteria. A remarkable example is a cost function that tries
to minimize edge crossings. When experimenting with the Simu-
lated Annealing method of [1], we have found that when extracting
the edge-crossing component from the energy function, the conver-
gence rate becomes much faster.

Fortunately, in the case of vertex overlaps, we have found a way
to get around this: forcing the constraints gradually. At the first
stage we set things up so that the cost function is weak and does
not completely prevent overlaps. As the drawing process proceeds

Graph A Graph A1 Graph B Graph C

Graph D A 16x16 square grid A depth 3 Sierpinski

Figure 1: Results of the Elliptic Spring Method

Graph A Graph A1 Graph B A depth 3 Sierpinski

Graph C Graph D A 16x16 square grid

Figure 2: Results of the Modified Spring Method

Graph name Method Sweeps Time (sec.) Average edge Standard deviation ������
���	�

length (������) of lengths (��	
��)
MSM 1302 1 1.57 0.27 0.17

A ESM 650 1 1.75 0.94 0.54
FRM 128 0 1.91 0.36 0.19
MSM 1957 2 2.47 0.5 0.2

A1 ESM 780 1 2.64 1.75 0.66
FRM 128 0 1.91 0.36 0.19
MSM 1954 1 4.5 1.32 0.29

B ESM 1302 0 5.19 1.68 0.32
FRM 95 0 2.31 0.47 0.2
MSM 976 1 2.85 0.71 0.25

C ESM 976 0 3.13 1.87 0.60
FRM 194 0 1.20 0.37 0.31
MSM 976 0 5.49 1.76 0.39

D ESM 976 0 6.54 2.36 0.36
FRM 76 0 2.28 0.33 0.14

Sierpinski MSM 4345 5 2.55 0.85 0.33
(depth 3) ESM 4888 4 3.19 1.55 0.49

FRM 389 0 1.37 0.41 0.3
MSM 1954 87 4.58 1.19 0.26

Grid 16x16 ESM 1954 73 6.71 1.88 0.28
FRM 432 15 2.20 0.41 0.19

Table 1: Statistics regarding the results of the modified spring method (MSM), the elliptic spring method (ESM) and the
Fruchterman-Reingold method (FRM). Running times are on a Pentium III 700MHz PC, and are rounded. For MSM and ESM,
shorter edges are preferable, as they yield a more compact picture. For FRM, the average edge length is given only as a scaling
measure.

01

2

3

4

5

6
7

8

9

10

11

12
13

14

15
16 17

18

19

20
21

22
23

24

25
26

27

28

29

30

01

2

3

4

5
6

7
8

9

10

11
12

13

14

15
16

17

18

19

20

21 22

23

24

25
26

27

28

29

30

(a) (b)

Figure 3: (a) Desired layout (b) Bad local minimum

and the coarse structure of the picture is found, the cost function
fully prevents overlaps. This principle is used in the method de-
scribed in Section 7, but before going into it we want to describe
how the Kamada-Kawai method [9] can be generalized to incorpo-
rate arbitrarily sized vertices.

5. THE ITERATIVE KAMADA-KAWAI
METHOD

In this section we introduce a method that finds a nice layout of
a graph with arbitrarily sized-vertices, by iteratively finding a nice
layout of a related weighted graph with conventional dimensionless
vertices.

DEFINITION 5.1. Let
 be a layout of a graph������ and
let �� � � � . We denote by������ �� the length of those segments
of the straight-line connecting
��� and
��� that are inside the
drawing area of vertices� and�.

We now define a suitable metric on the vertices of a layout.

DEFINITION 5.2. Let������ be a graph and let
 be a lay-
out of�. We define the weighted graph���������, with weight-
ing function�, such that���� �� � 	��� ������ ��.
The metric�� on� is defined as the graph-theoretic distance be-
tween vertices in the graph��

	�� is a constant chosen in an attempt to approximate the desired
uniform edge length, which is independent of the shape and place-
ment of the vertices.

Notice that �� is a generalization of the graph-theoretic distance,
and it expresses the fact that when vertices have non-zero sizes, the
length of a path should be measured not only by the edges, but also
by taking into account the appropriate segments that pass through
the vertices.

The heuristic
Our heuristic for nice drawing relates to “good” isometry between
the Euclidean metric and the metric �� . More precisely, our posi-
tion is that
 is a nice layout if it minimizes the energy function:

� �
�

�����

����� � ��
����
���� � ����� ���� (1)

Here �
����
���� is the Euclidean distance between
��� and

��� and ����� � �

���� ���� is a normalizing factor. We will call
this heuristic GKK (Generalized Kamada-Kawai).

The optimization method
The optimization method we propose consist of an incrementally
improving sequence of layouts, as follows:

�
� is the initial layout (which can be random; a better choice
is described at the end of Section 6).

�
��� is a layout that minimizes the energy function:�
�����

���
��� � ��
�������
������� � ������ ����

Graph Iteration 1 Iteration 2 Iteration 3 Iteration 4 Overall time
(sec., rounded)

A 326 54 27 25 0
A1 393 62 42 10 0
B 207 34 5 1 0
C 307 51 22 11 0
D 193 12 1 1 0
Grid 16x16 2793 555 217 54 3
Grid 20x20 6634 987 407 1 10
Sierpinski 2902 710 329 133 1
(depth 4)

Table 2: Convergence rate of the Iterative Kamada-Kawai
method

The minimization is carried out by optimizing each vertex sepa-
rately, using the Newton-Raphson method (exactly as would be
done had we executed the classical method of Kamada-Kawai on
the weighted graph ��� , see [9] for more details).

The process stops when ��� 	 ����� . We can expect this event
to happen after very few iterations, as we now explain. A satisfac-
tory coarse global solution should exist already in
�, because the
distance between far enough vertices is not sensitive to changes in
the layout (this important point will be discussed in detail in the
next section), so for far enough vertices � and �, ������ �� should
be a good approximation to the final distance. This means that
�
should be a reasonable global rendition of the final picture. Now,
when the global structure is nice we expect the angles between the
vertices to be close to their final values. But because the angle
between any pair of vertices � and � determines ������� ��, the
function ������ �� should be a good approximation of the final
distance. Hence we expect the second approximation,
� (which
is optimized by ������ ��) to already be close to optimal.

The experimental results given in Table 2 help confirm this. In
it we summarize the number of operations in each of the first four
iterations. This number reversely indicates the quality of the lay-
out of the previous iteration. As can be seen, a significant part of
the work is carried out in the first iteration, and in many cases the
second iteration is devoted merely to final improvements.

This method, which we call the Iterative Kamada-Kawai Method
(IKKM) deals with the same aesthetics as [9], but deals with non-
point vertices that take up part of the drawing area. Convergence
is very fast. If the process converges as expected — after two iter-
ations — it will cost only slightly more then the regular Kamada-
Kawai method (and its performance can be vastly improved using
the multi-scale techniques, see Subsection 2.3).

However, more than the previous methods, IKKM is prone to
vertex overlaps. The main reason is that the repulsive force, which
is linear1, is weaker than the inverse-squared forces of the spring
embedder based methods. Another reason is that IKKM, unlike
the spring-embedder based methods, does not neglect far-away ver-
tices. It thus involves global considerations too, and may forgo
some local considerations, which could mean violating constraints.2

If indeed the layout violates the constraints, we can increase the
constant 	�� or use a locally-focused method to improve the lay-
out, which would solve the local problems at very high speed. We
describe a related method in Section 7.

Figure 4 presents layouts of some of the graphs shown previ-
ously, as produced by the IKKM. The layouts were achieved by two

�Following [9], we defined the cost-function using an energy. The
implicitly defined underlying “forces” (i.e., the derivatives) con-
form to Hooke’s law, and are linear in the spring length.
�This phenomenon can be relaxed by adjusting the constants ����
to give a higher priority to the relations between close vertices.

iterations only, and more iterations did not improve the results. For
each graph we provide the average edge length(���	��), and the
ratio between the standard deviation of edge lengths and the aver-
age length: ����������	��. This ratio is a normalized measure
of the uniformity of edge lengths.

6. GLOBAL LAYOUT BY REDUCTION TO
WEIGHTED GRAPHS

In this section, following the idea of the IKKM method of the
previous subsection, we show that the problem of drawing a graph
of arbitrarily sized vertices is reducible to the problem of drawing a
restricted kind of a weighted graph (or, equivalently, to the problem
of drawing a graph with circular vertices). We argue that two iso-
morphic graphs, for which every two large enough matching sets
of vertices have a similar overall size, will be drawn approximately
the same. The only difference between the drawings will lie in
local phenomena, which include violation of constraints. This is
because we expect that the differences between local arrangements
compensate each other as one considers larger and larger portions
of the drawing, converging around some average. The reduction
is carried out by substituting non-point vertices with circles of re-
lated sizes, or, equivalently, by adjusting the edge lengths, in such
a way that the shape of large clusters of vertices will remain the
same. Fortunately, drawing the new graphs can be carried out by
modifying virtually any force directed method. We begin with the
definition of the restricted kind of a weighted graph to which we
want to reduce the problem (similar to the construction in the pre-
vious section):

DEFINITION 6.1. Awt-graph is a structure�
��������, such
that ����� is a graph and� � � �� �. Let	�� be a constant.
We define theweight of an edge��� �� as���� �� � ����������
	��. We may think of�
� as a graph whose vertices are circles
with���� being the radius of�.

The most important benefit of the reduction is that it is able to
“show” the global structure of the graph. For simplicity, we assume
that there is an optimal layout with respect to a fixed set of aesthetic
criteria accepted in force-directed algorithms. We term this layout
nice.

DEFINITION 6.2. A layout
 � is a local change of a layout
,
with respect to some distance�, if for every vertex�, �
���� �

���� � �.
A layout isglobally nice with respect to�, if it is a local change of
a nice layout with respect to�.

We now want to find a particular weight function, that will result
in a graph with similarly sized clusters:

DEFINITION 6.3. For a vertex�, denote by���� �� the length
of the line-segment of angle� connecting the center of� to a point
on its boundary.

For example, if � is an ellipse with radii �
� �� then:

���� �� �
 � � �
�

� � ���� �

�� �
� � ���� �
DEFINITION 6.4. Let� be uniformly distributed in

� ���. De-

note by���� the expected value of���� ��. That is:

���� �

�
��

�

�

��
���� �� ��

������ � ����, 	
����
������

� ���� ������ � ����, 	
����
������

� ���� ������ � 	���, 	
����
������

� ���� ������ � ��	
, 	
����
������

� ���	

Graph A Graph A1 Graph B Graph C

������ � ����, 	
����
������

� ���	 ������ � 	���, 	
����
������

� ���� ������ � ����, 	
����
������

� ����

Graph D A 16x16 square grid A depth 4 Sierpinski

Figure 4: Results of the Iterative Kamada-Kawai Method

For example, if � is an ellipse with radii �
� ��, then it can be shown
that:

� �
 ��

� ���

� ���� �

 � �

Both inequalities become equalities for � �
. We have chosen
���� �

 ��, so we can substitute the ellipse with a circle of the

same area, whose radius is ����.
If � is a rectangle with sides of length
 and�, respectively, then:

���� �
�

��
�
�

 � �� � � ���������� �

	
�

�� ���������� �
	
�
�� � �� � � ���������� 	

�
�

�� ���������� 	
�
�

�

The reduction
The problem of finding a globally nice layout of a graph ������
with non-uniform vertices can be reduced to the problem of draw-
ing the wt-graph �
������ ��.

In way of supporting this claim, consider the GKK heuristic.
Since ���� � ���� is the expectation of ������ ��, the probability
that two matching paths in � and in�
� will have the same length
(with respect to the metric of Def. 5.2) grows with the number of
vertices in the path. So for vertices far enough from each other the
considerations taking into account by the GKK heuristic for the two
graphs are exactly the same. This means that the only differences
are local and lie in the relationships between close vertices; these
should be drawn as closely as possible.

Nice layouts of wt-graphs can be achieved by any algorithm that
is capable of drawing general weighted graphs: Kamada-Kawai [9]
is a good example. The spring-embedder methods are not suit-
able for drawing general weighted graphs. But we do not have
to draw a general weighted graph, only a restricted version of it,

a wt-graph. Thus, the spring-embedder methods can be adapted
to drawing �
������ ��, by making the “ideal distance” between
vertices non-uniform. Accordingly, The strengths of the forces in
the Fruchterman and Reingold method [5] are changed to:

�
��	
�������� �� � ���� ��
������

�	����������� �� � ����������� ��
where ���� �� is the distance between the vertex centers and ���� is
correlated with ���� � ����.

We can now improve the Iterative Kamada-Kawai method in the
following way. Instead of basing the initial metric ��� on a random
layout
�, we can define it as the graph-theoretic distance between
vertices in �
������ ��, where � is as in Def. 6.4. In such a way,
��� is a better approximation of the final metric.

7. THE COMBINED METHOD
As a consequence of the previous section, we now argue that

we can divide the problem of finding a nice layout of a graph with
arbitrarily sized vertices into two complementary problems. The
first consists of finding a globally nice layout and the second of
optimizing that layout locally. The two constraints C1 and C2 of
Section 3 refer only to small areas of the drawing, so we address
them only in the local optimization problem.

Each of the two problems has an advantage that is a drawback
of the other. The problem of finding a globally nice layout has
the advantage that it can be reduced to the problem of drawing a
wt-graph, which does not have any special constraints and can be
solved quickly using familiar methods even for large graphs. On
the other hand, the final optimization problem has to deal with only
a small number of vertices, and thus can use rigorous, albeit slow,

methods. We now try to exploit these observations.

The Combined Method
1. Constructing a globally nice layout:

Use the Kamada-Kawai method for finding a nice layout of
�
������ ��.

2. Local beautification:
Use the Modified (or Generalized) Spring Method with a
very low temperature (about a dozen sweeps) for improving
the result of Step 1.

Remarks
In Step 1 any method for drawing wt-graphs can be applied. For
example, large graphs can be drawn by multi-scale methods. (See
Subsection 2.3.) We can improve the speed of Step 2 by consider-
ing only small neighborhoods at a time, as in [7, 8]. This leads to a
significant performance gain when the graph is large.

We find that the Combined Method is the best of all our meth-
ods. It integrates results that nicely satisfy the constraints with ef-
ficiency of operation. The first step of constructing a globally nice
layout takes the dominant fraction of the running time. This step is
implemented using the same algorithms that are used for drawing
graphs with dimensionless vertices. Hence, the speed of the com-
bined method is very close to those methods that draw graphs with
dimensionless vertices.

Figure 5 contains layouts of some of the previously shown graphs,
as produced by the Combined Method.

8. EDGE-VERTEX OVERLAPS
The combined method of Section 6 is the general way we pro-

pose to solve the problem this paper addresses. However, this
method does not properly deal with the second constraint — pre-
venting overlaps between vertices and edges. Fortunately, in typi-
cal outputs of our methods, we need not worry about encountering
manysuch overlaps:

CLAIM 8.1.
Denote the length of the longest edge !�	��. A drawing con-
tains no edge-vertex overlaps if the distance between the bound-
aries of every two vertices is no less than !�	����.

PROOF. By contradiction. Consider a typical case of edge-vertex
intersection: given three vertices �� �� �, such that vertex � in-
tersects edge ����� (see Figure 6). Suppose that the related lay-
out satisfies the condition in the claim. Divide the edge ��� ��
into three segments: the segment connecting the boundaries of �
and �, whose length is ��� , the segment passing inside �, whose
length is �� �
, and the segment connecting the boundaries of
� and �, whose length is ��
 . Clearly, the length of ����� is
���� �� � ��� � �� � ��
 . Hence, we get:

������ � ��� � ��
 (*)

Since the layout satisfies the condition in the claim, we know that
the distance between the boundaries of the vertices is at least !��
	����. Hence, ��� � !�	���� and ��
 � !�	����. Sub-
stituting in (*) results in: ������ � !�	����� !�	���� �
 !�	��, contradicting the fact that !�	�� is the maximal
edge length.

As a consequence of Claim 8.1, fulfilling the following two aes-
thetic criteria, which our drawing algorithms clearly seek to attain,
implies no edge-vertex overlaps:

 w

 v

 u

lvw

 luv lv

Figure 6: Typical vertex-edge crossing

A1 Uniform edge lengths.

A2 Distance between non-adjacent vertices is longer than the
(uniform) edge length.

The reason for this is that as long as an edge is drawn as the short-
est line segment that connects the vertices boundaries3, the condi-
tion in claim 8.1 is equivalent to requiring that the ratio between
the maximal edge length and the minimal edge length is less than
2 (which A1 implies), and that the distance between non-adjacent
vertices is at least half of the maximal edge length (which A2 im-
plies).

In practice, although the two aesthetic criteria, A1 (uniform edge
length) and A2 (adjacency closeness), are not fully achieved, we
expect that in a layout that strives to comply with these criteria the
deviation between the lengths of the edges would not be large, so
edges will rarely intersect vertices.

For those cases in which some edges intersect vertices, it would
be nice if we had a dedicated local beautification step that would
eliminate cases of overlap between edges and vertices. For an al-
ready nice drawing, there is need for only local changes, since the
edges are short and it is very unlikely that a single edge will overlap
with more than a single vertex. It is important that this final step
include the other aesthetics issues, so it will not ruin the aesthetic
properties already achieved.

A candidate method for this can be simulated annealing, which
was first used for graph drawing in [1]. Simulated annealing is
a general stochastic method for optimizing energy functions that
include discrete terms, It can thus be used to explicitly “punish”
overlaps. When the input layout is close to optimal, simulated an-
nealing will quickly find an overlap-free layout.

Another possibility is to add repulsive forces between vertices
and edges (that really act between one vertex and a pair of adja-
cent vertices). Details can be found e.g., in [11, 1]. We have not
yet implemented these forces, but we believe they could be very
efficient.

If after all this, there still exist edge-vertex intersections, one can
give up straight-line edges and draw edges as curves, bypassing the
vertices. Routing an edge should be relatively easy since it typically
has to bypass only a single vertex. The edge routing algorithm of
[2] may be used for this.

�If the edges are drawn on the straight-line segment that connects
the centers, we can treat their length as an approximation of the
distance between adjacent vertices.

������ � ����, 	
����
������

� ���� ������ � ����, 	
����
������

� ��� ������ � ����, 	
����
������

� ���
 ������ � ���
, 	
����
������

� ���

Time: 0sec Time: 0 sec Time: 0 sec Time: 0 sec

Graph A Graph A1 Graph B Graph C

������ �
���, 	
����
������

� ���� ������ � ����, 	
����
������

� ���� ������ � ���
, 	
����
������

� ����

Time: 0sec Time: 2 sec Time: 0 sec

Graph D A 16x16 square grid A depth 4 Sierpinski

Figure 5: Results of the Combined Method

9. EDGE LENGTH CONSIDERATIONS
The reader might have noticed that all our algorithms have a pa-

rameter 	�� that reflects the desired edge length. This parameter
plays a rather important role in our work, as it distinguishes graphs
with large vertices from standard ones. In laying out a standard
graph the edge length is of no significance; it is only a matter of
scaling up the picture. In laying out a graph with large vertices the
situation is more complicated: the edge lengths are not the only
sizable entities in the picture, so the desired length must depend on
the sizes of the vertices too, and actually this length is an inherent
factor in a resulting layout.

Here are two examples of our algorithms’ results, that clarify this
point:

Figure 7 shows two layouts of the same graph. In Figure 7(a)
the length of the all edges is equal to 1.61 units (where the radius
of each circle is 1 unit), and we have a perfectly symmetric result.
In Figure 7(b) the average length of the edges is shorter, only 1.29
units, but we have a badly symmetric layout. The reason for the
different results is in the constant 	��. In Figure 7(b) the value of
	�� was too small, so the algorithm crowded the vertices together,
and their areas have a negative impact on the final layout.

Figure 8 illustrates a case in which, if the edges are too short, the
surrounding circle of vertices in the good layout of Figure 8(a) is
not large enough to enclose the two large interior vertices, resulting
in the non-planar layout of Figure 8(b).

It seems that the problem of optimizing the edge length is actu-
ally the problem of minimizingthe edge length, but so that it still
yields an “intuitive” picture. We have incorporated this observation
into our toolkit of algorithms, with a program that can be used to
search for the optimal edge length by running the more substan-
tial methods described in this paper with various edge lengths. The
program initializes the edge length to a large value and then de-

(a) (b)

Figure 7: Short edges may conflict with symmetry

(a) (b)

Figure 8: Too short edges may conflict with planarity

creases it, using binary search, until something “bad” occurs, e.g.,
loss of an important aesthetic criterion like planarity or uniformity
of edge lengths, or a violation of one of the two constraints (C1 or
C2). Each iteration of the search is initialized to the result of the
previous iteration, so it converges quickly. Notice that initialization
with dimensionless vertices is equivalent to setting an infinite edge
length.

10. RELATED WORK
Various changes to the force model of classical force-directed

methods to handle vertex overlaps were introduced in several pa-
pers, e.g., [10, 12, 11]. (However, all these changes are related to
the spring-embedder. To our best knowledge, the GKK heuristic (in
Section 5) is the first generalization of the Kamada-Kawai energy
to handle non-uniform vertices.) As mentioned, such changes are
not enough. If the forces are too weak, one has to reserve a wasted
area around the vertices to prevent overlaps. On the other hand,
when the forces are strong and their field tenses tightly around the
vertices, the convergence would be very slow, if at all.

An alternative approach is developed in the interesting paper of
Gansner and North [6]. Their method is carried out in three phases.
The first phase draws the graph using the algorithm of [9], regard-
less of the vertex shapes. The second phase removes overlapping
vertices by iteratively constructing a Voronoi diagram using vertex
centers as sites and moving vertices to the centers of their Voronoi
cells. When needed a surrounding bounding box is enlarged, giving
more area for the drawing. The process ends when there is no over-
lap. The third phase draws edges as smooth curves to avoid edge-
vertex overlaps. Such a third phase is absent in our method and
may be helpful. Since it is independent of the previous two phases,
it can be incorporated into our method, as a post-processing stage.
However, regarding the first two stages we think that our approach
is advantageous, as we explain now.

Since the voronoi diagram is based solely on the vertices’ cen-
ters, the movement of vertices in the second phase of [6] does not
treat the vertex shapes, so it cannot achieve a layout as compact
as ours. Moreover, when the iterative movement does not succeed
in preventing all overlaps, the bounding box of the drawing is en-
larged, which is equivalent to a global, possibly wasteful, growth
of the drawing area, increasing the distances even between non-
overlapping vertices. For example, compare our results for graphs
A1 and D in Figures 1–5, with those of [6] reproduced in Figure
9 (scaled down). We intentionally set the parameters of [6] so as
to minimize the drawing area. As can be seen, their results occupy
much more space than ours. Moreover, the results of [6], seem to
be less pleasing aesthetically compared to our results. However, if
we were to let [6] use more space their results would be compara-
ble to ours. This brings us to another advantage of our approach.
In [6], the problem is divided into two parts, one is solely respon-
sible for the aesthetics and the other is responsible for satisfying
the constraints without knowing about aesthetics. We fully agree
with the divide and conquer strategy adopted there that accelerates
the running time, but we think that the correct division should be
different: a division between global aesthetics and local aesthetics.
Our division is built upon two parts that enrich each other and are
“aware” of the same aesthetic issues.

11. CONCLUSIONS
We have investigated the problem of drawing general undirected

graphs with arbitrarily sized vertices, and have attempted to for-
mulate and analyze the special issues that arise when tackling this
problem. Several algorithms of varying speed and quality for lay-
ing out such graphs are suggested. We have found that oversim-

Graph A1 Graph D

Figure 9: Results of Gansner-North [GN98]

plified application of known methods yields non-aesthetic pictures,
and on the other hand, careless extension of the cost function leads
to unsatisfactory convergence time. Our final methods are smooth
extensions of methods for drawing graphs with dimensionless ver-
tices in the sense that they are not worse than those methods, in
terms of speed and output quality. In fact, we have suggested a fast
reduction of the problem of drawing graphs with arbitrarily sized
vertices to the problem of drawing a restricted kind of weighted
graph, which can be solved by small changes to any force-directed
method we are aware of.

12. REFERENCES
[1] R. Davidson and D. Harel, “Drawing Graphs Nicely Using

Simulated Annealing”, ACM Trans. on Graphics15:4
(1996), 301-331.

[2] D. Dobkin, E. Gansner, E. Koutsofios and S. North,
“Implementing a General-Purpose Edge Router”,
Proceedings of Graph Drawing 97, LNCS 1353, pp.
262-271.

[3] G. Di Battista, P. Eades, R. Tamassia and I.G. Tollis,
Algorithms for the Visualization of Graphs, Prentice-Hall,
1999.

[4] P. Eades, “A Heuristic for Graph Drawing”, Congressus
Numerantium42 (1984), 149-160.

[5] T.M.G. Fruchterman and E. Reingold, “Graph Drawing by
Force-Directed Placement”, Software-Practice and
Experience21:11 (1991), 1129-1164.

[6] E. Gansner and S. North, “Improved Force-Directed
Layouts”, Proceedings of Graph Drawing 98, LNCS 1547,
pp. 364-373.

[7] R. Hadany and D. Harel, “A Multi-Scale Method for
Drawing Graphs Nicely”, Discrete Applied Mathematics113
3-21 (2001).

[8] D. Harel and Y. Koren, “A Fast Multi-Scale Method for
Drawing Large Graphs”, Proceedings of Graph Drawing
2000, LNCS 1984, pp. 183–196.

[9] T. Kamada and S. Kawai, “An Algorithm for Drawing
General Undirected Graphs”, Information Processing Letters
31 (1989), 7-15.

[10] T. Kamps, J. Kleinz and J. Read, “Constraint-Based
Spring-Model Algorithm for Graph Layout”, Proceedings of
Graph Drawing 95, LNCS 1027, pp. 349-360.

[11] D. Tunkelang, A Numerical Optimization Approach to
General Graph Drawing, Ph.D. Thesis, Carnegie Mellon
University, 1999.

[12] X. Wang and I. Miyamoto, “Generating Customized
Layouts” Proceedings of Graph Drawing 95, LNCS 1027,
pp. 504-515.

