arXiv:2406.01324v2 [math.FA] 29 Nov 2024

Isoperimetric inequalities in high-dimensional
convex sets

Lecture notes by Bo’az Klartag and Joseph Lehec*

Institut Henri Poincaré (IHP), Paris, May 21-24, 2024

Abstract
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1 The Poincaré inequality

Even if we were not hosted by an institution that honors Poincaré, a good starting point for
these lectures would be the mathematical inequality that carries his name. It was published by
Poincaré in 1892-1896 in the case where the dimension is 2 or 3, and the measure p is the
uniform probability measure on a convex body K.

Recall that an absolutely continuous measure p in R™ is log-concave if its density p is log-
concave, namely

p(Az + (1= N)y) > p(z)*p(y)' (z,y eR",0 <A <1). (1)

In general, a Borel measure p in R™ is log-concave if it is supported in an affine subspace and
has a log-concave density in this subspace. The uniform probability measure on a convex body
is log-concave, as well as all Gaussian measures.

Theorem 1 (“The Poincaré inequality”). Let K C R" be a convex body, let 1 be a log-concave
probability measure on K. Then for any C'-smooth function f : K — R with fK fdp =0,

/f2du§CP(u)-/ IV f|? dp )
K K

where Cp(u) < C,, - Diam?(K), and C,, > 0 depends only on the dimension n.

Here Diam(K) = sup, ,cx |r—y| is the diameter of K and |-| is the standard Euclidean norm
in R”. Intuitively, the inequality says that if f does not vary too wildly locally, i.e. controlled
gradient, then it does not vary too much globally, i.e. bounded variance.

For a historical account of the Poincaré inequality, see Allaire [2]. The Poincaré constant
Cp(p) of the probability measure 4 is defined as the smallest number for which (2) is valid for
all C''-smooth functions f with [ fdu = 0.

The quantity 1/Cp(p) is often referred to as the spectral gap of i, for reasons to be ex-
plained. In 1960, Payne and Weinberger [73] found that for any n, the best possible value of the
supposedly-dimensional constant (', is in fact

1
Cn = ﬁ7
which does not depend on the dimension. We proceed with an adaptation of the original proof
by Poincaré, a proof which does not yield the optimal (in)dependence on the dimension, yet it
suffices for some purposes.

Proof of Theorem 1. Passing to a subspace if necessary, we may assume that the probability
measure y is absolutely continuous with a log-concave density p : R" — [0, 00), which vanishes



outside K. We express the variance as a double integral and use the fundamental theorem of
calculus:

/ Fdp =+ / / e 2 () u(dy)

/ Vi(l—-t)z+ty) - (y— a:)dt p(dx)p(dy)

Dmm /// IVF((1 =)+ ty)P p(w)ply) didady,

where we used the inequality |y — 2| < Diam(K). Let us show that forany 0 < ¢ < 1,

/ VF((L = t)a + ty) p(@)ply) dady < Cuy [ 1V dn 3)

We integrate over R" now, but recall that the density p vanishes outside /&, so this does not make
a difference. Our goal is to replace the product p(x)p(y) in (3) by some expression involving
p((1 — t)x + ty) and then apply a linear change of variables. Log-concavity will be handy here.
We split the argument into two cases. If ¢t ~ 1/2, then we will use the inequality

min{p(z), p(y)} < p((1 —t)z + ty)

that follows from the definition (1) of log-concavity. It implies that
p(@)p(y) < p((1 =)z + ty) - max{p(z), p(y)} < p((1 — )z + ty) - [p(x) + p(y)].
Thus the integral in (3) is at most

/n . VS =)z +ty)]* p((L = D)z +ty) - [p(2) + ply)]dedy u=(1-t)z+ty"

/n R |Vf(u)|2p(u)p(m)f_gd$+/n . \Vf(U)\2p(u)p(y)(1 Cjut)nd

(1 1 )
- [tn s M o | V1

In the case where ¢ is not too close to 1/2 we will use the inequality

p(x)p(y) < p((1 —t)x +ty)p(te + (1 —t)y)

and change variables linearly via

Y

u=(1—-1t)z+ty, v=tr+ (1-1t)y.
Since du; A dvj = [(1 — t)* — t*]dz; A dy; for j = 1,. .., n, the integral in (3) is bounded by

L 19— 0 ) pl(1 = )2 + ty)plee + (1 = ) dady

- / R O?fdfm W / IV Pdp.




Thus the Poincaré inequality follows with

1 /! 1 1 1 3"
Cp <= inq— , at<C-—,
—2/0 mln{t”+(1—t)” \1—2t\n} ="
for some universal constant C' > 0, where we separately consider the contribution of the intervals
[0,1/3],[1/3,2/3],[2/3, 1] to the integral. L

Throughout these lectures, we write C| ¢, 5,5, C etc. to denote various positive universal
constants whose value may change from one line to the next. Consider the case where 1 is the
uniform probability measure on a domain K C R™. Its Poincaré constant, sometimes denoted
also by C'p(K), measures the conductance of K. It is large when K has a bottleneck.

Intuitively, it seems that convexity assumptions rule out many types of bottlenecks, possibly
in high dimensions as well. Can we describe the Poincaré constant in terms of simple geometric
characteristics of X' C R", under convexity assumptions?

Conjecture 2 (Kannan-Lovasz-Simonovits [45]). For any log-concave probability measure . on
R™,
[Cov(1)lop < Cp(p) < C - [|Cov(p)lop (4)

where C' > 0 is a universal constant.

Here || A||,, is the operator norm of the symmetric matrix A € R™*", i.e., its maximal eigen-
value in absolute value, and Cov(p) € R™ ™ is the inertia matrix or the covariance matrix of .
The 4, j entry of the matrix Cov(u) is

[ wasutan) ~ [ i) [ o).

The covariance matrix is a symmetric, positive semi-definite matrix. If X is a random vector with
law g and density p, we write Cp(X) = Cp(u) = Cp(p) and Cov(X) = Cov(u) = Cov(p).
With this notation, the Poincaré inequality states that for any C'*-smooth function f,

Var(f(X)) < Cp(X) - E[Vf(X)[*.

Originally the conjecture by Kannan, Lovasz and Simonovits [45] was formulated in terms
of a Cheeger inequality rather than a Poincaré inequality, but the two formulations turn out to
be equivalent. We shall return to this in the next section. For various perspectives on the KLS
conjecture, we refer the reader to the monographs by Artstein-Avidan, Giannopoulos and Milman
[4] and by Brazitikos, Giannopoulos, Valettas and Vritsiou [25], as well as to the survey papers
by Ball [8] and by Lee and Vempala [62].

We note that the left-hand side inequality in (4) is a trivial fact: for any linear functional
fo(x) =x-0withg € S"! = {z e R"; |z| = 1},
Cov(X)8 -0 = Var(fy(X)) < Cp(X) - E|V f(X)|? = Cp(X),
and (4) follows by taking the supremum over all # € S"~!. Thus the KLS conjecture suggests

that in the log-concave case, the Poincaré inequality is saturated by linear functions, up to a
universal constant.



Exercise 1 (Tensorization). For u, v probability measures on R™ and R™ respectively,

Cp(p®v) =max(Cp(u), Cp(v)).
Here are examples of log-concave measures for which we can compute the Poincaré constant.

1. Consider the one-dimensional case, where X is a random variable that is distributed uni-
formly in some interval of length L. Then,

L? L?

Var(X) = Dl and Cp(X)=—

with the extremal function for the Poincaré inequality on [0, 7] being f(z) = cos x.

2. Consider the case where X is distributed uniformly in X = [0, 1]”. In this case,
Diam(K) = +/n

while by the tensorization property of the Poincaré constant (see the exercise above)

and ]
Cov(X) =—-1d.
ov(X) D
We thus see that the diameter bound for the Poincaré constant is rather weak in high di-

mensions, even with the optimal, dimension-independent constant.

3. Suppose that X is distributed uniformly in a Euclidean ball. The Euclidean unit ball B™ =
{z € R™; |z| < 1} has volume

/2 <%+ 0(1)>"

vn

which is a rather small number in high dimensions. In order to normalize the volume (or
the covariance, or the Poincaré constant), we had better look at the random vector X that
is distributed uniformly in a Euclidean ball K = y/n - B™. In this case,

T(1+n/2)

n
n -+ 2

Diam(K) = 2y/n, Cov(X) = Id.

The Poincaré constant of X may be described using Bessel functions, and it has the order
of magnitude of a universal constant, in accordance with the KLS conjecture. The Szego-
Weinberger inequality [80, 83] states that among all uniform distributions on domains in
R"™ of fixed volume, the Poincaré constant is minimized for a Euclidean ball.



4. Next we discuss the case where X is a standard Gaussian random vector in R". Here,
Cov(X) =1d and Cp(X) =1.

Thus the Poincaré inequality in the Gaussian case is precisely saturated by linear functions.
Furthermore, by considering Hermite polynomials one can show the following: In the
Gaussian case, a function nearly saturates the Poincaré inequality if and only if it is nearly
a low-degree polynomial. Indeed, in one direction, if f is a polynomial of degree at most
d in n real variables then we can reverse the Poincaré inequality as follows:

EIVf(X)]? < d- Var(f(X)).
In the other direction, if f is a smooth function with
EIVf(X)]* < R- Var(f(X))

then the function f may be approximated by a polynomial of bounded degree: For any
d > 0 there exists a polynomial P of degree at most d such that

9 R
E|(f = PYXOF < o - Var(f(X)).

In fact, this polynomial P is obtained by truncating the Hermite expansion of f.
5. Let us work in C" and consider the probability measure ;. on C"* with density

6_|Zj‘

2T
1

J

n

The measure p is a log-concave probability measure on C”. Its covariance matrix is
Cov(p) =3-1d

and its Poincaré constant has the order of magnitude of a universal constant, in accordance
with the KLS conjecture.

The density of 1 decays expoentially at infinity. Exponentially, but not faster; any log-
concave probability density decays exponentially at infinity, yet the Gaussian density de-
cays even faster. This reflects on spectral properties. In the exponential case there are
functions that nearly saturate the Poincaré inequality, and they do not necessarily resemble
low-degree polynomials. For instance:

Claim: For any holomorphic function f : C* — C with f € L?*(u) and [ fdp = 0 (or
equivalently, with f(0) = 0), the Rayleigh quotient satisfies

)



Here is a proof for n = 1, which can be easily generalized for any dimension. It suffices to
check the validity of (5) for monomials z*, because of orthogonality relations. If f(z) = 2*
with k& > 1 then,

£ 720 = (25 + 1)
while
£l = k(26 — 1)
The ratio between the two is always between 4 and 6. We remark that by considering
the real part of f, we see that (5) holds true for any pluri-harmonic function f, and in

particular, when n = 1 the relation (5) holds true for any harmonic function f : R? — R
(thanks to A. Eskenazis for suggesting to add this remark).

Exercise 2 (Subbaditivity). For two independent random vectors X and Y in R",

Cp(X +Y) < Cp(X) + Cp(Y).

1.1 Applications

Poincaré’s original motivation for his inequality was related to analysis of partial differential
equations such as the heat equation. The motivation of Kannan, Lovasz and Simonovits in the
1990s came from algorithms based on Markov chains (MCMC) for sampling and for estimating
the volume of a high-dimensional convex body. Such tasks appear in linear programming. An-
other motivation for this research direction, that was put forth by Ball in the early 2000s and later
jointly with Nguyen [9], was the relation to Bourgain’s slicing problem discussed below. There
are models in probability and statistical physics for which log-concavity and Poincaré inequali-
ties are relevant. Let us describe here another application, related to the Central Limit Theorem
for Convex Sets [48] from 2006.

A random vector X in R" is isotropic or normalized if EX = 0 and
Cov(X) = Id.

Any random vector with finite second moments can be made isotropic by applying an affine-
linear transformation. The relation between Gaussian approximation and the Poincaré constant
stems from the following:

(i) The Poincaré inequality with f(z) = |z| yields Var(]X|) < Cp(X). Thus most of the
mass of an isotropic random vector X is contained in spherical shell

{x eR"; v/n—3y/Cp(X) < 2] < \/ﬁ—l—3\/CP(X)}>

whose width has the order of magnitude of the square root of the Poincaré constant.

(i) Gaussian approximation principle (Sudakov [78], Diaconis-Freedman [34]): When most
of the mass of the isotropic random vector X is contained in a thin spherical shell, we have
approximately Gaussian marginals.



The following theorem is the current state of the art on Gaussian approximation under Poincaré
inequality. We write o,,_; for the uniform probability measure on the unit sphere S™ 1.

Theorem 3 (Bobkov, Chistyakov, Gotze [ | 7, Proposition 17.5.1]). Let X be an isotropic random
vector in R". Then there exists a subset © C S™ with o,,_1(0) > 9/10 such that any 0 € ©,

1 Clogn
sup |IP(X -0 <t) — ——
telg ( =) V21 J s

where C' > 0 is a universal constant.

6_82/2d8‘ < -Cp(X),

n

We do not know whether the logarithmic factor in Theorem 3 is necessary. It is currently
known that Cp(X) < C - logn for an isotropic, log-concave random vector X in R", see [54].
Consequently Theorem 3 yields good error estimates in the Central Limit Theorem for Convex
sets, and more generally for log-concave measures.

If all we know about the Poincaré constant is the diameter bound, then even in the case of
the cube we would be off by a factor of n, and we would not obtain any non-trivial bound for
the Central Limit Theorem for Convex sets. Thus in high dimensions it is necessary to refine the
diameter bound, as suggested in the KLS conjecture.

What techniques can we use to this end, techniques that go beyond change of variables,
Fubini theorem, and the Cauchy-Schwartz inequality used above? High-dimensional convex
geometry is a playground for various geometric and analytic ideas that transcend the field of
convexity. Any list of approaches that have proven useful to convexity must include convex
localization, optimal transport, curvature and the Bochner formula, semigroup tools, geometric
measure theory, stochastic localization and complex analysis. In these lectures we explore only
some of these directions.

1.2 1D log-concave distributions

Before going on to study methods for high dimensions, let us briefly discuss the one-dimensional
case. What do log-concave densities look like in one dimension?

Proposition 4 (“How to think on 1D log-concave random variables”). Let X € R be a log-
concave random variable with density p which is isotropic. Then for any x € R,

C/]]'{|IE|SC”} S p(x) S Ce_clxl
where ¢, ", c,C > 0 are universal constants.

Exercise 3. Prove this proposition.

Hint: for the upper bound, if p(b) < p(a)/2 for some a < b, then p decays exponentially and
in fact p(z) < p(b)27"/(*=%) for all x > b. As for the lower bound, it’s enough to show that
p(x) > ¢ for some x > ¢ and for some z < —¢”.



Corollary 5 (“reverse Holder inequalities”). For any isotropic, log-concave, real-valued random
variable X and any p > —1,

c-min{p + 1,1} < | X], = (E[X[")'” < C(Jp| + 1), (6)
where ¢, C > 0 are universal constants.
The case p = 0 in (6) is interpreted by continuity, i.e.,
[ Xlo = exp(Elog | X]).

This is not a norm, yet a nice feature is its multiplicativity: for any random variables X and Y,
possibly dependent,
[ XY lo = I XTlollY[lo-

Proof of Corollary 5. Begin with the inequality on the right-hand side. By the monotonicity of
p — || X[, it is enough to look at p > 0. In this case,

= » 20 -
Xl = [ oo < o [ e ta = Zor+ ) < Cop

— 00 — 00

where we used the fact that for integer p, we have I'(p + 1) = p! < pP. For the lower bound, by
monotonicity it suffices to look at p < 0. Setting ¢ = —p € (0, 1) we have

1 1 C’
E < C/ elilgr < 2
| X[ [t l1—gq

—1/q N
11, = (Eﬁ) > (C(1— )" > E(1L— q). =

and hence

We proceed to discuss the isoperimetric profile of a log-concave distribution in one dimen-
sion. Bobkov [14] shows that for a probability density p on the real line,

p is log-concave — po®t:1]0,1] — (0, 00) is concave (7)

where ®(z) = [*__ p(t)dt and 7' (y) = inf{z € R; ®(x) > y}. Once stated, (7) is not difficult
to prove. It follows from (7) that the function

I(x) = mln{po(I) ,po( 1}
is concave. Write y for the measure whose density is p, and note that
I(x) = min{p(0H); H is aray with u(H) = =}

Since the boundary OH is a singleton as H is a ray, in this case we abbreviate p(0H) = p(a)
if 0H = {a}. The following Proposition by Bobkov implies that the concave function / is the
isoperimetric profile of the probability density p.

9



We prefer to discuss isoperimetry through e-neighborhoods. For ¢ > 0 and a subset A C R
we write A, = {z € R; inf 4 |z —y| < ¢} for its e-neighborhood. We remark that analogously
to (7), the log-concavity of p implies that the function z — ®(®~!(x) + ¢) is concave. This
shows that the function

I.(z) = min{u(H.); His aray with u(H) = =}
is a concave function of z € [0, 1].

Proposition 6 (Bobkov [14]). Let i be a log-concave probability measure on R with density p.
Fix 0 < p < 1,e > 0. Then among all Borel subsets A C R with u(A) = p, the infimum of
w(A.) is attained for a half line.

Sketch of Proof. It suffices to show that half lines are better than finite unions of intervals. How
can we deal with a subset A that is a finite union of intervals? Using the following claim. For
a € R with u([a,00)) > p consider the unique interval J(a) = (a,b) such that u(J(a)) = p.
The claim is that the function

a = p(J(a)e)

is unimodal, thanks to log-concavity (i.e., the function is increasing and then decreasing). Again,
once stated this is not too difficult to prove. Given this claim, one may fix all intervals in A but
one, and then move the remaining one around and expand and shrink it so as to preserve the total
p-measure. It follows that gluing this interval to one of the sides cannot increase the y-measure
of the e-neighborhood. ]

Combining this with Proposition 4 one gets the following Cheeger type isoperimetry for 1D
log-concave measures.

Corollary 7. Let i be an isotropic, log-concave probability measure on R and let €,p € (0, 1).
Then for any Borel set S C R with ;i(S) = p,

u(S.\S) = c-c-minfp,1 - p}
where ¢ > 0 is a universal constant.

Exercise 4. Fill in the details in the proofs of Proposition 6 and Corollary 7.

10



2 Related functional inequalities

2.1 Cheeger’s inequality

Let 1 be a probability measure on R", or more generally on some metric space (X, d) equipped
with its Borel o-field. The isoperimetric problem for p asks the following questions: Among
sets of given measure, which sets have minimal perimeter? There are several possible notions of
perimeter. For our purposes, the most convenient one is the exterior Minkowski content, defined
as follows: for every measurable subset A of the ambient space we let
py(A) = liminf M
e—0 £

where A, is the e-neighborhood of A, namely the set of points whose distance to A is at most
. Proposition 6, at the end of the previous section, shows in particular that for 1D log-concave
measures, half-lines solve the isoperimetric problem. In higher dimension though, the exact
answer to the isoperimetric problem is only known in a handful of very specific cases. For
instance, for the Haar measure on the sphere equipped with the geodesic distance, spherical caps
(i.e. geodesic balls) are the solution. This is usually attributed to P. Lévy (1922). The answer
is also known on Gauss space, and this time affine half-spaces solve the isoperimetric problem.
This was proved in 1975 by Sudakov and Tsirelson [79], and independently by Borell [22]. In
general solving exactly the isoperimetric problem is hopeless and we content ourselves with
a more modest task, such as finding lower bounds on the perimeter of a set A in terms of its
measure. When this lower bound is linear, we say that y satisfies Cheeger’s inequality.

Definition 8. We say that . satisfies Cheeger’s inequality if there is a constant C' such that
min(u(A), 1 — p(A)) < Cuy(A), @)

for every measurable set A. The smallest C such that this holds true is called the Cheeger
constant, and we denote it 1, below.

For instance, Corollary 7 from the previous section shows that the Cheeger constant of an
isotropic log-concave measure in 1D is bounded above by a universal constant.

Remark 9. It is more common to put the constant in the left-hand side of the inequality (8)
rather than in the right-hand side. So our Cheeger constant is the reciprocal of the usual Cheeger
constant.

Cheeger’s inequality can be seen as an L!-Poincaré inequality.

Lemma 10. Inequality (8) is equivalent to the following:

min/ |f—c|d,u§C’/ |V fldu, )
X X

ceR

for every Lipschitz function f.

11



Remark 11. In the right-hand side the quantity |V f(x)| should be interpreted as the local Lips-
chitz constant of f, namely

V()| = timsup W

This only make sense in a metric space with no isolated points. Actually we will only investigate
the case X = R" equipped with its usual Euclidean metric from now on.

Remark 12. It is well known that the infimum in the left-hand side is attained at any median for
f,i.e. any real ¢ such that both p(f < ¢) and pu(f > ¢) are at least 1/2.

Proof. We only give a proof sketch, and refer to Bobkov and Houdré [19] (for instance) for more
details. The derivation of (9) from (8) relies on the co-area formula: for any Lipschitz f we have

/|Vf|du2/u+(f>t)dt-
X R

In most cases this inequality is actually an equality, but we only need this inequality, which
admits a soft proof, again see [19]. Applying Cheeger’s inequality to the right-hand side then
yields (9). For the converse implication, given a set A, we apply (9) to some suitable Lipschitz
approximation of the indicator function of A. A bit more precisely, we pick €, — 0 such that

(A \A)
En

lim

- :u-i-(A)v
we pick another positive sequence (d,,) tending to 0 (for instance §,, = 1/n) and we observe that
the sequence (f,,) given by
fu= (1= e, Ase)
n — - 77 N\ xZ, e
(1—16,)en Onen

satifies 0 < f,, < 1 for every n, f,, — 1z pointwise, and limsup [ |V f,|du < pi(A). Apply-
ing (9) to f,, and letting n tend to +-oc yields (8) after some computation. ]

J’_

From this version of Cheeger’s inequality it is relatively straightfoward to see that Cheeger’s
inequality is stronger than the Poincaré inequality. Recall from Section 1 that we say that p
satisfies Poincaré if there is a constant C' such that

Var,(f) < C [ [Vf]dp

R

for every Lipschitz function f. Also we let C'p(11) be the best constant C' such that this holds
true.

Proposition 13 (Cheeger 1970). Let i1 be a probability measure on R" satisfying the Cheeger
inequality. Then y satisfies Poincaré, and we have

Cp(p) < 4y,

12



Remark 14. Maybe it is unfortunate but our convention for the Cheeger constant and Poincaré
constant do not have the same homogeneity. The Cheeger constant of a probability measure on
R"™ is 1-homogeneous, if we scale y by a factor A then the Cheeger constant is multiplied by A.
One the other hand the Poincaré constant is 2-homogeneous.

Proof. Assume that f is Lipschitz and bounded, and has its median at 0. Applying (9) to /2 we
get

Pdp<, | IV2du=20 [ fiIVfildp.
R™ Rn R™

The Cauchy-Schwarz inequality then yields

f2du < 4wi/ IV fil? dp = 4wi/ IV fPLiss0p dpe.
R" R" R

We can do the same with f_ and adding up the two inequalities yields the result. ]

The converse inequality is not true in general, one can cook up examples on the line. However
it turns out that if we restrict to log-concave measures then the converse is true. This is a result
of Buser [26] from 1982, to which we will come back later on in this section.

2.2 Semigroup tools

Let 1 be a probability measure on R". We do not need log-concavity for now but let us assume
that p is supported on the whole space and has a smooth density p. Letting V' = —log p be the
potential of y, the Laplace operator associated to p is the differential operator given by

L,=A-VV.V,

initially defined on the space of compactly supported smooth functions. For such functions, an
integration by parts gives

/n(Luf)gd,u: —/an-ng,u.

This shows in particular that L,, is symmetric and that —L,, is a monotone (unbounded) operator
on L?(u). Moreover this operator is known to be essentially self-adjoint, in the sense that its
minimal extension is self-adjoint. By a slight abuse of notation we still call L, this extension. A
bit more explicitly, we call D the space of functions f € L?(u) for which there exists a sequence
(fn) of smooth compactly supported functions such that f, — f and (L, f,,) converges. The limit
of L, f, does not depend on the choice of the converging sequence (f,,) (this is an immediate
consequence of the symmetry of L,,) and we set L, f = lim L,, f,,. The fact that this new L, is self
adjoint is not quite immediate, not every monotone operator is essentially self adjoint. This has
to do with elliptic regularity, we refer to [6, Corollary 3.2.2] for the details. From the integration
by parts above we can see that if (f,,) and (L, f,,) converge then also V f,, converges. This means
that the domain D contains H'(x) and that the integration by parts (L, f,g9) = —(Vf,Vg)

13



remains valid for every f, g in the domain. Here the inner product is the one from L?(y), and
when we apply it to tensors it has to be interpreted coordinate wise. Being self-adjoint and
monotone (negative) the operator L, admits a spectral decomposition

L,= —/ AdE). (10)
0
The semigroup associated to L, is then defined as

P, = ¢tln :/ e N dE,.
0

For fixed ¢ the operator P is a self-adjoint bounded operator in L2 () and we have the semigroup
property P; o P, = P,,,. If f is a fixed function of L?(u) the function F(¢t,z) = P, f(x) is the
solution to the parabolic equation
8tF - LMF,

at least in a weak sense.
We now move on to the probabilistic representation of the semigroup (P,). Consider the diffusion
(X;) given by

dX, =2 -dW, — VV(X,)dt, (11)
where (W) is standard Brownian motion. Then (X) is a Markov process, and () is the corre-
sponding semigroup. Namely for every test function f we have

where the subscript = next to the expectation denotes the starting point of (X;). This allows
to prove inequalities for the semigroup (F;) using probabilistic techniques. The next result is
considered folklore, see e.g. [0, section 9.9.] for some historical perspectives.

Lemma 15. If i1 is log-concave then Lipschitz functions are preserved along the semigroup, and
moreover || P f||Lip < || f||lLip for every f and every t > 0.

Proof. Let x,y € R", and let (X7) and (X}) be two solutions of the SDE (11) using the same
Brownian motion, but starting at two different points « and y. This is called parallel coupling.
Then the process (X[ — Y;*) is an absolutely continuous function of ¢ (the Brownian part cancels
out). Moreover, thanks to the convexity of V/,

d
X = XV = 20X = XY - (VV(XY) = VV(XY)) < 0.

So the distance | X" — X}| is almost surely decreasing. Therefore its expectation is also decreas-
ing, and in particular
E|X? - X{| <]z -yl

Now suppose f is a Lipschitz function. Then from the previous inequality we get

|Pef (x) — Pof(y)] = [Ef(XY) — EA(XD)] < E[f (X)) — F(XD] < [l - [z — vl
which is the result. O
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The next result seems to be due to Varopoulos [52].

Proposition 16. Suppose 11 is log-concave. Then for every bounded function f and every t > 0
the function P, f is Lipschitz and moreover

1
Vi

Proof. Again we use a coupling argument, see [600] for an alternate argument using only analytic
tools. Suppose that f is a bounded function. Fix z,y € R", and let (X}) and (X}) be two
processes solving the SDE (11) initiated at « and y respectively. Then

|Fof (x) = Pof (9)| < E[F(XF) = FXD)] < 2)flle - POXT # XT). (12)

1P fllip < — - [ flloo-

It remains to choose a coupling for which the right-hand side is small. Parallel coupling is
awful here, as it actually prevents X" and X} from meeting. Instead, we choose the Brownian
increment for X} to be the reflection of that of X with respect to the hyperplane (X7 — X/)*.
If (W;) is the Browian motion for X7, the equation for X/ is thus

dX} = V2 (Id — 208%) dW, — VV(X}) dt

where (v;) is the unit vector (X7 — X/)/|XF — X/|. Actually we do so until the first time
(denoted 7) when the two processes meet. After time 7 we just set X/ = X. We will not justify
properly here why this is well defined, but this coupling technique, usually referred to as mirror
coupling, is a relatively standard tool, see for instance [65]. It0’s formula shows that up to the
coupling time 7 the equation for the distance between the two processes is

d|XT — XP| = 2v/20; - dW; — v, - (VV(XE) = VV(XY)) dt.

Itd’s term vanishes because the Brownian increment takes place in a direction where the Hessian
matrix of the norm vanishes. Once again, in the log-concave case the second term from the
right hand side is negative. Notice also that B; := fot vs - dWy is a standard (one dimensional)
Brownian motion. Therefore up to the coupling time 7 we have

X7 — XP| < |z —y| +2V2B,

where (B;) is some standard one dimensional Brownian motion. Therefore

Ix—y|)
PIXF4AX))=P(r>t) <P(Vs<t: B, > — .
(Xi# X)) =Br>1) < (S— ol

By the reflection principle for the Brownian motion

Il“—y|) ( Iw—y|) ( Iw—y|)
P(3s<t:B,<— —2.P(B, < — —P >
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where g is a standard Gaussian variable. Hence the inequality

P(X? £ XP) < U (';;2_@:') |

where U(r) = (2/7)'/2 [ e*"/2 du is the distribution function of |g|. Recalling (12) and taking

the supremum over x, y gives
1 U(a
L -sup{ ( >} M.
V 2t a>0 a

The expression inside the sup is decreasing, so the sup equals the limit as a tends to 0, which is
(2/7)"/2. We thus get the desired inequality (even with a better constant than announced). [

||Ptf||Lip S

The next corollary is taken from Ledoux [58].

Corollary 17. If u is log-concave, then for every locally Lipschitz function f we have
1f = Pefllzrgy < 2vVE- IVl

Also for every measurable set A we have
p(A)(1 — pu(A)) = Var,(14) < V2t - ut(A) + Var,(P1,).

Proof. Let f be a Lipschitz function and g be a smooth bounded function. Using the fact that the
semigroup is self adjoint, and the integration by part formula, we get

t t
(f =Pt 9)=(f9— Pg) = —/ (f, LP.g)dt = / (Vf.VPyg)ds.
0 0
By the previous proposition,
1
(VI,VPg) < IVl - 1Psgllup < %H‘VﬂHLl(H)HgHw'

Integrating between 0 and ¢ and plugging back in the previous display we get

(f = Puf.g) < 2VE- IV fll1gw 19l oo,

which is the result. For the second inequality, applying the first one to a suitable Lipschitz
approximation of the indicator function of A, as in the proof of Lemma 10, we get

|14 — Plalh <2Vt-ut(A).
Moreover, using reversibility, it is not hard to see that
|14 — PLaly =2 (Var,(La) — Var,(P214)) .

Hence the result. [l
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2.3 A result of E. Milman

We said earlier that the inequality C'p(p) < C’z/)i can be reversed in the log-concave case. Actu-
ally we will prove a much stronger statement, which is due to E. Milman.

Definition 18. If i is a probability measure on R", the function
I,:re€0,1] = inf{p (S): p(S) =r}.
is called the isoperimetric profile of .
With this definition Cheeger’s inequality can be rewritten as
Yy - 1,(r) > min(r,1 —r).
The following is a deep result from geometric measure theory.

Theorem 19. The isoperimetric profile of a log-concave measure is concave.

We will use this as a blackbox, we refer to the appendix of [67] for an historical account and
the relevant references. Another good reference for this is Bayle’s Ph.D. thesis [1 |] (if you read
french). This has important implications for us. Indeed, since the isoperimetric profile is non
negative, its concavity implies that

I,(t) >2-1,(1/2) min(¢,1 — t).
In particular the Cheeger constant of p satisfies

1

WA 4

Therefore, for a log-concave measure, in order to prove Cheeger’s inequality, it is enough to look
at the perimeter of sets of measure 1/2. Combining this information with the results from the
previous section we arrive at the following.

Theorem 20. If 11 is log-concave, then there exists a 1-Lischitz function f satisfying

IF1I% ~ Varu(f) = .

Here the symbol ~ means that the ratio between the two quantities is comprised between two
positive universal constants. Theorem 20 is essentially due to E. Milman [67]. The proof we give
is very much inspired by Ledoux’s proof of Buser’s inequality [58].

Proof. By (13) if A is a set of measure 1/2 that has near minimal surface, say up to a factor 2,
then

1+ (A) (14)

1
<.
Vu

17



Let t > 0. By Corollary 17, and since p(A) = 1/2,

1
5 < V2t - iy (A) + Var,(Pla) < + Var, (P1y4).

[

If ¢ is a sufficiently small multiple of ¢ we thus get Var, (P,14) >
by Proposition 16,

% (say). On the other hand,

1 < C
VA
for some constant C'. Putting everything together we see that the function f = (¢,/C) - P14 is
1-Lipschitz and satisfies

1P Ll <

Uy S Varu(f) < [1f1l% < ¥ 0.

Note that since f is 1-Lipschitz, the Poincaré inequality yields Var,(f) < Cp(p). The result
above thus implies that

; < CP(M)-

”w
In other words, the Cheeger inequality can be reversed in the log-concave case. Moreover, the
theorem actually yields a lot more. It implies that it is enough to bound the variance of Lipschitz
functions to get Poincaré (or Cheeger). More precisely, we get the following.

Corollary 21 (Buser [26], Ledoux [58], E. Milman [67]). For any log-concave measure i,

vy ~ Cp(p) ~ sup {Var,(f): || flluip < 1}

Constants are mostly regarded as irrelevant in theses notes but let us mention that for the
left-most equality, the optimal constants are actually known. Indeed De Ponti and Mondino [33]
proved that

1
—y5 < Cr(p) < 445

In section 3.2 we give another proof of this corollary based on L, transportation that avoids
the concavity of the isoperimetric profile blackbox.

Let us also point out that the corollary does not quite use the full strength of Theorem 20, it
does not use the information about the L*>° norm of f. So we actually have stronger form of the
corollary. Namely, in the log-concave case, to get Cheeger, or Poincaré, it is enough to bound the
variance of a bounded Lipschitz function whose Lipschitz constant is 1, and whose L*°-norm is
of the same order as its standard deviation.

2.4 Concentration of measure

Definition 22. Let (X, d, i) be a metric measure space. The concentration function of | is
defined by
a,:r—=sup{l — pu(S,): u(S) >1/2}

where S, is the r-neighborhood of the set S.
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As for isoperimetry, we can only compute the exact value of the concentration function in
some very specific models such as the uniform measure on the sphere or the Gaussian measure.
In general we are happy with a good upper bound for «,. The most interesting types of upper
bounds for us are the case of Gaussian concentration and of exponential concentration.

Definition 23. We say that p satisfies Gaussian concentration if there is a constant C¢ such that

7,2

a,(r) <2-exp (_C_) , Vr>0.
€

We say that |1 satisfies exponential concentration if there exists a constant C,y, such that

r

a,(r) < 2-exp (—C—) , Vr>0.
exp
Moreover the smallest constants Cg, C,y, such that the above inequalities hold true are called
the Gaussian concentration constant and the exponential concentration constant, respectively.

We are interested here in concentration properties of log-concave measures on R”. Gaussian
concentration cannot be true in general (think of x being the exponential measure) but there is
no obstruction to having exponential concentration with a dimension free constant for isotropic
log-concave measures, and this is in fact equivalent to the KLS conjecture from the previous
section. Indeed, it is well-known that the Poincaré inequality yields exponential concentration,
and more precisely that for any probability measure ;o on R™ satisfying the Poincaré inequality
we have

r
_ >

L-+/Cp(p) =t

where L is a universal constant. We will skip the derivation of this from Poincaré here, but this
is not very hard, see for instance [0, section 4.4.2].

Once again, in the log-concave case this implication can be reversed. Indeed, by E. Milman’s
theorem (Corollary 21) from the previous subsection the Poincaré constant is a largest variance
of a 1-Lipschitz function (up to a constant). If f is 1-Lipshitz, by definition of the concentration
function we have

a,(r)<2-exp | —

,U(f —m Z T) S QM(T),

for every r > 0, and where m is a median for f. From this we obtain easily
Var,(f) < 4/00 r-a,(r)dr.
0
Therefore, in the log-concave case
Cp(p) < /Ooowozu(r) dr. (15)

This implies in particular that the Poincaré constant of 1 and the exponential concentration con-
stant squared are actually of the same order.
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2.5 Log-Sobolev and Talagrand

We have seen earlier that Poincaré is weaker than Cheeger in general but equivalent to it within
the class of log-concave measures. We shall see now that log-concavity also allows to reverse
the hierarchy between the log-Sobolev inequality and the transportation inequality. A probability
measure ;4 on R” is said to satisfy the logarithmic Sobolev inequality if there exists a constant
C > 0 such that

Dl ) < S 1w [ )

for every probability measure v, where D(v | ) and (v | p) denote the relative entropy and
Fisher information, respectively:

dv dv
D(v | p) :/ lOg(d_,u)dV and I(v|p) = s |Vlog(d—,u)|2d1/.

The best constant C' is called the log-Sobolev constant, denoted C's (1) below. The factor 1/2
is just a matter of convention. With this convention the log-Sobolev constant of the standard
Gaussian 1. This is a stronger inequality than Poincaré. More precisely we have Cp(u) <
Cprs(p) for any . This is easily seen by applying log-Sobolev to a probability measure whose
density with respect to p is 1 4+ f and letting ¢ tend to 0. Not every log-concave measure
satisfy log-Sobolev, simply because log-Sobolev implies sub-Gaussian tails, so for instance the
exponential measure (on R) does not statisfy log-Sobolev. A bit more precisely, log-Sobolev
implies Gaussian concentration: if x4 satisfies log-Sobolev then for any set S we have

T2
w(S)(1 — pu(S, §exp<—c~ )
(S)(1 = (S)) i
We will come back to that later on.
Recall that if i, v are probability measures on R", the quadratic transportation cost from x to

v 1is defined as
Tr(v,v) :inf{/ |x—y|2d7r},
R™ xR"

where the infimum is taken over every coupling 7 of 1 and v, namely every probability measure
on the product space whose marginals are ¢ and v. In the next section we will speak about the
Monge transport cost, which is the L' version of this.

Proposition 24 (Otto and Villani [71]). If u satisfies log-Sobolev then for every probability mea-
sure v we have

(v, 1) < 2CLs(p) - D(v | ).

This transportation/entropy inequality is sometimes called Talagrand’s inequality, as it was
first established by Talagrand for the Gaussian measure, see [81]. Again in the log-concave case
the implication log-Sobolev/Talagrand can be reversed. Indeed, we have the following, also due
to Otto and Villani.
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Proposition 25 (Otto and Villani [71]). If u is log-concave then for every probability measure v
on R"™ we have

D(v | p) < VTa(v,p) - 1(v | ).

This is only a particular case of the Otto-Villani result, there is also a version for semi-log-
concave measures, namely measures for which we have a possibly negative lower bound on the
Hessian of the potential. This inequality goes by the name HWI. The reason for this name is not
apparent from our choice of notations, but relative entropy is often denoted H, and the transport
cost T, can also be denoted W or rather W (for Wasserstein). From the HWI inequality we
see that the implication between log-Sobolev and Talagrand can be reversed for log-concave
measures: if we happen to know

Ty(v, 1) < CoD(v | )

for i log-concave, then we get log-Sobolev for p and Crg(p) < 2C5. We will not spell out the
proofs of the Otto-Villani results here and we refer to [71] (see also [18]).

We have seen above that the equivalence between Cheeger and Poincaré can be considerably
reinforced. This is also the case here, and this is yet again a result of E. Milman.

Theorem 26 (E. Milman [68]). For a log-concave probability measure we have equivalence
between Gaussian concentration and the log-Sobolev inequality, and moreover the log-Sobolev
constant and the Gaussian concentration constant are within a universal factor of each other.

Proof. There are several proofs of this result in the literature, see [68, 61]. The proof sketch
that we give here is taken from Gozlan, Roberto, Samson [41]. We said earlier that log-Sobolev
implies Gaussian concentration, but a bit more is true: the weaker Talagrand inequality also
implies Gaussian concentration. Let us explain why briefly. By some convex duality principle,
T5 can be also expressed as a supremum, namely

Ty (1, v) =sup{ Quafdu- [ fdv}
f R™ R™

where the (), f is the infimum convolution of f with some multiple of the distance squared:

Quf(x) = inf { F)+ lo - W} |

It can also be shown that (), ) is a semigroup of operators, namely we have Q,Q); = Q5. Lastly
there is also some duality between the log-Laplace transform and the relative entropy:

log/ efd,u:sup{ fdu—D(y|,u)},
n 1 Rn

where the supremum is taken over every probability measure v. Using all this, it is pretty easy to
see that Talagrand’s inequality

Ty(v,pu) <2Cr-D(v|p), Vv
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is equivalent to

/ exp(Qe, f) di < exp ( / n fdM) .S,

Applying this to both Q¢ f and —Q ¢, f, using the fact that (@) is a semigroup, and multiplying
the two inequalities together we get

| expl@cy(~Qo, - [ expl@ac,aus 1.

n

But clearly — f < Q¢ (—Qc, f), so we obtain

[ ewnin [ ewl@ue, st

Applying to f = —log 14 we get

/n exp (d(;gj)z) dz < ﬁ

for every set A. By Markov inequality this implies

2
a,(r) <2-exp <—E> :

So Talagrand implies Gaussian concentration, and moreover the Gaussian concentration constant
is at most the constant in Talagrand, up to a factor 2. Now we want to reverse this, so we assume

a,(r) < 2e""/Ca.

It is easily seen to imply
| exvl@ac ) dn S explimy)

for every f, and where m is a median for f. Again the notation S means up to a universal factor.
Again, applying this —Qac,, f and Q2c,, f and multiplying the two inequalities together we get

/ ! du- / exp(Qucn f) din S 1.

hence by Jensen’s inequality

[ exvl@uco pran S e ( Il fdu) |

In other words we get the dual version of Talagrand, but with some prefactor. In terms of transport
and entropy this gives
(v, 1) S Co(D(v | p) +1).
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So we have an additional additive constant in the right-hand side of Talagrand. We have not used
log-concavity yet, this would be true for any measure satisfying Gaussian concentration. Now
assuming log-concavity, we can plug this into the HWI inequality (Proposition 25). We get

D |p) SCq-1(v|p)+1.

Again, we get some weak form of log-Sobolev with an additional constant term in the right-hand
side. This is sometimes called non-tight log-Sobolev inequality. To get rid of that constant,
observe first that we clearly have from the first theorem of E. Milman (see equation (15))

Cp(p) < Ce-

Moreover, non-tight log-Sobolev can be reformulated as
ent, () S Co [ (VSPdu+ [
Rn R

where the entropy of a non negative function f is defined as

enty(F) = [ Flos f d— (/nfdu) log (/nfdu) |

Now there is a nice inequality by Rothaus [77] which states that for any f: R” — R and any
constant ¢ we have

ent,((f +¢)?) <ent,(f*)+2 [ f*dpu.
R’!L

Using this inequality it is easy to see that our non tight version of log-Sobolev and the bound that
we have on C'p(p) altogether imply

emAﬂﬁCb/\Vﬂwm
]Rn

which is a reformulation of the desired log-Sobolev inequality. ]
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3 Optimal transport theory with the Monge cost

Let 111 and po be two measures in R”, say compactly-supported and absolutely continuous, with
the same total mass, i.e., p1(R") = ua(R™). We would like to push-forward the measure 1, to
the measure f5 in the most efficient way, that minimizes the average distance that points have to
travel. That is, we look at the optimization problem

inf Sr—uw dx).
Jnt [ (50— alm(do)
This is the problem of Optimal Transport with the Monge cost or the L' cost, considered by
Monge in 1781. See Cayley’s review of Monge’s work [29] from 1883. For a more recent survey
on Monge’s problem, see for instance [2|]. Here is a heuristics from Monge’s paper that explains
why this problem induces a partition into segments.

Monge heuristic: For the optimal transport map 7', the segments (z, T(x)) (z € Supp(p1)) do
not intersect, unless they overlap.

Explanation. Suppose that open segments (z, T'z) and (y, T'y) are not parallel and intersect at a
point z. The triangle inequality then shows that |z — T'y| + |y — Tx| < |x — Tx| + |y — Ty|,
which contradicts the fact that the map 7" is optimal. ]

This is related to the following elementary riddle: given 50 red points and 50 blue points
in the plane, in general position, find a matching so that the corresponding segments do not
intersect.

Since the above argument relies only on the triangle inequality, you would expect that the op-
timal transport problem would induce a partition into geodesics also for Riemannian manifolds,
or Finslerian manifolds, or measure metric spaces of some type — basically wherever the triangle
inequality holds true (under some regularity assumptions).

3.1 Linear programming relaxation and the dual problem

In Monge’s problem we minimize over all maps S that push-forward i1 to . There is a relax-
ation of this problem, that looks at all possible couplings, or transport plans, of the two distribu-
tions. That is, instead of mapping a point x to a single point 7'z, we are allowed to spread the
mass across a region. Thus we look at all measures v on R" x R" with

(7)Y = 11 and (m2)ey = Mo

where 7 (z,y) = x and 7o(z,y) = y. Such a measure is called a coupling of y and v. In other
words, we now look at transport plans rather than transport maps. The advantage is that the space
of all couplings is a convex set. The relaxed optimal transport problem involves minimizing the
average distance that points travel, namely we look at

wt [ eyl
R™ xR"™

(1) v=p,(w2)xy=v
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Hence we minimize a linear function on a convex set, this is Linear Programming or Functional
Analysis (see e.g. Kantorovich and Akilov [46, Section VIIL.4]).

Theorem 27. (The dual problem) Let (i1, 15 be two absolutely continuous measures in R"™ with
the same total mass. Assume that

/ || p1(dx) < oo and / || po(dx) < oo.

Denote |1 = g — pu1. Then the following quantities are equal:

1. The minimum over all couplings v of p1 and i of the integral

/ & — y|y(dz, dy).
R™ xR™

2. The maximum over all 1-Lipschitz functions u : R" — R of
[ o) utao)
3. The minimum over all maps T’ with T',j11 = o of

/n & — T i1 (d).

Proof sketch. We refer to Ambrosio [3] for full details. For the easy direction of the linear
programming duality, pick a 1-Lipschitz map u and a coupling v. For any points x,y € R",
u(y) —u(z) < |z —yl.

Integrating with respect to v, we get

/ wdp = / fuly) — u(a)] A(dz, dy) < / @ —yly(de,dy).  (16)
n R™ xR™ R7 xRR"™

Hence we need to find u and v so that equality is attained in (16). The argument goes roughly
as follows. A compactness argument shows that the infimum over all couplings is attained.
Indeed, by Alaoglu’s theorem, the collection of all couplings is compact in the w*-topology
(integration against continuous functions on R™ whose limit at infinity exists). The functional
Y = Jonyge [T =y v(dz, dy) is lower semi-continuous in w*-topology, hence its minimum is
attained.

Similarly to the Monge heuristics, the optimality implies that the support of v must be cycli-
cally monotone: If (z;,y;) € Supp(y) € R® x R" for7 = 1,..., N then for any permutation

o c SN,
N N
Dolw =il < 1w — Yo (17)
i=1 =1
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Indeed, otherwise one may pick small balls around z; and y; and rearrange them to contradict
optimality. Similarly to Rockafellar’s theorem [75] from convex analysis, condition (17) implies
that there exists a 1-Lipschitz function v : R" — R with

(z,y) € Supp(7) e u(y) —u(z) = |y — . (18)

Indeed, fix (zg,vyo) € Supp(7y) and define u(x) as the supremum over all lower bounds with
u(zg) =0,

u(z) = sup {lzo = wol = lyo — z1| + 21 — 1| — [y1 — 2| + .. — |ynw — 2}
Ny(z1,91),--, (TN ,yn)ESupp(7)

It follows from (17) that u(zo) = 0. The function u is a 1-Lipschitz function as a supremum of

1-Lipschitz functions. It follows from the definition of w that (18) holds true. Hence we found

u and 7y so that equality is attained in (16). The proof that v can also be replaced by a transport

map is due to Evans and Gangbo [37]. This relies on analysis of the structure of w that will be

described next. 0

Remark 28. The minimizers «y or 7" are not at all unique. It is actually the 1-Lipschitz function
u which is essentially determined. More precisely, the gradient Vu is determined p-almost
everywhere.

We move on to discuss the structure of 1-Lipschitz functions. Observe that when a 1-

Lipschitz function u satisfies |u(z) — u(y)| = |z — y|, for some points x,y € R", it necessarily
grows in speed one along the segment from x to y. A maximal open segment / on which u grows
with speed one, i.e., |u(x) — u(y)| = |z — y| for all z,y € I, is called a transport ray. Theorem

27 tells us that optimal transport only happens only along transport rays, we only rearrange mass
along transport rays.

It is illuminating to draw the transport rays of the function u(z) = x; in connection with

Fubini’s theorem . .
/ p = / (/ cp(xl,xg)dxl) dxo,
R2 —00 —00

and of the function u(z) = |z| on R? 2 C in connection with integration in polar coordinates:

o= /0 ) ( /0 ) ¢<rei9>rdr) .

Note that the Jacobian factor on the needle is log-concave in both examples.
The next step is to understand the disintegration of measure or conditional probabilities in-
duced by the partition into transport rays. Let © be a maximizer as above, with
W= H2 — 1,

and with the two measures satisfying the requirements of Theorem 27. As it turns out, it is
guaranteed that transport rays of positive length form a partition of the entire support of the
measure /i, up to a set of measure zero. Write

dp
F=a
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where )\ is any log-concave reference measure in R" (not necessarily finite; it could be the
Lebesgue measure for instance). The assumption that i (R") = ps(R™) is equivalent to the
requirement that

/ fd\ = 0. (19)

The following theorem requires careful regularity analysis, and in addition to Evans and Gangbo
[37] it builds upon works by Caffarelli, Feldman and McCann [27] as well as [50]. It is analogous
to integration in polar coordinates, yet with respect to a general 1-Lipschitz guiding function,
rather than just u(z) = |z|. In the following theorem a line segment could also mean a singleton,
aray or a line.

Theorem 29 (Evans and Gangbo [37], Caffarelli, Feldman and McCann [27], Klartag [50]). Let
\ be an absolutely-continuous, log-concave measure on R™, and let f € L*(\) satisfy (19). Then
there is a collection ) of line segments that form a partition of R", a family of measures {\1}zcq,
and a measure v on the space of segments ), such that

1. For any I € () the measure \r is supported on the line segment Z. If T is of non-zero
length, then it is a transport ray of the 1-Lipschitz function u.

2. Disintegration of measure

)\:/Q)\Zy(dl).

3. Mass balance condition: for v-almost any T € (),

/Z fdrz = 0.

4. Forv-almost any T € (), the measure A1 has a C*-smooth, positive density p with respect
to the Lebesgue measure on the segment I which is log-concave.
(In fact, in the case where ) is the Lebesgue measure, it is a polynomial of degree n — 1
with real roots, that does not vanish in the support of \z).

Remark 30. This theorem may be generalized to any Riemannian manifold with non-negative
Ricci curvature. We replace the line segment Z by a unit-speed geodesic v = 7z, and set k(t) =
Ricci(%(t),5(t)),n = dim(M). Denote by p = pz the density of uz with respect to arclength
on the geodesic v = 7. Then,

1 " K
n—1

The Riemannian version may be used to prove isoperimetric inequalities under lower bounds on

the Ricci curvature, as well as Poincaré inequalities, log-Sobolev inequalities, Brunn-Minkowski

inequalities and more, see [50]. A generalization to the context of synthetic Ricci bounds was

introduced by Cavalleti and Mondino [28]. See also Ohta [70] for the non-symmetric, Finslerian

case.
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Some ideas from the proof of Theorem 29. The proof of Theorem 29 does not use sophisticated
results from Geometric Measure Theory, but it consists of several steps. Essentially,

» Show that a 1-Lipschitz u is always differentiable in the relative interior of a transport ray.

* The next step is to show that Vu is a locally-Lipschitz function on a set which is only
slightly smaller than the union of all transport rays, and that the restriction of u to this set
may be extended to a C''!-function on R™.

* This is just enough regularity in order to allow change of variables in an integral, which
yields the disintegration.

* By differentiating the Jacobian one sees that the logarithmic derivative of the needle den-
sity is the mean curvature of the level set of u, and the inverse principal curvatures grow
linearly along the needle. This yields log-concavity along each needle.

* The mass balance condition follows from the fact that v is a coupling between 1 and o,
and that transport happens only along transport rays (thanks to S. Szarek for this remark).
Alternatively, one can use a perturbative argument based on the maximality of the integral

f ufdA.
We refer to [50] for the details. OJ

As an application of this theorem, let us prove the reverse Cheeger inequality of Buser [26]
and Ledoux [58], and in fact a refinement due to E. Milman [67]. In Section 2.3 above we saw
another proof, using semi-group methods, of the following:

Proposition 31. Let i be a log-concave probability measure on R" and R > 0. Assume that for
any 1-Lipschitz function u : R" — R there exists o € R with

/ Ju(x) ~ aldp(r) < B 20)

(this is a weaker condition than requiring Cp(1) < R?). Then for any measurable set S C R"
and() < e < R,

M(SE\S> >c- N(S)(l_M(S»v (21)

where ¢ > 0 is a universal constant, and where S is the s-neighborhood of S. In particular the
Cheeger constant of | (see section 2.3) satisfies

Y, S R.

Proof. Denote t = ;u(S) € [0,1] and set f(z) = 1g(x) — ¢ for x € R™ Then [ fdu = 0. We
then consider the Monge transportation problem between f, dyu and f_ du. Let u be a 1-Lipschitz
function maximizing

/ ufdpu.
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After adding a constant to u, we may assume that
luldp < R.
R

By Theorem 29, we obtain a needle decomposition: measures {7 }7co on R”, and a measure
v on the space €2 of transport rays which yield a disintegration of measure. Observe that the
equality

/Q §z(R) (dT) = p(R™) = 1

implies in particular that for v-almost every Z the measure pz is finite. We may normalize
and assume that they are all probability measures. More precisely we can replace each of the
measures pi7 by pz/puz(R™) and replace v by the measure having density Z — uz(R™) with

respect to v. Hence,
/ (/ lul duz) v(dI) = lu| dp < R.
o \Jz R™

B:{IGQ;/|u|d,uI§2R}.
T

By the Markov-Chebyshev inequality,

Denote

v(B)>1/2. (22)
For v-almost all intervals Z € 2 we know that fz fduz = 0, hence
pz(S) =t-pz(R") =1.
We would like to prove that forany Z € B and any 0 < € < R,

pz(S:\S) > ¢ — (1 1), (23)

| o

for a universal constant ¢ > 0. Once (23) is proven, the bound (21) follows by integrating (23)
with respect to v and using (22), since

(S \ 5) z/uz(Sa\S)V(dI) > y(B) e t(1—t) 2 5= t(1 - 1),

B R 2 R
What remains to be proven is a one-dimensional statement about log-concave measures: If n =
17 is a log-concave probability measure on R with [, [t|dn(t) < 2R, then (23) holds true. This

follows from Corollary 7 and a scaling argument. ]

The same proof applies for any complete Riemannian manifold with non-negative Rieman-
nian curvature. In fact, completeness in unneeded, the weaker geodesic-convexity assumption
suffices here. There are quite a few other applications for this theorem, which helps reduce
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the task of proving an n-dimensional inequality to the task of proving a 1-dimensional inequal-
ity (“localization). In a simply-connected space of constant sectional curvature, most of these
applications — like reverse Holder inequalities for polynomials — may also be proven using a
localization method based on hyperplane bisections that go back to Payne and Weinberger [73],
Gromov and Milman [42] and Kannan, Lovasz and Simonovits [45]. Proposition 31 seems to be
an exception, our proof requires the 1-Lipschitz guiding function.

Exercise 5 (reverse Holder inequalities for polynomials). Let X be a log-concave random vector
in R", and let f : R™ — R be a polynomial of degree at most d. Then for any 0 < p < ¢,

17X lg < Coa- 1 F(X) ],

for some constant C;, ; depending only on ¢ and d.
Hint: In one dimension, following Bobkov [15], we may assume that f is a monic polynomial in

one real variable, hence
d

FX) =[x = =)

i=1

for some 21, ..., z4 € C. Consequently, by Holder inequality and by Corollary 5,

d

[[x -2

i=1

LF(Xlq = < [TIX =zl < ] Cda+1)IIX =zillo = (Cd(g+1)" £ (X)]|o-

q¢ i=1 i=1

Now use needle decomposition to extend this to higher dimensions.

3.2 Isoperimetry and the Poincaré inequality

Recall that the Cheeger inequality [3 1] states that for any absolutely continuous probability mea-
sure on R"™ satisfying some mild regularity assumptions,

Cp(p) < 4972, (24)

The proof is sketched in section 2.3. Combining this with Proposition 31 we thus recover the
aforementioned result by Buser, that C'p(1) and @Di are within a constant factor of each other
when p is log-concave. Proposition 31 moreover implies that in the log-concave case, there
exists a 1-Lipschitz function f such that

P2 < C - Var,(f).

This provides another proof of E. Milman’s theorem (Corollary 21).
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4 Bochner identities and curvature

In this lecture we discuss a technique that originated in Riemannian Geometry and connects the
Poincaré inequality and Curvature. It started with the works of Bochner in the 1940s and also
Lichnerowicz in the 1950s. The approach fits well with convex bodies and log-concave measures
in high dimension. In a nutshell, the idea is to make local computations involving something like
curvature, as well as integrations by parts, and then dualize and obtain Poincaré-type inequalities.
This may sound pretty vague, let us explain what we mean.

Suppose that 4 is an absolutely continuous log-concave probability measure in R™. Then p is
supported in an open, convex set X C R™ and it has a positive, log-concave density p = e~¥ in
K. We will measure distances using the Euclidean distances in R”, but we will measure volumes
using the measure p. We thus look at the weighted Riemannian manifold or the metric-measure
space

(K ) | ) |> :u)'

Thus the Dirichlet energy of a smooth function f : R” — R is

gy = [ V5P

Indeed, we measure the length of the gradient with respect to the Euclidean metric, while we
integrate with respect to the measure ;. As was already defined in Section 2.2, the Laplace-type
operator associated with this measure-metric space is defined, initially for u € C°(K), via

Lu= L,u=Au— V- Vu=e’div(e”"Vu).

This reason for this definition is that for any smooth functions u, v : R®™ — R, with one of them
compactly-supported in K,

/n(LU)UdM = - / [Vu - Voule™ du.

and in particular
(= Lty u) g2 = / Vuldp.
Rn

Thus L is a symmetric operator in L?(p), defined initially for u € C°(K). It can have more than
one self-adjoint extension, for example corresponding to the Dirichlet or Neumann boundary
conditions when K is bounded. When discussing the Bochner technique, it is customary and
possible to find ways to circumvent spectral theory of the operator L. Still, spectral theory helps
us understand and form intuition, and we will at least quote the relevant spectral theory.

It will be convenient to make an (inessential) regularity assumption on g, so as to avoid all
boundary terms in all integrations by parts. We say that p is a regular, log-concave measure in R"
if its density, denoted by e~%, is smooth and positive in R" and the following two requirements
hold:
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(i) Log-concavity amounts to v being convex, so V2 > 0 everywhere in R". We require a
bit more, that there exists £ > 0 such that for all x € R",

e-1d < V*(r) < = -1d. (25)

o | =

(i) The function v, as well as each of its partial derivatives, grows at most polynomially at
infinity.

Exercise 6 (regularization process). Begin with an arbitrary log-concave measure ;o on R", con-
volve it by a tiny Gaussian, and then multiply its density by exp(—&|x|?) for small £ > 0. Show
that the resulting measure is regular, log-concave, with approximately the same covariance ma-
trix, and that the Poincaré constant cannot jump down by much under this regularization process.

From now on, we assume that our probability measure y is a regular, log-concave measure.
It turns out that in this case, the operator L, initially defined on C°(R"), is essentially self-
adjoint, positive semi-definite operator in L?(x) with a discrete spectrum. Its eigenfunctions
1 = ¢y, 1, ... constitute an orthonormal basis, and the eigenvalues of — L are

1
BETE Xo(L) < ...

with the eigenfunction corresponding to the trivial eigenvalue 0 being the constant function. The
eigenfunctions are smooth functions in R” that do not grow too fast at infinity: each function

0=Xo(L) < Ai(L)

pje”"?

decays exponentially at infinity. Also (0%¢;)e~%/2 decays exponentially at infinity for any par-
tial derivative o. This follows from known results on exponential decay of eigenfunctions of
Schrodinger operators. The eigenvalues are given by the following infimum of Rayleigh quo-

tients o fitg
(L) = inf 7fRn IV dp
FLoospn1 Jon [2dp

where the infimum runs over all (say) locally-Lipschitz functions f € L?(j). Since oy = 1, we
indeed see that the first eigenfunction (¢, saturates the Poincaré inequality for . For proofs of
these spectral theoretic facts, see references in [54].

Let us return to Geometry. In Riemannian geometry, the Ricci curvature appears when we
commute the Laplacian and the gradient. Analogously, here we have the easily-verified commu-
tation relation

V(Lu) = L(Vu) — (V) (Vu),

where L(Vu) = (L(0'u), ..., L(0™u)). Hence the matrix V?1) corresponds to a curvature term,
analogous to the Ricci curvature.

32



Proposition 32 (Integral Bochner’s formula). For any u € C°(R"),

[ e dn= [ (7%0) V- Fudar [Vl d

where |[V2ul%g = S0, [Vl
Proof. Integration by parts gives
/ (Lu)®> du=— | V(Lu)-Vu du

R

= —/n L(Vu) - Vu dy + /n [(V*)Vu - Vu] du

= Z |Voul* du +/ (V*¢) Vu - Vu dp. O
i=1 YR R

The assumption that u is compactly-supported was used in order to discard the boundary
terms when integrating by parts. In fact, it suffices to know that v is u-tempered. We say that «
is p-tempered if it is a smooth function, and (0%u)e~*/? decays exponentially at infinity for any
partial derivative 0“u. Any eigenfunction of L is pu-tempered. If f is u-tempered, then so is L f.

The following inequality from [54] is analogous to some investigations of Lichnerowicz [64].
It is concerned with distributions that are more log-concave than a Gaussian distribution, in the
sense that their logarithmic Hessian is uniformly bounded by that of the Gaussian.

Theorem 33 (improved log-concave Lichnerowicz inequality). Let t > 0 and assume that
V%) (x) >t for all z € R". Then,

Cplp) < ¢ ICov(i)op - -

Equality in Theorem 33 is attained when p is a Gaussian measure, with any covariance ma-
trix. Indeed in that case C'p(u) and ||Cov(u)||,, coincide, and they also coincide with the inverse
lower bound on the Hessian of the potential. Write ~y, for the law of distribution of a Gaussian
random vector of mean zero and covariance matrix s-Id in R™. Then ~; satisfies the assumptions
of Theorem 33 for ¢t = 1/s while Cp(7,) = ||Cov(7s)|lop = s

Proof of Theorem 33. Denote f = ¢, the first eigenfunction, normalized so that || f|| ;2¢,) = 1.
Set A = 1/Cp(u). By the Bochner formula and the Poincaré inequality for 9 f (i = 1,...,n),

= [ (wppan= [ (02095 Vildn+ [ 19 s

n
2]

>t [ |VfPdu+ )
Rn

|V fPdp —

Q/HmeL

R

t/HmeL

33

2

=(t+A)- A=A (26)




Therefore the first eigenfunction has a “preferred direction”, i.e.,

/andu

We remark that in the general case, under log-concavity assumptions it is known that fRn Vfdu #
0, see [49], and this leads to a bound on the dimension of the first eigenspace. The lower bound
(27) 1s a quantitative version, relying on the assumption of a uniform lower bound on the log-
concavity. Using that the i’ coordinate of V f is V f - Vz; and integrating by parts we have

/n V fdpu = —/n(Lf)xd,u =\ [ fadu

Rn

2
> ¢. (27)

Since [ fdu = 0, by Cauchy-Schwartz, for some § € S" 1,

/ Vfdu‘ = [ V5.0du=x [ s 0 uta
n n ]Rn
< )\||fHL2(u) -/ Cov ()8 - 8 < \|Cov(p)]]op-
This expression is at least ¢, and the theorem follows. O

Since ||Cov(u)||op < Cp(p), we deduce from Theorem 33 that

1
Cr(u) < - (28)
Inequality (28) is sometimes referred to as the log-concave Lichnerowicz inequality. Therefore
the bound in Theorem 33 is a geometric average of the Lichnerowicz bound and the conjectural

KLS bound.

The Bochner identity has quite a few additional applications in the study of log-concave mea-
sures, beyond the improved log-concave Lichnerowicz inequality. Especially if one introduces
the semigroup (etL)tZO associated with the operator L (see e.g. Ledoux [59]), as we saw in
Section 2.2. Yet even simple integrations by parts and duality arguments based on the Bochner
identity lead to non-trivial conclusions. One example is the Brascamp-Lieb inequality [24] from
the 1970s:

Theorem 34 (Brascamp-Lieb). For any C*-smooth f € L*(u),

Var,(f) < [ (V%) 95V ulde),

n

where Var,(f) = [on(f — E)? p(dz), and E =[5, fdu.

Proof. We will only prove this inequality for regular, log-concave measures, though it holds true
under weaker regularity assumptions. The space of all u-tempered functions is denoted by F,.
It is clearly a dense subspace of L?(x1) and in fact its image under L is dense in

@éz{géLZ(u);/ gdu=0}.
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Indeed, the image contains all finite linear combinations of all eigenfunctions (1, o, . . . (Without
o) which is dense in H. Assume [ f dp =0, > 0 and pick u € F,, such that

||Lu — fHLQ(u) <e.

Then,

Var, () = 1 = 1Eu = flia +2 [ £Lu du— [ (L) dy
§a2—2/Vf-Vu d,u—/(V2¢)Vu~Vu dp
<< (V2095 dn

where we have used the fact that
J@w? du= [(720)vu-u dn
which follows from Bochner’s formula and
2y —Ar-x < AV -y = |VAz + VA Ty> > 0.

The desired inequality follows by letting ¢ tend to zero. L

Remark. The Brascamp-Lieb inequality is an infinitesimal version of the Prékopa-Leindler
inequality. Suppose that fy, f1 : R" — [0, co) are integrable, log-concave functions and

filz)y= sup  foly)' T fi(2)"

z=(1-t)y+yz

The Prékopa-Leindler inequality implies that log [, f; is concave in ¢. The second derivative in ¢
is non-negative, and this actually amounts to the Brascamp-Lieb inequality. Thus the Brascamp-
Lieb inequality is yet another incarnation of the Brunn-Minkowski inequality.

We say that a function ) on the orthant R’ is p-convex if ¢(x}/ P ad? )

function of (z1,...,z,) € R7}.

1S a convex

Corollary 35. Let 1 be a probability measure in the orthant R, set e = du/dx and assume
that 1) is p-convex for p = 1/2. Then for any C*-smooth function f € L*(p),

Var,(f) < 4 / S w210, ulde).
" =1

For general p > 1, replace the coefficient 4 by p*/(p — 1).
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Proof. Change variables and use the Brascamp-Lieb inequality. Denote % = ¢~ Y. Then for
7T(:L’1, T vxn) = (xlv T 7xn)7

the function ¢ (7(z)) is convex. Set
() = ¢(r(x)) - Z log(2;).

Then 7! pushes-forward p to the measure with density e~¥. Moreover,

% 0 0
n 0 ILQ e 0
Vip(x) > V2 =) log(2z) | =| . = [>o0,
1 S S
0 0 é
and therefore
7 0 0
_ 0 z2 - 0
(v280<$)) 1 S :2
0 0 x?

Set g(z) = f(m(x)). By the Brascamp-Lieb inequality,
Var.-»(g) < / [(V2%) ™' Vg Vg e #) dz < / 3 22(0,g(a) e P da.
R RY =1

The corollary follows since
Vare—«(g) = Var.—s(f).

and since when y = 7(x) = (22, -+, 22) we have

2;0;9(x) = 24,0, f (y). [
Exercise 7. If ¢ : R, — R is convex and increasing in all of the coordinate directions, then 1 is
p-convex for p = 1/2,1i.e., ¢ (2, ..., x2) is convex in the orthant.

A function ¢ : R™ — R is invariant under coordinate reflections (a.k.a. unconditional) if
Y(xy, .. xn) = U(|x], .o 2n]) for all z € R".

If ¢/ is moreover convex, then 1/)|Rr+z is increasing in all coordinate directions. Similarly a random
vector is called unconditional if its law is invariant under reflection by coordinate hyperplanes.
When the vector has a density this amounts to saying the density is unconditional in the above
sense. The following thin-shell bound is from [49].
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Corollary 36. Suppose that X is a random vector that is log-concave, isotropic and uncondi-
tional in R™. Then,

Var(| X|?) < Cn.

Proof. According to the exercise the density of X is of the form e~%, where v is p-convex for
p = 1/2. Corollary 35 applies and we get

Var(|X|?) <4) EX](2X;)’ =16 Y EX/ <> (EX?)*=n.

i=1 i=1 i=1
where we used reverse Holder inequalities in the last passage. O

It should be noted that the result is optimal, in the sense that there exist unconditional
isotropic log-concave random vectors X for which Var(|X|?) is of order n, see the exercise
below. We also remark that as of October 2024, the state of affairs is that the KLS conjecture
is still open already in the particular case of unconditional convex bodies. A logarithmic bound
for the Poincaré constant in this case is known for years, see [49], and it is subsumed by recent
bounds for the general case.

Exercise 8. If X is a standard Gaussian vector in R",

Var(| X|?) = 2n.
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5 Gaussian localization

In the previous section we discussed localization of a log-concave measure into needles, one-
dimensional segments. We proceed by discussing Gaussian localization, decomposing the given
measure into a mixture of measures, each of which involves multiplying the given measure by a
Gaussian. The Gaussians bring with them a wealth of connections and elegant formulae, as we
see below. The method was invented by Ronen Eldan [35] and it is coined Eldan’s Stochastic
Localization. We first present a rather degenerate case of Eldan’s method, in which the time
parameter is somewhat fixed, so that the method does not require stochastic processes.

Let Z be a standard Gaussian random vector in R", of mean zero and identity covariance
matrix Id. Recall that for s > 0 we write 7, for the density of /s - Z. Let X be a log-concave
random vector in R" independent of Z, with density p. For s > 0 consider the random vector

Y, =X + /57

whose density is p * ;.

One could think of (Y;) as a process parameterized by s, perhaps as a Brownian motion
starting at the initial distribution of X. This point of view, with the time reversal ¢ = 1/s, is
emphasized in Section 6. In the present lecture do not consider a stochastic process parameterized
by s, and view s > ( as a parameter whose value will be fixed later on. One of the simplest
examples of Gaussian localization of the probability density p is given by the following:

Proposition 37. Fix s > 0. For each y € R", consider the probability density
_ p@)ys(r —y)
sy(T) =
p*7s(y)

which we view as a localized “Gaussian needle” or “Gaussian piece” relative to p. Then the
original density p is a certain average of these Gaussian needles:

Y

p=Epsy..
One says that this is a disintegration of p into the localized Gaussian pieces (ps ) ycrn-

Proof. The joint density of (X, Y;) in R” x R™ is

(z,y) = p(z)ys(y — x).

The family of densities p,, give us the conditional distribution of X with respect to Y. That is,
for any test function f(z,y),

/ L Sty — aydady = / { f(a?,y)p&y(x)dx} o va()dy

R

In particular, if the function f(z,y) depends only on z, we get

/npr/n U}R fps,y} p*7s(y)dy = E 5 Fpsy.. -
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From the proof of Proposition 37 we see that the densities p; , give us the conditional distri-
bution of X with respect to Y. The conditional expectation operator is denoted by

Qsf (W)= [ [y
R

whenever the integral converges. Thus
Qs f(Ys) = E[f(X)[Yi].

Assume that the original density p is log-concave. Then each of the elements p,, in the
decomposition is more log-concave than the Gaussian ;. We have thus expressed our log-
concave density as a mixture of measures that are uniformly log-concave. This decomposition is
determined by the choice of the parameter s > 0.

The critical value of s turns out to be s ~ Cp(X). Roughly speaking, for much smaller values
of s, we decompose into highly localized measures, maybe even resembling Dirac masses. For
much larger values of s the decomposition is trivial for another reason: the localized pieces
resemble the original measure. Abbreviate

Ps = Ps,Yys

a random probability density. Recall that Ep, = p by Proposition 37. As usual, for a function f

on R™ we write )
Varps(f) = fzps - (/ fPS) )
R R~

provided that the integrals converge. Similarly, we also write Var,(f) = Varf(X). Then by the
law of total variance,

Varf(X) = EVar(f(X)[Y,) + Var(E(f(X)|Y;)) = EVar, (f) + Var(Q.f(Y)).  (29)
When s 2 Cp(X), it is the first summand that is dominant:

Lemma 38. Assume that X is log-concave. For any s > 0 and a function f on R" with
Ef?(X) < oo,

S

EVar,, (f) < Var,(f) < (2 + CrX )) EVar,,(f).

Proof. We need to show that Var(), f(Y;) is not much larger than EVar, (f). To this end, we
will use the Poincaré inequality for the random vector Y;. By the subadditivity property of the
Poincaré constant (see exercise 2

Cp(Yy) = Cp(X +VsZ) < Cp(X) + Cp(VsZ) = Cp(X) + 5.

Hence
Var(Qsf(Ys)) < (Cp(X) +5) - E[VQ, f(Ys)]*.
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Recall that
QI = [ pop)f@s = [ LD gy,

n P Es(Y)
Differentiating a Gaussian is easy, we have Vv,(z) = —v5(x) - x/s. It follows that
T — Qg
VQ.) = [ T @),

where a, = ayy =[5, ©ps,(x)dz is the barycenter of the local measure p; . Write A, = A, , =
Cov(ps). By the Cauchy-Schwartz inequality, for § € S"~*,

VQsf(y)-0 =/ (w—a)-b

RTL

< %\//Rn (& = ag) - 0 poy(x)day/Var,, , (f)

1
< VI Alop - 4/ V., (1)
Then by taking the supremum over € S™~1,

Var(Quf (1)) < ) Ve, (1)

However, the random probability density ps is always more log-concave than the Gaussian 74,
and hence A, < s - Id. Consequently,

psy (@) f(2)d

_ OrlX)+

Var(Q.f(Y2)) % EVar,,(f).

This, together with (29), proves the proposition. L

To summarize, for s = Cp(u), the local measure p; is typically close enough to the original
measure, so the variance of any fixed function with respect to p is roughly the averaged variance
with respect to p.

Remark. By differentiating with respect to s, one may improve upon Proposition 38 in two
respects. First, it turns out that log-concavity is actually not needed in Proposition 38. It is proven
in Klartag and Ordentlich [56] that for any random vector X and a function f with Ef?(X) < oo,

Cp(X)

S

Var,(f) < (1 + ) EVar,, (f). (30)

This is a better bound than that of Lemma 38.

Corollary 39. For any s > 0, setting a = s/Cp(X),

1
Cr(X) < C (1 ; a) ECh(p.),
where C' > 0 is a universal constant.
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Proof. Let f : R — R be a 1-Lipschitz function with
Var,(f) > c¢- Cp(X),

whose existence in guaranteed by Corollary 21 due to E. Milman. By Proposition 38 and the
Poincaré inequality,

Ve (1) < (243 ) EVar, (7

< (2 + é) E (CP(ps) . \Vf\2ps)
< (2 + é) ECp(ps)- =

Thus, in order to bound the Poincaré constant of X, we may apply Gaussian localization with
s 2 Cp(u) and try to bound the Poincaré constant of p,. An advantage of ps over p is that p;
is more log-concave than the Gaussian 5. Hence, by the improved log-concave Lichnerowicz
inequality, which is Theorem 33 above,

Cp(ps) < /- [[Asllop

where we recall that A; = Cov(p;). Therefore, Corollary 39 leads to another corollary:

Corollary 40. For any s > 0,
Cp(X)
cp(x)<c(1 AJENAdlop - 5.
p00 <0 (14 D) Rl

What do we know about E|| A,||,,? Assume from now on that X is log-concave and isotropic,
so for large s > 0 we might expect A, to be roughly Cov(X) = Id. However, the operator
norm involves a supremum, and this complicates matters. The evolution of the operator norm
of the covariance matrix is analyzed in great detail in Section 7 using stochastic processes and
computations involving 3-tensors, leading to the following estimate.

Theorem 41. Define

so =min{s > 0; Vr > s, E||A,|, <5}

Then,
so < C'log?(n + 1) (31)

where C' > 0 is a universal constant. This bound utilizes the improved Lichnerowicz inequality,
proven only recently. A slightly older bound that suffices here (e.g. [53, 55]) is

so < C'log(n+1) - sup Cp(p)

where the supremum runs over all isotropic, log-concave probability measures |1 on R".
Moreover, sy > clogn in some examples, in particular when 1 + X4,...,1+ X, are i.i.d.
Exponential random variables with parameter 1.
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One could conjecture that stochastic processes and pathwise analysis of are not essential
for the proof of Theorem 41, and that an analytic proof is possible to find. There are other
applications of stochastic localization which seem to rely heavily on pathwise analysis (e.g., the
complex waist inequalities in [51]). By using Theorem 41 and Corollary 40 with s = C'log?(n +
1) we thus arrive at

Corollary 42 (“best known bound for KLS”). For any isotropic, log-concave random vector X
in R",
Cp(X) < Clog(n+1) (32)

where C' > 0 is a universal constant.

Cp(X)<C <1 + %) -y/log?(n + 1),

which implies (32). O

Proof. We have
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6 A dynamic perspective on Gaussian localization

Formally when s tends to oo, the variable X + /sG becomes independent of X, so the condi-
tional law of X given X + /sG tends to the law of X. In this section we will study the dynamic
of this measure-valued process as time s evolves.

6.1 The Eldan equation

The process solves a certain stochastic differential equation which was first considered by Eldan
and which we present now. We are given a probability measure on R", and a standard Brownian
motion (WW;) on R"™. We consider the following infinite system of SDE whose unknown is the
family (p;) of functions from R" to R :

po(z) =1
dpi(x) = p(x) (x — ay) - dWy,
where a; is the barycenter p,(z)u(dx), namely

 Jwpul) ()
LT e () plda)

Note that we have only one Brownian motion (W;) which is used for every x. Actually in
Eldan’s original paper [35] the equation is slightly more intricate than that. Here we consider the
simplified version that was introduced by Lee and Vempala [63].

Since we have an equation for each = and they are all coupled together by the condition on
the barycenter, it is not at all clear that such a process should actually exists. Let us leave that
matter aside for now, we will come back to that later on. Let us also take for granted the fact that
pe(x) > 0 for all ¢, almost surely. The barycenter condition then ensures that the total mass of
p: dp remains constant. Indeed, at least formally we have

i [ poyntan) = [ dpa) i) = ( [ = amie) u(dx)) aw,

which is 0 by definition of a;. Therefore p, du is a random probability measure for all time, and
we call that measure 11, from now on. The second feature is that p;(x) is a martingale for all z. In
particular Ep,(z) = po(x) = 1 for all z. Therefore the random measure j;, equals z on average

Epe = p.

The third observation is that the equation
dp(x) = pi(z)(x — ap) - AW,

can be solved explicitly. Indeed applying 1td’s formula to log p;(x) we get
1
dlogpi(z) = (z — a) - AW, — §|1' - at|2dt7
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hence

¢ 1 [t t
pe(x) = exp (/ (x —ag) - dW, — 5/ |x—a5|2d$) = exp (ct+x-9t — §|x|2),
0 0

where (¢;) and (6,) are certain random processes not depending on z. This shows that the density
pe of py with respect to y is just a certain Gaussian factor. The linear term and the normalizing
constant are random but the quadratic term is deterministic, equal to £|z[>. As a result if the
original measure was log-concave then the measure i, is t-uniformly log-concave, almost surely.
The process becomes more and more peaked as t grows. For this reason Eldan coined the name
stochastic localization process. It allows us to write a log-concave measure as a mixture of
t-uniformly log-concave measures. Moreover this mixture is constructed by solving a certain
stochastic differential equation, so that its behavior over time can be somehow controlled using
Itd’s formula.

6.2 Proper construction of a solution

We will now give a rigorous construction of the stochastic localization process. As we said earlier
this process was introduced by Eldan [35] (a variant of it actually), it was used in a number of
subsequent works [63, 32, 55]. The construction that we give here is somewhat original, but very
much inspired by Klartag-Putterman [57].

Start with a standard n-dimensional Brownian motion (¢;) defined on some probability space
(Q, F,P) equipped with a filtration (F;). This is an odd name for a Brownian motion, you’ll see
the reason for this choice shortly. Observe that for every fixed x € R" the process (E;) given by

t
E, = exp (m -0, — §\x|2)

is a martingale. Indeed, since the Brownian motion has independent and stationary increments,
for every s < t, the ratio F;/FE is independent of whatever happens before times s and has
expectation 1. Using Fubini, we deduce that given a test function f, the process (/N;) given by

N,= | f(z)-exp (;c 0, — %W) p(dr). (33)
Rn

also is a martingale. In particular its expectation is what we have at time 0, namely fRn fdu. Let
11; be the random probability measure on R™ given by

1 t
pi(de) = T, eXp (x 0, — §\x|2) p(dz), (34)

t

where D, is the normalization constant, namely

D, :/ exp (x.et— %W) u(de) (35)
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We can then rewrite N, as
R
We will interpret the normalizing factor D, as a change in the probability space.

Fix a large but finite time horizon 7. Since the process (D, );<r is a positive martingale with
expectation 1, we can define a new probability measure Q on (2, F) by saying that Q has density
Dy with respect to P. Then it is easy to see that a process (.X;) defined on [0, 7] is a Q-martingale
if and only if the process (X;D;) is a P-martingale. Recall that the process (IV;) given by (33)
was a P-martingale. In view of (36) we thus the following.

Fact 43. For any test function f, the process (M,) given by M, = fRn f duy is a Q-martingale.

Getting an Itd equation for this process is a little more involved. It relies on the Girsanov
change of measure formula which we spell out now.

Proposition 44 (Girsanov change of measure). If X is a P-local martingale on [0, T then the

~ Ld(X,D)
X :X—/ s
¢ "), D,

process X given by

is a Q-local martingale on [0,T]. Moreover, X and X have the same quadratic variation. In
particular if X is a P-Brownian motion on [0, T then X is a Q-Brownian motion on [0, T].

Remark 45. The bracket denotes the quadratic covariation of continuous semimartingales. Note
that the quadratic variation under PP is the same as the quadratic variation under Q. Indeed,
quadratic variation is defined as the limit in probability of sums of squared increments along
partitions of the interval whose mesh sizes tend to 0. This is easily seen to be left unchanged by
an absolutely continuous change of probability measure.

Remark 46. In the statement the process X is R-valued but the result also works for vector
valued martingales by applying it to each coordinate.

Proof. This is a very standard tool in stochastic calculus, we only give a very brief sketch of
proof and refer to [76, section IV.38] for more details. This amounts to proving that X D is a
P-martingale. But, from Itd’s integration by parts formula we get

d(XD) = (dX)D + X (dD) + d(X, D)
— (dX)D — d(X, D) + X(dD) + d(X, D).

The quadratic covariation of X and D thus cancels out and we are left with martingale increments
only. L

Coming back to our situation, we see that the change of measure is of the form

Dt = exp(é(t, Gt)) (37)
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where ¢: R, x R™ — R is the function given by

o(t.0)=tog [ ex ((0.0) = JloP) utao) ) 38)

This is not quite essential but let us assume for simplicity that e is p-integrable for all € R™
in which case ¢ is smooth on [0, co) x R™. From Itd’s formula we get

th = Dt ng(t, Ht) : det

Here and in the sequel, V and A always mean gradient and Laplacian with respect to the space
variable. The derivative with respect to the time variable will be denoted J;. Then from Gisanov,
we see that the process (I1;) given by

d(0:, Dy)

Dy

th = d@t -

is a Q-Brownian motion. We rewrite this equation as
df, = dW; + Vo(t,0;) dt. (39)
We are now in a position to prove the following.

Fact 47. The It6 derivative of the Q-martingale M; = f]R” f duy is given by

dM, = ( [ J@)e = a) dut) AW,

where a; = fRn x dpy is the barycenter of ;.

Proof. First of all, by differentiating (38) under the integral sign, we obtain V¢(t,0;) = a,. We
see M, = f f duy as a function of t and 6,, denoted F'(t, 6;). By 1td’s formula and (39), we have

1
AM; = VE(t,6,) - (AW, + Vo(t, 0,) dt) + SAF(1,6,) dt + OF (1,6,) .

The gradient of F'is
VE(t,0;) = f(@)(x — a) duy.
RTL

Moreover, since we have seen above that (F(¢, 6,)) is a martingale for some filtration for which
(W) is also a martingale it must be the case that the dt part above cancels out. It can indeed be
checked that F' satisfies the following PDE

1

This concludes the proof of the fact. ]
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Remark 48. Strictly speaking this only gives a construction of the process (1) on a bounded
time interval [0,77]. This will be sufficient for our needs but let us note that one could extend
this construction to the whole half-line by some abstract argument a la Carathéodory. Beware
though that the change of measure is only absolutely continuous when we restrict our processes
to a bounded time interval.

As a byproduct of this construction we obtain a simple description of the law of the process
(6;). This observation is not present in the works of Eldan, Lee-Vempala, and Chen. Its first
explicit mention is in the paper of Klartag and Putterman.

Proposition 49. The process (0;) has the same law as the process (tX + W,), where (W) is a
standard Brownian motion, and X is a random vector having law y independent of (W}).

Proof. Recall that we only work on some finite time interval [0, T']. The process (¢;) is a Wiener
process perturbed by some absolutely continuous change of probability measure: dQ = DrdP.
From the equation (37), we see that this can be reformulated as follows: The law of the process
(6,) is absolutely continuous with respect to the Wiener measure, with density w s e?(T:wr),
Now set 1, = tX + W, for every ¢t < T. Conditionally on the vector X, the process (7)) is just
a Brownian motion plus a constant speed deterministic drift. As a result its law is explicit, given
by a very basic version of the Cameron-Martin formula, see for instance [76, section 40]. For
any test function H we have

E(H(n) | X) =B (H(W) - W3 x)
Taking expectation again, and using Fubini and the definition (38) of ¢, we obtain

EH (n) = BH(W) - e?@Wr),

(T7wT)

Therefore, the law of (7;) also has density w > e? with respect to the Wiener measure. [l

Let us illustrate this result with a simple example where we can compute everything explic-
itly.

Example 50. In dimension 1, take y to be the standard Gaussian measure. In that case we have
an explicit formula for ¢ namely

6? 1
— —log(1 +1),

o(t,0) = 20+0) 2

which gives Vo (t, 0) = 1i+t The equation for the tilt process (6;) is thus

0,
df, = dW, dt
t t+1+t )

L aw,
0, =(1+1t =,
! (+)/01+s

which can be solved explicitly:
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According to our theorem this should have the same law as the process (1;) given by 1, =
W; 4+ tX, where X is a standard Gaussian variable independent of (W;). Of course this can be
checked directly in this case. Indeed, both processes clearly are centered Gaussian processes and
the two covariance structures coincide, since

E@set = ]E’r/snt =st+ sANL.

for every s,t > (. We leave this computation as an exercise.

6.3 Time reversal

We will now clarify the link between the stochastic localization of Eldan and the Gaussian lo-

calization of the previous section. Recall the definition (34) of p;. Letting p be the density of x

with respect to the Lebesgue measure we can reformulate this definition as
Fdu Jan f(x)p(x) exp (0, - & — t|z]*/2) dx

R He = fR" z)exp (0; - x —t|z|?/2) dz

for any test function f. Let us introduce the heat semi-group
Pf(x) =Ef(x+ By) = [ * g

where g,() = (27t)""/?%e ~12*/2t j5 the density of the Gaussian measure with mean 0 and co-
variance matrix ¢ - [d. Warning: from now on (P;) will denote the heat semigroup, and not the
Langevin semigroup associated to 1 from section 2.2. Then (40) rewrites as

Fduy Pl/t(fﬂ)()f).

(40)

Rn Pl/tp
Now set s = 1/t. By Proposition 49 we have the following equality in law
0, tX+B
lz—;ilzx+wm.
t t
Since B, = sBy/s is again a standard Brownian motion (this is the time reversal property of

the Brownian motion) we obtain the following: Up to the time reversal ¢ = 1/s, the process
(J f dpe)so has the same distribution as (Q;f(X + Bs))s>0, where Q) is the operator defined

» (p)
o Py(fp
st_ Psp .

Moreover, using the fact that the heat semigroup is self-adjoint in L?(dz) it is easy to see that
Qsf(X + B,) = E[f(X) | X + B].

Putting everything together we see that the stochastic localization process () initiated from g
has the same law as the measure-valued process obtained by looking at the conditional law of X
given X + B, and then reversing time by setting ¢ = 1/s. In particular if we take a snapshot at
some fixed time s = 1/¢, then for every test function f the variable [, f dj; has the same law
as E(f(X) | X + +/sG) where G is a standard Gaussian vector independent of X
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Remark 51. It is clear from this description that this process was looked at in many other con-
texts. Apparently it is an important tool in filtering theory, and it is also very much related to
what Bauerschmidt, Bodineau and Dagallier [10] call the Polcinski equation, which is used in
their recent series of works on log-Sobolev inequalities for various particles systems.
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7 Estimates for the conditional covariance

Our main task fin this section is to prove Theorem 41, which we reformulate here for conve-
nience.

Theorem 52. Let X be log-concave and isotropic, i.e. EX = 0 and Cov(X) = 1d, and let G be
a standard Gaussian vector independent of X, then

E[[Cov(X | X 4+ VsG)llop S 1
for every s such that (logn)* < s.

Recall that < means up to a universal multiplicative constant (here a factor 10 is probably
OK). Also the norm is the operator norm, which is also the maximal eigenvalue.

We shall derive this by combining arguments from Eldan [35], Lee-Vempala [63], Chen [32],
Klartag-Lehec [55], with the improved Lichnerowicz inequality from Section 4. Actually the
improved Lichnerowicz allows to bypass many ideas of the aforementioned papers.

Recall also that we have seen in Section 5 that the improved Lichnerowicz allows to show
that if X is log-concave and if

E[[Cov(X | X + Vs G)llop S 1,
for all s > sq then Cp(X) < /50. So the theorem indeed yields
CP(X) S logn,

which is the current best bound for the Poincaré constant of an isotropic log-concave random
vector.

To prove the theorem we will reverse time and rewrite everything in terms of the stochastic
localization process (1) associated to ;. We thus rephrase Theorem 52 as follows.

Theorem 53. Suppose p is a log-concave and isotropic probability measure on R™ and let (i)
be the stochastic localization process initiated at ji. Then

E[[Cov(pe)llop S 1,
forallt < c- (logn)~2, where ¢ > 0 is a universal constant.

The point of this time reversal is that we can now control everything using Itd’s formula and
some convexity inequalities. The proof of the theorem requires some preliminaries. There will
be a number of them, but taken individually, each of these is pretty easy.
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7.1 The equation for the covariance

As we have seen in the previous section, for any test function f the martingale M; = fRn fduy
satisfies

dM, = ( 5 F@)(z — a) dut) - dW,,

where (W;) is some standard Brownian motion. This obviously extends to vector valued func-
tions. If F': R™ — R¥ is a vector valued function that grows fairly reasonably at infinity then the
process (M;) given by

Mt:/ F dy

is a martingale, and moreover

M, — (/ F(2) @ (z — a)) dut> AW,

A bit more explicitly, writing x; for the i-th coordinate of a vector x € R"™ we have

n

dM, =) ( / F()(@ —ay); d,ut) AW, (41)

i=1
Lemma 54. Let a; and A; be the barycenter and covariance matrix of |, respectively. Then

dat = Atth

n

dAt = (.T - CLt)®2 (.CL’ - at)i d,ut thl - A2 dt.
) t

i=1

This is obtained by applying (41) to the tensors F'(z) = x and F(x) = 2 ® = and then
rearranging the terms appropriately. The details are left as an exercise.
This shows that the stochastic localization process has some moment generating property. The
derivative for the barycenter is expressed in terms of the covariance, and the derivative for the
covariance depends on 3-tensors.

7.2 Some matrix inequalities

Lemma 55. Suppose K, H are symmetric matrices, and K is positive semi-definite. Then for
every positive o, f we have

Tr(K*HKPH) < Tr(K*"PH?).
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Proof. Let K = \jz; ® x; be the spectral decomposition of K. Then
Tr(K*HK H) = M N(Hz;, ;)
< i N Hay, x5)?
= i)\?+B|Hxi|2
= Z N H? 2 2) = Te(KOHPH?).

The only inequality in the above display follows from Young’s inequality

B
' a+ ﬁ at B
and the fact that the expression (Hz;, x;)? is symmetric in ¢ and j. ]

Corollary 56. Let ¢ be the map defined on the space S, (R) of symmetric matrices by ¢(A) =
Tr e?. Then for every symmetric matrices A, H we have

V2o(A)(H, H) < V¢(A) - H? = Tr(e" H?),
where V2¢(A) stands for the Hessian matrix at A, viewed as a bilinear form on S,,(R).
Proof. Assume first that the matrix A is positive. Then by the previous lemma we have

V2 ( Zk|ZTr (A'H AU H)

k>1

<Z k- Tr(AFTH?) = Tr(e? H?),

k>1

which is the desired inequality. This argument does not work if A has some negative eigenvalues,
but observe that the function ¢ has the property that

P(A+t-1d) = e'p(A)

By differentiating this equality with respect to A we see also V¢ and V?¢ satisfy the same equa-
tion, which means that adding a multiple of identity to A does not perturb the desired inequality.
Therefore it is enough to prove it for positive A. L
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7.3 Inequalities for 3-tensors
Recall the equation for A,
dAy = HydW; — A7 dt,

i=1
where

H;, = / (x — a)®*(z — ay); dpg.

Recall that a, is the barycenter of ji,. So the matrix H,; is of the form EX; X ®2 for some random
vector with mean 0. We need to control such quantities. This is the purpose of the next two
lemmas.

Lemma 57. Let X be a centered log-concave vector. Then

sup {[[E(X - u) X[y} < [|Cov (X577

op
ueS"—
Proof. Let u, v be unit vector and let H,, = E(X - u) X®2, By Cauchy-Scwharz
Hy-v=E(X - u) (X v)? < (E(X -u)?)Y2EX -v)H2

Now we use log-concavity. The variable X - v is a log-concave random variable centered at 0.
We saw in the first section that moments of 1D log-concave measures satisfy a reverse Holder
inequality. In particular the fourth moment and second moment squared are of the same order.
We thus get

Hyv-v < CEX - u))?E(X - v)* < C||Cov(X)]|52.

Taking the supremum in both u and v yields the result. L
Lemma 58. Let X be a centered random vector satisfying the Poincaré inequality. Then

I (EXiX2)|op < 4Cp(X) - [|Cov(X)

1=1

[

Proof. Recall the definition of H,,. When u is a coordinate vector e; we write [1; rather than H.,.
We need to show that for every unit vector u

> HPu-u <ACp(X) - [|Cov(X)

i=1

[
An elementary computation shows that > H?u - v = Tr(H?2). Moreover, since X is centered,
we get from Cauchy-Schwarz and the Poincaré inequality
TrH? =E(X -u)(H,X - X)

< (E(X -u))2 - (Var(H, X - X))Y/?

< (E(X -u)?)Y? - (4Cp(X)E[H, X [*)"?

= (Cov(X)u - u)"? - (4Cp(X)Tr(H2Cov(X)))'/?

< [1Cov(X)lop - (4CP(X) Tr(H;)) .
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Thus TrH? < 4Cp(X)||Cov(X)]|2,, which is the result. O

op?
Remark 59. We only applied Poincaré to a quadratic form so in a sense we only need a weak

notion of Poincaré here. This observation will not be needed in the subsequent analysis but it
was crucial in the original work of Eldan.

7.4 Freedman’s inequality

Lastly we need a relatively classical deviation inequality for martingales, which is usually at-
tributed to Freedman [39].

Lemma 60. Let (M;):>o be a continuous local martingale satisfying My = 0. Then for every
positive u and o we have

P(3t > 0: M, > u and (M), < 0?) < e /%"

Proof. We only sketch the argument and leave the details as an exercise. Start by proving the
following statement: If (Z;) is a square integrable martingale satisfying (Z); < o2 forall t > 0
and almost surely, then Z,, = lim;_, ., Z; exists and satisfies

P(Zso > u) < e /%
for all u > 0. Coming back to Freedman’s inequality, introduce the stopping time
T = inf{t > 0: (M), > 0°}

and apply the above statement to the martingale ()/;) stopped at time 7. ]

7.5 The bound on the covariance matrix

Theorem 61. Suppose i is log-concave and isotropic on R", and let (A;) be the covariance
process of the stochastic localization associated to 1. Then

1
P(Es <t Aoy > 2) < exp (——) L i<

Ct Clog’n’

Remark 62. We will see later on that this bound is pretty much sharp.

Proof. A common method to control the norm of a symmetric random matrix A is to use the
Schatten norm (TrAP)!/? where p is an even integer of order log n as a proxy for || A||,p. This is
what Eldan does in his 2014 paper. For some reason we prefer to use another proxy, namely

1
hg(M) := 3 log Tr "M,

Note that hg is a smooth function. Also

logn

)\max<M> < ﬁ

log Tr e < A\pax (M) +

=
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Therefore if /3 is of order log n then hz(M) is approximately the same as the maximal eigenvalue
of M, up to an additive constant. Recall the equation for (A4;). From It6’s formula we get
(omitting the time variable)

n 1 n
dhg(A) = Vhg(A) - Z H;dB; — Vhg(A) - A% dt + 3 Z V2hs(A)(H;, Hy) dt.
i=1 i=1
Let
M = Vhy(A) =

and note that this is a positive semi-definite matrix of trace 1. Using Corollary 56, we see that
the second derivative of h s satisfies

V2hs(A)(H;, Hy) < BTr(MH?).

Dropping some negative terms we finally arrive at

dhg(A) <> Tr(MH;)dB; + gTr (M > Hf) dt.
=1

i=1

Let us deal with the absolutely continuous part. Since M is positive and has trace 1, we get from

Lemma 58 . .
Tr (MZHE) <> m
1=1 i=1

Recall that (y;) gets more and more log-concave along time. In particular if the original mea-
sure u is log-concave then p; is t-uniformly log-concave, almost surely. From the improved
Lichnerowicz inequality, Theorem 33, we get

Cp() < <||At||017) 2

< 4Cp () || A

15

op

t

hence

- 2
dha(A) < 3T OTH)AB, + 22| A3t

= Vi

Let us now bound the quadratic variation of the martingale part. For any unit vector u, letting
H, =Y H;u; we get from Lemma 57

> Te(MHi)u; = Te(MH,) < |[Hullop < Col| Adl3
i=1

Therefore,

ST < CHIAR,

i=1
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Let us summarize what we have obtained so far:

t
[Adllop < Pa(Ar) < hg(Ao) + 2 + 25/0 ™A, ds

logn t “2)
—14 20z 25/ sV A2 ds
5 0
where (Z;) is a continuous martingale starting from 0 whose quadratic variation satisfies
t
@< [ A, as #3)
0

Now choose 5 = 2logn, and assume that there exists s < ¢ such that || A;||,, > 2. If s is the
smallest such time then before time s the operator norm of A is less than 2, so by (42)

3 3
2 = ||Asllop < 5 + Zy + Cys?logn < 5 + Zy + Cot*?logn

where C is some constant. If ¢ is a sufficiently small multiple of (logn)~?2 then the latest in-
equality implies that 7, > i. Moreover, thanks to (43) we also have (Z); < C3s < Cst.
Therefore,

1
P(3s < t: Ay > 2) SP(Es > 0: Z,> 7 and (Z), < Cat).

We conclude with Freedmann’s inequality, Lemma 60. L
Now we prove the bound for the expectation of A;.

Proof of Theorem 53. Since i, is t-uniformly log-concave, its covariance matrix is bounded
above by (1/t)Id. This was already mentioned in Section 4. Therefore we have || A;||,, < 1/t,
almost surely. As a result

1
EHAtHOP < 2+ ;P(HAtHOP > 2)-

Now we apply the latest theorem. Since x - e”“* is a bounded function of x we indeed get
E||A¢|lop < 1 on the time range [0, (C'logn)~2]. O

Remark 63. Instead of the improved Lichnerowicz inequality, we could have bounded Cp(11;)
by the KLS constant. Namely if C,, is the largest Poincaré constant of an isotropic log-concave
measure then it is easy to see that for any log-concave X

Cp(X) < Col|Cov(X)llop-

Therefore

Cp(p) < Cul| Atllop.

Using this estimate instead of the improved Lichnerowicz inequality leads to the following state-
ment:
E||Cov(X | X +vsGQ)|lop S 1, provided C,,logn < s. (44)
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This is also good enough for the logn bound for C),. Indeed we have seen that if the expected
norm of Cov(X | X 44/sG) is of order 1 for all s > s then Cp(1) < 1/So. So the latest display
actually gives C,, < /C), logn, hence C,, < logn.

Remark 64. We will see later on an example of a measure for which ||[Cov(X | X + /sG)||op
explodes at times s = log n (but is bounded at time 10 logn). In a sense this is evidence for the
KLS conjecture C), < 1 to be indeed correct. Namely if KLS is correct then (44) is sharp and

~Y

the above analysis of the conditional covariance is essentially the best one can do.

7.6 Life before improved Lichnerowicz

The improved Lichnerowicz estimate is only from 2023, and it was not available to Eldan, Lee-
Vempala, Chen, Klartag-Lehec. Still these authors gave non trivial estimate on the KLLS constant
using this localization technique. In particular the KL bound was polynomial in log n. Here we
will only say a few words about the original argument of Eldan.

First, let us derive a bound on the Poincaré constant of ;2 from a bound on the covariance
of the stochastic localization in a slightly different manner than what was done in the previous
section. Let f be the function given by E. Milman’s result (see section 2.3). Namely f is 1-
Lipschitz and such that

Var,(f) = |1 f1% = Cp(w).
By the decomposition of variance

Var,(f) = EVar,, (f) + Var </ fdut)

For the first term we proceed in the same way as before: by improved Lichnerowicz and since f
is 1-Lipschitz, we have
1/2
E|[Ailjop"
Vi
For the second term, we proceed differently. The process M; = [ f dy, is a martingale, whose
derivative is

EVar, (f) <

dM, = < 5 F@)(z — a) dut> - dW,.

Since || f||%, < Cp(i) we get from Cauchy-Schwarz

2

S Cr(p)[|Atllop-

[ @) a) du,

vor ([ fau) 5 Colo) [ Bl s

If E||At]|op < 1 up until time ¢y < 1 we finally get

Cp(p) STY2+t- Cp(p),

Hence
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for all ¢ < ty, which indeed implies Cp(p) S ¢ '2 One thing that we can notice from this proof
is that if we replace the improved Lichnerowicz inequality by the usual one, namely C'p(u) < 1/t
in the t-uniformly log-concave case, we also get something non trivial, namely

Crlp) S 17 (45)

This is obviously a lot worse than what we get from improved Lichnerowicz, but still non trivial.
As a matter of fact, all the aforementioned works on the KLS conjecture (prior to the latest one
by Klartag in which the improved Lichnerowicz inequality is established) rely on this estimate,
one way or another. The other argument to get Poincaré from the bound on the conditional
covariance (see section 5) may be more elementary and more natural in a way, but it only works
if one happens to know the improved Lichnerowicz inequality. If you combine it with the usual
Lichnerowicz inequality you get nothing.

Now we define the constants K, and 5, by

n

Z(EXiX®2)2

i=1

1
K, = sup , S, =sup {—Var\X|2}
n

op

where both sup are taken over all log-concave isotropic random vectors on R". The constant
S, is called the thin-shell constant. The thin-shell conjecture asserts that the sequence (.S,,) is
bounded. This is a weak form of the KLS conjecture as we only require Poincaré for a very
specific function, namely the Euclidean norm squared. It was mentioned in the first section in
connection with the central limit problem for convex sets. A variant of what we have done above
shows that in the isotropic log-concave case we have E||4;||,, < 1 up until times (C' K, logn) ™.
From (45) we then obtain the following bound

C, S K, logn,

for the KLS constant C,,. Moreover, by definition of S,,, given a log-concave and isotropic vector
X on R™, a unit vector u, and an orthogonal projection P of rank k, we have E(X - u)|PX|* <
V'kS},. Applying this to suitable chosen projections P one can estimate the eigenvalues of E(X -
1) X®? and then arrive at the bound

K, S Z% < S, logn.
k=1

We refer to [35] for the details. Altogether this gives
C, < S, (logn)? (46)

In other words thin-shell implies KLS up to polylog. This was the original result of Eldan. Note
that Exercise 8 implies in particular that .S,, > 2 for all n. As a result (46) has become irrelevant
now that we know that C,, < logn.

58



8 Further localization results

8.1 An obstruction to a full solution of KLS

As we have seen above, the KLS conjecture would be implied by the following statement: in the
isotropic log-concave case the expected operator norm of Cov(X | X + /sG) remains of order
1 for all s. Unfortunately such an estimate cannot be true as we shall see now.

Let X = (Xi,...,X,) be arandom vector whose coordinates are i.i.d. and such that 1 + X;
is an exponential variable of parameter 1. This is clearly an isotropic log-concave vector on R".

Proposition 65. We have E||Cov(X | X 4+ /sG)|lop < C forall s > Clogn. On the other
hand, if s < logn then E||Cov(X | X 4+ /sG)||op > cs.

Note that from the tensorization property of the Poincaré inequality (see exercise 1), we have
Cp(X) = Cp(Xy). In particular the Poincaré constant of X does not depend on n and X is not
a counterexample to the KLLS conjecture. Recall also that we always have the bound

E||Cov(X | X +V/sG)lop < s

(acually this is true almost surely, not only in expectation). This example shows that this bound
can be essentially sharp on a time range [0, so] with sy — 0o, namely sy = log n. In particular at
time sy we have

E||Cov(X | X + 1/50G)||op > clogn

so the expected norm of the conditional covariance is not bounded for all times. In view of this
example, the best one could hope for is

E[|[Cov(X | X + VsG)|lop S 1, Vs> Clogn 47)

and for every log-concave isotropic X . Notice that there is still a gap between this and the bound
that we obtained in our theorem (in which log n is replaced by log? n). If true the estimate (47)
would imply the bound

Cp S (logn)'/*,

for the KLS constant. This seems to be the limit one could reach within this framework. Going
below this mark would have to rely on different arguments.

The proof of the proposition only relies on some analysis in one dimension. Indeed since
the coordinates of X and G are all independent it is clear that the conditional law of X given
X ++/sG is just the n-fold product of the law of X; condition on X; ++/sG1. So the conditional
covariance is diagonal with i.i.d. entries, and we just have to estimate the expected maximum of
these.

As a preliminary step, we need to compute the variance of a truncated Gaussian.

Lemma 66. Let g be as standard Gaussian variable, then

1
1+a3"

Var(g | g > x) =
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Proof. Observe that the conditional law of g given g > x is log-concave. Let us use the "How to
think about 1D log-concave measures” proposition from the first section. It implies in particular
that for log-concave random variable X having density f we have

1F113 - Var(X) ~ 1,

Applying this to the conditional law of g given g > x (which is indeed log-concave), we get
Var(g | g > ) ~ (f ey2/2dy> if z < 0and

o0 -2
Var(g | g > JJ) oy (ex2/2/ e—y2/2 dy)
for every positive x. The result follows easily. U

Proof of Proposition 65. The conditional law of X given X; + /sG] is just a truncated Gaus-
sian. After some elementary computation we get

1
Var(X; | X1 +s5G1) = s-v(v/s — %Yl - Gy) (48)

where Y7 = X; 4 1 and v is the function given by
v(z) = Var(G; | G > x).
Note that Y] is an exponential variable independent of G, hence
P(Y; > s5,G; >0) = %e_s.
Since the function v is bounded away from O on R_, if Y7 > s and G; > 0 then
Var(X, | X1 +/sG1) > cs.

As aresult
P(V&I‘(Xl | X1 + \/_Gl) > CS) Z

l\DI»—t

By independence we get

1
P (|[Cov(X | X + VsG)||op > cs) > 1— (1 — §e_8)"

If s < logn, the right-hand side is at least 1 — e~'/2. By Markov’s inequality, this implies that
E||Cov(X | X 4+ V/sG)|lop > .
For the other inequality, since v(z) < 272 for large x, equation (48) and the union bound imply

in particular that if C' is a sufficiently large constant

VPG > Vo) < 20

P(|Var(X, | X1 ++/sG1)| > C) < P(Y; 1

»-lklc:a
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Hence, by the union bound again,
P(|[Cov(X | X + v$GQ)|lop = C) < 2ne™.
Since [|Cov(X | X 4+ 1/sG)||,p < s almost surely this implies
E||Cov(X | X 4+ VsG)|lop < 2ns-e  + C.

This becomes O(1) as soon as s exceeds a sufficiently large multiple of log n. ]

8.2 Concentration of measure

Recall from section 2.1 the definition of the concentration function of y:

a,(r) =sup {1l — pu(S,): u(S) > 1/2}.

We saw that log-concave measures satisfy exponential concentration and moreover than the
Poincaré constant and the exponential concentration constant squared are of the same order.
In particular the current best estimate for KLS amounts to the following

a,(r) < 2exp (—c~ \/1:;@) : (49)

One of the points of this section is to show that one can go a bit beyond this estimate.

Theorem 67. If 11 is log-concave and isotropic then its concentration function satisfies

2

a,(r) < 2exp (—c - min (r, r )) , Vr>0. (50)

log®n

We should make some comments on this result. First of all, the rate provided by Theorem 67
is not smaller than that of (49) on the whole halfline. In particular combining with E. Milman’s
theorem would only lead to a (log n)? bound for the Poincaré constant of an isotropic log-concave
measure (rather than log n). That being said, the theorem yields in particular the rate e~ ", which
is predicted by the KLS conjecture, as soon as r is larger than log n or so. As far as we know,
this information cannot be inferred from the bound C,, < logn alone. Let us also mention that
one can prove the following variant of (50), in which the concentration depends on the KLS
constant C',:

. r?
a,(r) < 2exp (—c - min <r, m)) , Vr>0. (51)

This inequality is taken from Bizeul [13].
This concentration is reminiscent of the Guédon-Milman estimate from 2011, see [43]. They
proved that every isotropic log-concave measure p satisfies

: r’
1 (|lz] = v/nl > 1) <2exp (—c-mm (T’W)) , Vr>0.
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This is weaker than (50) in two ways, first of all the constant is much worse (n%/? vs log2 n) and

the deviation inequality is only for the Euclidean norm, and not for every 1-Lipschitz function,
as in (50). This application of stochastic localization to concentration dates back to Lee and
Vempala [63]. Their main result in that paper is the bound C,, = O(n'/?) for the KLS constant,
but they also obtain the inequality

2
a,(r) < 2exp (—c . min (r, #)) . (52)

In contrast with (51), they do not loose a logarithm when they pass from the bound on the KLS
constant to the deviation inequality. Their argument is very delicate and clever but it only works
with a polynomial estimate for C',, and it does not allow to remove the logarithm from (51) now
that we have a logarithmic estimate for C),.

The proof of Theorem 67 relies on the fact that uniformly log-concave measures satisfy
Gaussian concentration. This was already mentioned in section 2.4.

Proposition 68. Let (1 be a t-uniformly log-concave measure. Then for every measurable set S
and every r > (0 we have

p(S)(1 — u(Sy)) < exp(—c-tr?),  Vr >0,

where c is a universal constant. In particular the Gaussian concentration constant of [ is

ot='/2),

Proof. We give a short proof based on the Prékopa-Leindler inequality: if f, g, h are non negative
functions on R" satisfying the inequality

P <n (“5Y)

for every z,y € R" then

\/ . f(z)dx /Rn g(x)dy < / hz) da.

If 1 1s t-uniformly log-concave then its potential V' satisfies

v<x+y><V(x)+V(y) t

7 - 2
2 )= 2 glr —ul”

Given a set S and ¢ > 0, one can then see that the hypothesis of Prékopa-Leinder applies to the

functions f(z) = 1g(z)eV®, g(y) = @)=V and h = e~V+2%*/*_ From the conclusion of
Prékopa, we get

M(S) / eBd(x,S) d,u S 6262/t‘
The conclusion then follows from Chernoff inequality. ]
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One can be a bit more precise. As we already mentioned, in the Gaussian case we know the
exact value of the concentration function . Indeed, an integrated version of the isoperimetric
inequality of Sudakov-Tsirelson / Borell asserts that 7, (.5,) is maximized when S is a halfspace.
In particular

a,, (r)=1—-(r), Vr>0.

where @ is the distribution function of the standard Gaussian variable. Moreover, a deep result
of Caffarelli asserts that a measure p that is more log-concave than a given Gaussian measure
is the image of that Gaussian by a 1-Lipshitz map. Besides, it is clear that a pushforward by a
contraction can only lower the concentration function. As a result if ;4 is ¢-uniformly log-concave
then its concentration function is upper bounded by that of the Gaussian measure with covariance
Id/t, namely we have

a,(r) <1—oWt-r), Vr>0.

Since 1 — ®(r) < %e_’"Q/ 2 for r > 0, this implies Gaussian concentration. However this only
improves upon Proposition 68 at the level of the value of the universal constant ¢, which is
irrelevant for our purposes.

Proof of Theorem 67. Fix a set S of measure 1/2 and write

L—p(Sr) = E(1 — w(S;)) <E(1— Mt(ST))]]‘{Ht(S)Zl/4} +P(ue(S) < 1/4),

where (1) is the stochastic localization of u. Since i, is t-uniformly log-concave, the first
term is at most 4e ", by Proposition 68. To handle the second term recall that the martingale

M, = () satisfies
th = (/(l’ — at) dﬂt) : th
S

Applying Cauchy-Schwarz we obtain

[ = e du

2
< ,Ut(S)HAtHOP = HAtHOP

/ | Aullop ds.

In particular if || As||,, < 2 on [0, ¢] then (M), < 2t. Therefore

Hence the inequality

1
P(M, < 7) SP(M; < § and (M), < 26) +P(3s < t: || Al]lp > 2.

»-hll—‘

By Theorem 61 from the previous section, the second term is at most exp(—(Ct)™!), pro-
vided ¢ < (C'log®n)~'. On the other hand since M, = u(S) = 1/2, Freedman’s inequality
(Lemma 60) insures that

1 1
P(Mt S Z and <M>t S 2t) S exXp <_C—1t) .
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Putting everything together we get
w(SC) < dexp(—c-tr?) 4+ 2exp(—(Cot)™)

for every t < (C - logn)~2. Choosing ¢t = min(r~!, (C - logn)~?) yields

2
p(Sy) < 6exp (—c’ - min <r, T—2)> :
log“n

One can replace the prefactor 6 by 2 by changing a bit the constant ¢’ in the exponent. L
Here is an example of an application of the theorem.

Corollary 69 (Paouris theorem). Suppose p is log-concave and isotropic then
p(lz| > 1) < exp(—cr), Vr=Cyn,
where as usual c, C are universal constants.

The inequality is due to Paouris [72], see also [!] for another proof. The inequality can also
be expressed in terms of moments. It asserts that if X is log-concave and isotropic on R" then
the moments of the Euclidean norm of X remain constant for quite a while, namely

(E|X )P ~ (E[X|*)!?
for p as large as \/n.

Proof. We apply the concentration estimate to the 1-Lipschitz function f(z) = |z|. We get in
particular
pllz| >m+r) <e @,

provided that » > C' - log® n, where m is a median for |z|. Since m < 2 f |z| dp < 24/n, the
latest display is easily seen to imply the desired inequality. ]

Remark 70. As is apparent from the proof, inequality (50) is an overkill for this application,
and the argument would go through using (52) instead. As a matter of fact this application to the
Paouris inequality is taken from Lee and Vempala’s paper [63].

8.3 Logarithmic Sobolev inequality and a variant of the KLS conjecture

Recall from section 2.5 that the log-Sobolev constant of a probability measure on R"”, denoted
Crs(p) is the best constant in the inequality

D | 1) < 5 Crs(n) (v | 1)

where D and [ denote the relative entropy and Fisher information, respectively. Once again, the
uniformly log-concave case is well understood.

64



Theorem 71 (Bakry-Emery criterion [5]). If yu is t-uniformly log-concave then Crg(p) <t~
The inequality is sharp, equality is attained for the Gaussian measure of covariance t=* - Id.

There are many ways to prove this inequality, see for instance [30] for an overview. Again
we are interested in the log-concave case. However, in contrast with the Poincaré inequality,
not every log-concave measure satisfies log-Sobolev. Indeed, recall that log-Sobolev implies
Gaussian concentration, with explicit control of the constants, and that this can be reversed in the
log-concave case: the log-Sobolev constant and the Gaussian concentration constant are actually
of the same order for log-concave measures. To insure log-Sobolev, one has to impose another
condition on top of log-concavity, such as having bounded support. The following result is due
to Lee-Vempala [63].

Theorem 72. Suppose 11 is log-concave, isotropic, and supported on a set of diameter D. Then
Crs(p) S D-

Let us remark that because of the equivalence between log-Sobolev and Gaussian concentra-
tion in the log-concave case, a log-concave measure supported on a set of diameter D trivially
has O(D?) log-Sobolev constant. Since the diameter of the support of an isotropic measure is at
least y/n the theorem improves greatly upon the trivial bound in the isotropic case. It should also
be noted that for the uniform measure on the ¢, ball rescaled to be isotropic, the diameter of the
support and the log-Sobolev constant both are of order n.

Proof. This is actually an easy consequence of our concentration result Theorem 67. Indeed, the
latter asserts that if x is log concave and isotropic then

7“2

) < 26 (=c-minr o))z

ry —s—
log®n

On the other hand if 1 is supported on a set of diameter D then trivially v, (r) = 0if r > D. On
the interval [0, D] we have r < 72/D, and since D > \/n > log® n, we finally obtain

2
a,(r) <2exp (—c’ : %) .

The Gaussian concentration constant is thus O(D), which implies the desired inequality by E.
Milman’s result, Theorem 26. ]

Let us try to relax the bounded support assumption. We know that log-Sobolev implies
Gaussian concentration. In particular linear functions should have sub-Gaussian tails, at a rate
controlled by the log-Sobolev constant. Let us be a bit more precise.

Definition 73. Suppose f is a function having mean zero for .. We denote by || f|| () the Orlicz
norm of f associated to the Orlicz function e’ — 1, namely the best constant C' in the inequality



Remark 74. The usual definition of the Orlicz norm of f associated to an Orlicz function ¢ and
a measure y is the smallest constant C' such that [ ¢(]f|/C)du < 1. The above definition is
slightly different but equivalent, up to universal constants. We chose this modified definition so
that the connection with the notion of Gaussian concentration from section 2.4 becomes more
apparent.

The discussion above shows that for any probability measure and any direction # we have

| - 9”12@(“) S Crs(p).

It is natural to conjecture that this inequality could be reversed in the log-concave case. This
amounts to saying that the log-Sobolev constant is the largest v);-norm squared of a linear func-
tion, very much like the KLS conjecture predicts that the Poincaré constant of a log-concave
measure is up to a constant the largest L2-norm squared of a linear function.

Definition 75 (Log-Sobolev version of KLS constant, Bizeul [12]). Let D,, be the largest log-
Soboley constant of a log-concave measure for which ||z - 0|y, < 1 for every direction 6.

Conjecture 76 (Log-Sobolev KLS conjecture, Bizeul [12]).
D, =0(1).

It follows from some result of Bobkov [16] from 2007 that D,, = O(n). Using stochastic
localization, one can show the following.

Theorem 77 (Bizeul [12]).
D, = O(n'/?).

Proof. The idea is to combine Theorem 67 with a rather crude net argument. Again, by E.
Milman’s theorem it is enough to prove that if x log-concave is 15 with norm at most 1 in all
directions, then its concentration function satisfies

a,(r) < eIV, (53)

Note that the 1) norm is larger than the L? norm, maybe up to a constant. So the covariance of y
has operator norm O(1). The concentration function of p thus satisfies

2
a,(r) < 2exp (—c - min(r, T—Q)) ,
log“n
for every » > 0. Here there is a small gap which we can leave as an exercise: show that having an
upper bound for the concentration function of every isotropic log-concave y of the form o, < av,
implies that if 1 is log-concave but not necessarily isotropic, then v, (1) < au.(r/+/]|Cov (1) ||op)-
We thus get an estimate that is smaller than our target concentration if r > cr?//n, namely
r < Cy/n. Therefore, it is enough to prove (53) when r is a sufficiently large multiple of \/n.
Moreover, by Markov’s inequality we have



So if S is a set of measure 1/2 then S intersects the ball of radius 2+/n. If r > 24/n this implies
easily that Sy, D {|z| < r}, hence

u(2r) < ple] > 7).

So it is enough to prove that u(|z| > r) < e=<*/vV7 for r > C'/n. Now recall the 1, hypothesis:
For every direction # and every r, we have

p{lz- 0] >r} <207 (54)

It is well-known that there exists 1/2-net of the unit sphere of cardinality 5" at most. Let IV be
such a set. Since any element z in the sphere is at distance 1/2 at most from a point of N we
have
<2 -0
2| < 2max{z - 0},

for every x € R™. Applying (54) to every 6 in the net and the union bound we get
p(lz| >r) <2-5%e "
If » > C+/n for a sufficiently large constant C', we deduce from this inequality
pwlz] >r) <e
which is even better than what we needed. U

Remark 78. This proof seems to have lots of slack. It does not seem like the concentration result
(Theorem 67) nor the 15 hypothesis were fully exploited. In particular, it should be noted that the
argument would go through with the weaker concentration estimate from Lee and Vempala (49).
Nevertheless, as far as the log-Sobolev version of the KLS conjecture is concerned this is the
best result around, as of today.
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9 Bourgain’s slicing problem

Consider a centrally-symmetric convex body K C R” (i.e. K = —K). The maximal function
operator associated with K, defined for f : R” — R via

d
My f(x) :ililg/l(f(ijry)Voliy(K)'

Bourgain [23] proved that || Mk|| 12(&n)—2(rn) < C for a universal constant C' > 0. This led him
to study on another question, seemingly innocent:

Question 79. Let n > 2 and suppose that K C R" is a convex body of volume one. Does there
exist a hyperplane H C R" such that

Vol, 1«(KNH)>c (55)
for a universal constant c > 0?

This question is still not completely answered, and in the last four decades it emerged as an
“engine” for the development of the research direction discussed in these lectures. It is shown in
[54] that the bound (55) holds true if we replace the universal constant ¢ on the right-hand side
by ¢/+/logn. This is the currently best known result in the general case.

Theorem 80 (Hensley [44], Fradelizi [38]). Let K C R" be a convex body whose barycenter lies
at the origin. Let X be a random vector distributed uniformly in K, and assume that Cov(X) is
a scalar matrix. Then for any 0,0, € S"1,

Vol,_1(KN6) < C-Vol,_1(K N6y)
where C > 0 is a universal constant. In fact, C' < \/6.

Proof. Let 6 € S"! and denote

o= +E(X-0)2=/Cov(X)0-0,
which is independent of 6. Write

~ Vol,(K N (t0 +6+))
- Vol,(K) ’

Po(t)

the density of the random variable X -6. By the Brunn-Minkowski inequality, py is a log-concave
probability density. The log-concave random variable X - /0 has mean zero and variance one,
and its density is = +— opg(zo). According to Proposition 4 above, for any = € R,

Cll{‘x‘gcn} < ope(zo) < Cecll

In particular, ¢ < py(0) < C, for some universal constants ¢, C' > 0. O
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From this proof we may obtain a few more conclusions. First, that among all hyperplane
sections parallel to a given hyperplane, the hyperplane section through the barycenter has the
largest volume, up to a multiplicative universal constant. Second, that when X' C R" is a
centered convex body of volume one, for any # € S"~!,

Vol,_1(KNoY) - E(X -0)2~ 1.

Here 0+ = {x € R"; x - = 0} and we abbreviate A ~ Bifc- A < B < C - A for universal
constants ¢, C' > 0. This leads to the following conclusion:

Corollary 81. Let K C R"™ be a convex body of volume one and let X be a random vector
distributed uniformly on K. Then,

1

VIICov(X)llop

where the supremum runs over all hyperplanes H C R™.

sup Vol, 1(KNH) ~
H

We thus see that Bourgain’s slicing problem can be formulated as a question on the relation
between the covariance of a convex body and its volume. Note that the logarithm of the volume
of a convex body is the differential entropy of a random vector X that is distributed uniformly
over the convex body. In general, when the random vector X has density p in R", its differential
entropy is

Ent(X) = —/ plog p.

n

Definition 82. For a convex body K C R"™ we define its isotropic constant to be
det Cov(K) e
Ly =(—F"—F——"
Vol,(K)?

where Cov(K) is the covariance matrix of the uniform probability distribution on K. More
generally, the isotropic constant of an absolutely continuous, log-concave random vector X in

R"™ is )
I — (det COV(X)) " 56)

e2Ent(X)

The isotropic constant of a convex body K C R” of volume one governs the volumes of its
hyperplane sections. From Corollary 81 we see that when Vol,,(K) = 1, there always exists a
hyperplane section / C R" with

VOln_l(K N H) 2 C/LK

Moreover, if we additionally assume that Cov(K) is a scalar matrix, then for any hyperplane
H C R" through the barycenter of K,

1
Voly1(K N H) ~ —.
K
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The slicing problem thus asks whether L is universally bounded from above.

Remark on the definition of the isotropic constant in the log-concave case. Some variants
of this definition exist, sometimes one replaces Ent(X) by — log sup p or by — log p(EX) or by
2log Ep~1/2(X), where p is the density of X. See for instance [20] where this is discussed in
more details. These variants differ at most by a multiplicative universal constant, because of the
following lemma:

Lemma 83. Denoting by 1) = — log p the convex potential of X, we have
Y(EX) < Ent(X) <inf¢ +n

and N .
Ee 2> < o5t +n2n,

Proof. We may assume that p is continuous in R™ in order to neglect boundary terms in the
integration by parts below. Let y € R™. Then by Jensen’s inequality and by the fact that any
convex function lies above its tangent at X,

P(EX) <EP(X) = Ent(X) = Ey(X) <E[Y(y) — V(X)) - (y — X)] = (y) + n.
Additionally,

»(X) ©(y) _ v(@)+v) v 2ty w(y) _ $(y)
Ee 2 :e2/e 7 dr <e 2 ew(2)dx:2"e2/ew:2"e2.
n Rn

The lemma follows by taking the infimum over all y € R" in these two inequalities. ]

It what follows we work with the definition (56). While here we are interested only in the
log-concave case, the definition makes sense for any absolutely continuous random vector X
with finite second moments in R"™. The isotropic constant measures the difference between two
ways to measure the “size” of a random vector: its entropy and its covariance. Here are some
basic properties of the isotropic constant:

1. Itis an affine invariant, Ly (x) = Lx for any invertible linear-affine map 7" : R" — R".

2. If X, Xy € R™ are independent log-concave random vectors, then for X = (X;, X3) €

R> =~ R" x R™,
Lx = /Lx,Lx,.

3. For any dimension n and an absolutely continuous random vector X with finite second

moments in R",
1

v 2me ’

with equality when X is Gaussian. Indeed, this amounts to showing that among all random
vectors with a fixed covariance matrix in R", the differential entropy is maximal for the
Gaussian distribution, which is a standard fact. We recall the short proof below.

Lx >
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Proof. Suppose that X is a random vector of mean zero, density p, and let GG be a centered
Gaussian vector with the same covariance matrix as X. Also let v be the density of G.

Then (x) (x)
Y 8
Elog <—) <E—=-1=0.
p(X) p(X)
Since log 7y is a quadratic function and X and G have the same covariance matrix, we get
Ent(X) = —Elog p(X) < —Elogv(X) = —Elogv(G) = Ent(G). .

Exercise 9. Explain why it is not a coincidence that this universal constant v/27e is “the
same number” from the asymptotics V ol,,(v/nB™)'/" ~ 1/+/27e.

4. Some examples:

—_

~

1 (nh)t/n
Loy = —7=, Lan = D)@ -
V12 (n+1) vn+2 e

where A" is a regular simplex in R".

There are quite a few equivalent formulations and conditional statements, relating the isotropic
constant to classical conjectures and results:

e If the isotropic constant is maximized for the cube among all centrally-symmetric con-
vex set, then the Minkowski lattice conjecture follows, see Magazinov [66] and references
therein. The Minkowski lattice conjecture suggests that if L C R” is a lattice of determi-
nant one, then each of its translates intersects the set

- 1

(el <
This was proven in two dimensions by Minkowski in 1908.

* If the isotropic constant is maximized for the simplex among all convex bodies, then the

Mahler conjecture follows in the non-symmetric case. This conjecture suggests that among
all convex bodies /' C R", the volume product

Vol,(K) - Vol,(K°)

is minimized when K is a centered simplex [52]. This was proven in two dimensions by
Mahler in 1908. Here

K ={zeR";Vye K, z-y<1}

is the dual body. Recall that (K°)° = K when K is a closed, convex set containing the
origin. The Bourgain-Milman inequality resolves this conjecture up to a factor that is only
exponential in the dimension. It states that for any convex body KX C R" containing the
origin,

Vol,(K) - Vol,(K°) > (¢/n)",

for a universal constant ¢ > 0.
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* Suppose that K C R™ is a convex body. Is there an ellipsoid & C R" with Vol,(£) =
Vol,(K) such that

Vol,(KNCE) > =-Vol,(K)

DN | —

where C' > 0 is a universal constant? This is an equivalent formulation of the slicing
problem.

Exercise 10. Prove the equivalence using reverse Holder inequalities for quadratic poly-
nomials.

For any convex body X' C R", Milman’s ellipsoid theorem [69] provides an ellipsoid
& C R™ with

Vol,(KNCE) > c"-Vol,(K).
This suffices for developing the Milman ellipsoid theory, which contains the quotient of
subspace theorem and reverse Brunn-Minkowski and the Bourgain-Milman inequality. See

Pisier [74] and references therein. The slicing problem is a conjectural strengthening of
Milman’s ellipsoids.

We move on to discuss the y/log-bound for the isotropic constant, and the relation to the
Poincaré constant and the thin shell constants. We define

o, = sup+/ Var(| X|?)/n
X

where the supremum ranges over all isotropic, log-concave random vectors X in R". By reverse
Holder inequalities for polynomials we may show that Var(| X'|?)/n ~ Var(| X]), and hence o,
is roughly the maximal width of the thin spherical shell that captures most of the mass of an
isotropic, log-concave random vector.

From Corollary 42 we know that,

on < supy/Cp(X) - 4E|X[2/n < sup 24/Cp(X) < Cy/logn.
b b

Hence it remains to prove:
Theorem 84 (Eldan, Klartag [36]). For any convex body K C R",
LK S CO’n.

Remark 85. In fact, it is shown in [36] that Lx < C'o,, for any log-concave random vector X in
R™, but for simplicity we confine ourselves here for the convex body case. The slicing problem
for convex bodies and for log-concave measures are known to be equivalent, as shown by Ball

[7, 47].
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While we studied Gaussian convolution in sections 5 and 6, the proof of Theorem 84 utilizes
the closely related Laplace transform. Let us fix an isotropic, log-concave random vector X with
density p in R". Its logarithmic Laplace transform is

Aly) = Ax(y) = logEe™* .

Since a log-concave random vector has exponential moments, the logarithmic Laplace transform
is finite near the origin. In fact, it is smooth in the open convex set 2 = {A < oco}. Fory € ()
we write X, for a random vector with density

It is again a log-concave random vector, not necessarily isotropic, and we think of it as a tilted
version of the random vector X. We comment that it is possible to view tilts using projective
transformations, this leads to the conditional statement that the strong slicing conjecture implies
the Mahler conjecture, see [52].

Lemma 86. For any y € (2,
VA(y) = EX,, V2A(y) = Cov(X,), V3A(y) =E(X, — ay)®3,
where a, = EX,,.

Lemma 86 is proven by direct computation; the logarithmic Laplace transform is the cumu-
lant generating function. We see from Lemma 86 that A is convex, even strongly-convex as
its Hessian is positive definite. In particular the gradient VA : 2 — R” is a one-to-one map.
Consider the “tilted determinant” function

F(y) = logdet V2A(y) = log det Cov(X,).

It measures how the determinant of the covariance matrix changes when we tilt the given distri-
bution. Occasionally we may view F' as a function that is defined only up to an additive constant.
Write [F'] for the equivalence class of F' under the equivalence relation “F' is equivalent to G if
and only if F' — G is a constant function”.

Lemma 87. The following bound holds pointwise in all of ().

(VZA)'VF -VF < no?. (57)

Proof. Let us prove this bound first for y = 0 using the isotropicity of X. Recalling how to
differentiate a determinant, we see that for any unit vector v € S™"~1,

0, F(0) = Tr [(VZA)71(0) - 9,V?A(0)] = E(X - v)|X[* < VE(X - v)? - Var(|X[?) < Vnoy.
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By considering the supremum over all v € S™~1, we obtain the desired bound at y = 0.

In order to obtain the bound for any y € {2 we may either make a computation, or alterna-
tively, think invariantly without computing anything, as we now explain.

Define a Riemannian metric on ) via the Hessian of the log-Laplace transform A. We look
at the Hessian metric (€2, ), where the scalar product of two tangent vectors u,v € T,R™ = R"
is
ge(u,v) = V*A(2)u - v.

The main observation is that the expression on the left-hand side of (57) is the squared Rieman-
nian length of the Riemannian gradient of the function F' : 2 — R. We say that

MX = (Q7gv [FD

is the “Riemannian package” associated with X. This means that (€2, ¢) is a Riemannian man-
ifold and that F' is a function on ) modulo an additive constant. An isomorphism between
two Riemannian packages is a bijective map which is a Riemannian isometry and transforms
correctly the function modulo the additive constant.

What happens to the Riemannian package associated with X when we do various operations?

* When we translate X, the Riemannian metric stays the same, as well as the function F'.
We get the same Riemannian package.

e Tilting X and switching to X, yields an isomorphism of the two Riemannian packages
by translation by y: We translate 2, g and [F] by the vector y € (). Any translation
corresponds to a tilt and vice versa.

* Applying an invertible linear transformation to X induces an isomorphism of the Rieman-
nian packages. We apply a linear transformation and push forward €2, g and [F]. (See also
the paragraph before the next lemma).

By the first and last items, we proved (57) at the point y = 0 for any log-concave random vector
(not necessarily centered or isotropic). By the middle item, we proved (57) also at all other points
of €). We refer to [36] for a more detailed proof. OJ

It makes sense to say that we think of X as a random vector defined on an abstract affine
space, rather than on R", and observe that the Riemannian manifold ({2, g) is well-defined, as
well as the function F' : 2 — R modulo additive constants. What can we say about balls in this
Riemannian manifold?

Lemma 88. Assume that X is a centered, log-concave random vector in R™. Then for any r > 0,

H{A <7} C By(0,Vr).

N —
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Proof. Let y € ) satisfy A(2y) < r. We need to find a curve from 0 to y whose Riemannian
length is at most . Let us try a line segment:

Lengthy([0, y]) = / 1 VV2A(ty)y - ydt = / 1 \/ d—ZA(ty)dt
<\ [0 tydt/_dt

= /log2 - \/A(2y) — [A(0) + VA(0) - (2y)]
:\/log2-\/A (2y) §\/F. ]

Let X be an isotropic random vector in R", distributed uniformly in a convex body K C R".
We need two estimates for the proof of Theorem 84:

(i) First, we need to show that for r = n/ JTZL,
Vol,(K) > e™™ - Vol,(B,(0,vT)),

the Euclidean volume of the Riemannian ball. This is related to mass transport in a simple
case.

(i1) Second, we need to show that
Vol,({A < r})/" > chK.
n
This is related to the Bourgain-Milman inequality.

Proof of Theorem 84. Since X 1is isotropic and log-concave, by (i), (ii) and Lemma 88,

Lic = Vol,(K)™"/" < C - Vol,(B,(0,v/r)) /"
2
<20 - <) <o =cln
<2C-Vol,({A < r}) <(C'— In =C'— T’

Thus Lx < C" - o, O

Proof of estimate (i): The function F' vanishes at the origin, and by Lemma 87 it is a Riemannian
Lipschitz function with Lipschitz constant at most y/no,,. Hence,

|IF|<n in  By(0,/r).
Consequently, for any y € B, (0, \/7),
e < det VEA(y) < €™

We will use the fact that VA(y) = EX, € K and that y — VA(y) is one-to-one. Changing
variables, we obtain

Vol,(K) > Vol, (VA(By(0,\/7))) = /B o det V2A(y) dy > e™™ - Vol, (B, (0, /7). O
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Proof of estimate (ii): Foranyy € rK°,
Ay) = logEev™ < log(e") = r.

Therefore,
{A<r}DrK-.

By the Bourgain-Milman inequality,
Vol ({A < r)Y™ > Vol (rK*)Y/™ > ¢~ Vol (K)™Y" = ¢~ L. O
n n

We remark that the Bourgain-Milman inequality has several proofs, and in particular it may
be proven using more delicate analysis of the log-Laplace transform as shown by Giannopoulos,
Paouris and Vritsiou [40].
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