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Abstract. We prove that the Bourgain slicing conjecture and the Kannan-Lovász-Simonovits
(KLS) isoperimetric conjecture in Rn hold true up to a factor of

√
logn. A new ingredient

used in the proof is an improved log-concave Lichnerowicz inequality.
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1. INTRODUCTION

Bourgain’s slicing problem asks whether any convex body K ⊆Rn of volume one admits
a hyperplane H ⊆Rn such that

V oln−1(K ∩H) > c,

for a universal constant c > 0. Here V oln−1 stands for (n −1)-dimensional volume and a
hyperplane is a one-codimensional affine subspace. We refer the reader to Klartag and
Milman [35] and references therein for background on this problem, its equivalent formu-
lations and its applications. For n Ê 2 define

1

Ln
= inf

K⊆Rn
sup

H⊆Rn
V oln−1(K ∩H),
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2 B. Klartag

where the infimum runs over all convex bodies K ⊆Rn of volume one, and the supremum
runs over all hyperplanes H ⊆ Rn . Thus, a convex body of volume one in Rn has a hyper-
plane section whose (n − 1)-dimensional volume is at least 1/Ln , and Bourgain’s slicing
problem asks whether Ln <C for a universal constant C > 0.

For decades the best known bounds have been Ln ÉC n1/4 logn proven in Bourgain [7, 8]
and Ln É C n1/4 proven in [29]. Two years ago, a breakthrough by Chen [14] led to the
bound Ln É exp

(
C

√
logn · loglogn

)
which was subsequently improved to Ln ÉC log4 n by

Klartag and Lehec [34], to Ln ÉC log2.223... n by Jambulapati, Lee and Vempala [25] and to
Ln É C log2.082... by Lehec (personal communication). In this paper we obtain a further
improvement:

Theorem 1.1. For n Ê 2,

Ln ÉC
√

logn,

where C > 0 is a universal constant.

A probability density ρ : Rn → [0,∞) is log-concave if its support {x ∈ Rn ; ρ(x) > 0} is a
convex set and logρ is concave in the support of ρ. A random vector X inRn is log-concave
if it is supported in an affine subspace and has a log-concave density in this subspace. The
uniform distribution on a convex body is log-concave, as well as the Gaussian distribu-
tions. A random vector X = (X1, . . . , Xn) ∈ Rn is isotropic if it has finite second moments
and for i , j = 1, . . . ,n,

EXi = 0 and EXi X j = δi j

where δi j is Kronecker’s delta. When we say that a Borel probability measure µ on Rn is
log-concave or is isotropic, we mean that the random vector X with law µ has the corre-
sponding property. When µ is isotropic and has a log-concave density ρ, for any hyper-
plane H ⊆Rn passing through the origin,

(1.1)
1p
12

É
ˆ

H
ρ É 1p

2
.

This is proven in Hensley [24] and Fradelizi [22], using the Prékopa-Leindler inequality
and one-dimensional analysis. Moreover, if H+ ⊆Rn is a half-space whose boundary is H
then Grünbaum’s theorem [23] states that

(1.2)
1

e
Éµ(H+) É 1− 1

e
.

Thus the boundary measure of any such half-space has the same order of magnitude as
the measure of the half-space itself. In fact, it suffices to assume that µ is centered for (1.2)
to hold true, with no need for isotropicity.

The Poincaré constant of a random vector X in Rn , denoted by CP (X ), is the infimum
over all C Ê 0 such that for any locally-Lipschitz function f :Rn →R satisfying E|∇ f (X )|2 <
∞,

(1.3) V ar ( f (X )) ÉC ·E|∇ f (X )|2.
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Given a probability measure µ in Rn we write CP (µ) =CP (X ) where X is the random vector
with law µ. When µ has a log-concave density ρ, its isoperimetric constant is

1

ψµ
= inf

A⊆Rn

{ ´
∂A ρ

min{µ(A),1−µ(A)}

}
where the infimum runs over all open sets A ⊆ Rn with smooth boundary satisfying 0 <
µ(A) < 1. This isoperimetric constant is finite and positive, as proven in Bobkov [5]. The
inequalities of Cheeger [13] and Buser and Ledoux [11, 37] imply that the Poincaré con-
stant and the isoperimetric constant are closely related. Namely,

(1.4)
1

4
É

ψ2
µ

CP (µ)
Éπ.

The value of the numerical constant on the right-hand side of (1.4) was found by De Ponti
and Mondino [18] using the technique from Ledoux [37]. We define

(1.5) ψn = sup
µ
ψµ

where the supremum runs over all isotropic, log-concave probability measures in Rn . The
Kannan-Lovász-Simonovits (KLS) conjecture [28] suggests thatψn <C for a universal con-
stant C > 0. If correct then it would imply that the most efficient way to partition a convex
body into two pieces of equal mass so as to minimize their interface is a hyperplane bisec-
tion, up to a universal constant.

The fact that the KLS conjecture implies Bourgain’s slicing conjecture was announced by
Ball in 2003; the proof, using the heat equation and yielding the estimate Ln É exp

(
Cψ2

n

)
,

was published in the work of Ball and Nguyen [3]. In the meantime, Eldan and Klartag [20]
used the logarithmic Laplace transform and proved the bound

(1.6) Ln ÉCψn ,

where C > 0 is a universal constant. Substantial progress towards the KLS conjecture
started roughly a decade ago, with Eldan’s stochastic localization method [19]. By utilizing
this method, Lee and Vempala [26] proved the bound ψn É C n1/4, that was improved to
ψn É exp

(
C

√
logn · loglogn

)
by Chen [14], to ψn É C log5 n by Klartag and Lehec [34], to

ψn É C log3.223... n by Jambulapati, Lee and Vempala [25] and to ψn É C log3.082... by Lehec
(personal communication). Theorem 1.1 follows from (1.6) and the following:

Theorem 1.2. For n Ê 2,

ψn ÉC
√

logn,

where C > 0 is a universal constant.

Already in the case of unconditional convex bodies, Theorem 1.2 improves upon the
previously known bound. That bound was obtained in [30].

Our new ingredient is an improved log-concave Lichnerowicz inequality. We say that a
probability measure µ in Rn is t-uniformly log-concave, for t Ê 0, if the probability mea-
sure ν whose density with respect to µ is proportional to e t |x|2/2 exists and is log-concave.
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The log-concave Lichnerowicz inequality states that for any t > 0 and a t-uniformly log-
concave probability measure µ in Rn ,

(1.7) CP (µ) É 1/t .

The name of this inequality stems from an analogy to investigations by Lichnerowicz in
Riemannian geometry, see [2, 36]. Inequality (1.7) also follows from the Brascamp-Lieb
inequality [9]. Write Cov(µ) = (Covi j (µ))i , j=1,...,n ∈ Rn×n for the covariance matrix of the
log-concave probability measure µ, defined via

Covi j (µ) =
ˆ
Rn

xi x j dµ(x)−
ˆ
Rn

xi dµ(x)

ˆ
Rn

x j dµ(x).

The covariance matrix is well-defined, since a log-concave probability density decays ex-
ponentially at infinity (e.g. [10, Lemma 2.2.1]). The covariance matrix is a symmetric,
positive semi-definite matrix, and its operator norm is denoted by ∥Cov(µ)∥op .

Theorem 1.3 (“improved log-concave Lichnerowicz inequality”). Let t > 0 and let µ be a
t-uniformly log-concave probability measure in Rn . Then,

(1.8) CP (µ) É
√

∥Cov(µ)∥op

t
É 1

t
.

The bound in (1.8) is the geometric average of the Lichnerowicz bound (1.7) with the
KLS conjectural bound CP (µ) ≲ ∥Cov(µ)∥op , where A ≲ B is a shorthand for A É C · B
where C > 0 is a universal constant. Theorem 1.3 is proven in Section 2 by using the
Bochner formula in order to analyze the first non-trivial eigenfunction of the Laplacian
associated with µ. The proof of Theorem 1.2 is given in Section 3, and it combines Theo-
rem 1.3 with some properties of Eldan’s stochastic localization.

Our usage of stochastic localization is relatively “soft” compared to recent works in this
field. Stochastic processes are crucial in this proof only as a tool for bounding the covari-
ance process up until a certain time determined by ψn , see the bound (3.13) below. It
could be interesting to try and replace the role of stochastic processes in this argument
with differentiations along the heat flow, integrations by parts, and 3-tensor analysis.

We write ∇2u for the Hessian matrix of the function u : Rn → R. The scalar product
of x, y ∈ Rn is x · y = 〈x, y〉 = ∑

i xi yi . The Euclidean norm of x ∈ Rn is |x| = p
x ·x, and

Sn−1 = {x ∈ Rn ; |x| = 1} is the unit sphere centered at the origin. A smooth function is
C∞-smooth, and log stands for the natural logarithm. We write C ,c,C̃ , c̃,C̄ etc. to denote
various positive universal constants whose value may change from one line to the next.

Acknowledgements. I am grateful to Richard Gardner, Joseph Lehec, Emanuel Milman,
Sasha Sodin and Ramon van Handel for their comments on an earlier version of this paper
and for pointing me to references of which I was previously unaware. Supported by a grant
from the Israel Science Foundation (ISF).
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2. EIGENFUNCTIONS WITH A PREFERRED DIRECTION

Let µ be a probability measure in Rn with a log-concave probability density ρ. We say
that µ is regular if its density ρ is smooth and positive in Rn and the following two require-
ments hold:

(i) There exists ε> 0 such that for all x ∈Rn , denoting ψ=− logρ,

(2.1) ε · Id É∇2ψ(x) É 1

ε
· Id

in the sense of symmetric matrices.
(ii) The functionψ, as well as each of its partial derivatives, grows at most polynomially

at infinity.

Lemma 2.1. Let µ be an absolutely-continuous, log-concave probability measure in Rn and
let 0 < ε< t . Then there exists a regular, log-concave probability measure ν in Rn such that

CP (ν) ÊCP (µ)−ε and ∥Cov(µ)−Cov(ν)∥op < ε.

Moreover, if µ is t-uniformly log-concave, then ν is (t −ε)-uniformly log-concave.

The proof of this approximation lemma is deferred to the Appendix below. Assume from
now on that µ is a probability measure on Rn with a regular, log-concave probability den-
sity ρ = e−ψ. As in Klartag and Putterman [33], we say that a function f : Rn → R has
subexponential decay relative to ρ if there exist C , a > 0 such that

(2.2) | f (x)| É C√
ρ(x)

e−a|x| (x ∈Rn).

We say that a function f :Rn →R is µ-tempered if it is smooth and if all of its partial deriva-
tives of all orders have subexponential decay relative to ρ. A log-concave probability den-
sity decays exponentially at infinity. Therefore if a smooth function f : Rn → R grows at
most polynomially at infinity, as do all of its partial derivatives, then it is µ-tempered. A
µ-tempered function is clearly in L2(µ). Write Fµ for the collection of allµ-tempered func-
tions on Rn . The Laplace operator associated with µ is defined for u ∈Fµ via

(2.3) Lu = Lµu =∆u −∇ψ ·∇u.

For any u, v ∈Fµ we have the integration by parts formula

(2.4)

ˆ
Rn

(Lu)vdµ=−
ˆ
Rn
〈∇u,∇v〉dµ

and the (integrated) Bochner formula

(2.5)

ˆ
Rn

(Lu)2dµ=
ˆ
Rn

∥∇2u∥2
HSdµ+

ˆ
Rn
〈(∇2ψ)∇u,∇u〉dµ,

where ∥∇2u∥HS is the Hilbert-Schmidt norm of the Hessian matrix ∇2u. Formulae (2.4)
and (2.5) are proven by intergation by parts, see e.g., Ledoux [36, Section 2.3]. The regular-
ity of ρ and the µ-temperedness of u, v are used in order to discard the boundary terms.
The integrated Bochner formula (2.5) is related to the commutation relation L(∇u) =∇Lu+
(∇2ψ)∇u, and is reminiscent of similar formulae in Riemannian geometry.
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The operator −L is essentially self-adjoint and positive semi-definite in Fµ ⊆ L2(µ) with
a discrete spectrum (see e.g., [2, Corollary 4.10.9] and [33, Proposition A.1]).

Lemma 2.2. All eigenfunctions of Lµ are µ-tempered.

The proof of Lemma 2.2 is discussed in the Appendix; as in [33, Section 2] this proof is
reduced to known results on exponential decay of eigenfunctions of Schrödinger opera-
tors. The minimal eigenvalue of −L is 0, which is a simple eigenvalue corresponding to a
constant eigenfunction. We write

λ=λ(µ) > 0

for the minimal non-zero eigenvalue of −L. The positive semi-definite operator −L has no
spectrum in the interval (0,λ), while 0 is an eigenvalue of multiplicity one. It follows that
for any f ∈Fµ with

´
f dµ= 0,

(2.6) λ

ˆ
Rn

f 2dµÉ
ˆ
Rn

|∇ f |2dµ

with equality if and only if f is a eigenfunction of L corresponding to the first non-zero
eigenvalue. Inequality (2.6) is sometimes referred to as the Poincaré inequality for the
measure µ. Indeed, the space of compactly-supported, smooth functions is dense in the
Sobolev space H 1(µ), see the Appendix of [4], and hence

λ(µ) = 1/CP (µ).

One way to prove the log-concave Lichnerowicz inequality (1.7) is to substitute the eigen-
function f into the Bochner formula (2.5) and obtain the inequalityλ2 Ê tλwhich is equiv-
alent to (1.7). The following is a quantitative, log-concave version of Corollary 1 from [30].

Proposition 2.3. Let f ∈ Fµ be an eigenfunction of −L corresponding to the eigenvalue
λ=λ(µ) and normalized so that ∥ f ∥L2(µ) = 1. Then,

(2.7)

∣∣∣∣ˆ
Rn

∇ f dµ

∣∣∣∣2

Ê 1

λ

ˆ
Rn

[(∇2ψ)∇ f ·∇ f ]dµ,

and

(2.8)

∣∣∣∣ˆ
Rn

∇ f dµ

∣∣∣∣2

=λ2
∣∣∣∣ˆ
Rn

f (x)xdµ(x)

∣∣∣∣2

Éλ2∥Cov(µ)∥op .

Proof. By the Bochner formula and the Poincaré inequality for ∂i f (i = 1, . . . ,n),

λ2 =
ˆ
Rn

(L f )2dµ=
ˆ
Rn

[(∇2ψ)∇ f ·∇ f ]dµ+
ˆ
Rn

∥∇2 f ∥2
HSdµ

Ê
ˆ
Rn

[(∇2ψ)∇ f ·∇ f ]dµ+λ
[ˆ

Rn
|∇ f |2dµ−

∣∣∣∣ˆ
Rn

∇ f dµ

∣∣∣∣2]
=
ˆ
Rn

[(∇2ψ)∇ f ·∇ f ]dµ+λ2 −λ
∣∣∣∣ˆ
Rn

∇ f dµ

∣∣∣∣2

.(2.9)
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This implies (2.7). As for (2.8), note that for any θ ∈ Sn−1, denoting g (x) = 〈x,θ〉,

(2.10)

ˆ
Rn
〈∇ f ,θ〉dµ=

ˆ
Rn
〈∇ f (x),∇g (x)〉dµ(x) =−

ˆ
Rn

(L f )g dµ=λ
ˆ
Rn

f (x)〈x,θ〉dµ(x).

Denote E = ´
Rn 〈x,θ〉dµ(x). We use the facts that

´
f dµ = 0,

´
f 2dµ = 1 and the Cauchy-

Schwartz inequality, and obtain∣∣∣∣ˆ
Rn
〈∇ f ,θ〉dµ

∣∣∣∣2

=λ2
∣∣∣∣ˆ
Rn

f (x)(〈x,θ〉−E)dµ(x)

∣∣∣∣2

Éλ2
ˆ
Rn

(〈x,θ〉−E)2dµ(x).

This implies (2.8), since the last integral equals 〈Cov(µ)θ,θ〉. □

We intuitively think of a function f ∈Fµ as having a “preferred direction” when∣∣∣∣ˆ
Rn

∇ f dµ

∣∣∣∣2

≳
ˆ
Rn

∣∣∇ f
∣∣2 dµ.

The property that the eigenfunction f from Proposition 2.3 has a preferred direction is in
the spirit of the “hot spots conjecture” [27], as we learned from David Jerison. The KLS
conjecture suggests that

λ(µ) · ∥Cov(µ)∥op Ê c

for a universal constant c > 0. Since
´ |∇ f |2dµ = λ for the eigenfunction f from Propo-

sition 2.3, we see from (2.8) that if the eigenfunction has a preferred direction, then the
conclusion of the KLS conjecture holds.

Proof of Theorem 1.3. We may assume thatµ is not supported in an affine subspace E ⊊Rn

(otherwise, we work in this subspace). Since µ is log-concave, this means that the mea-
sure µ is necessarily absolutely-continuous in Rn . An approximation argument based on
Lemma 2.1 shows that it suffices to prove the theorem for an absolutely-continuous, reg-
ular, log-concave probability measure µ on Rn .

Let f be an eigenfunction of the operator −Lµ corresponding to the eigenvalue λ=λ(µ)
and normalized so that ∥ f ∥L2(µ) = 1. By combining (2.7) and (2.8) we obtain

(2.11)

ˆ
Rn

[
(∇2ψ)∇ f ·∇ f

]
dµÉλ3 · ∥Cov(µ)∥op .

Since µ is t-uniformly log-concave, we know that ∇2ψ(x) Ê t for all x ∈ Rn . Hence the
left-hand side of (2.11) is at least

(2.12) t

ˆ
Rn

|∇ f |2dµ= tλ.

Hence (2.11) implies that λ2∥Cov(µ)∥op Ê t . This proves the left-hand side inequality in
(1.8). For the right-hand side inequality, for any θ ∈ Sn−1 we set gθ(x) = 〈x −bµ,θ〉 where

bµ =
ˆ
Rn

xdµ(x) ∈Rn
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is the barycenter of µ. We now use the Poincaré inequality (2.6) as follows:

∥Cov(µ)∥op = sup
θ∈Sn−1

Cov(µ)θ ·θ = sup
θ∈Sn−1

ˆ
Rn

g 2
θdµÉ 1

λ
sup
θ∈Sn−1

ˆ
Rn

|∇gθ|2dµ= 1

λ
É t ,

where we used the log-concave Lichnerowicz inequality (1.7) in the last passage. □

3. LOGARITHMIC BOUND FOR THE KLS CONSTANT

We use the notation from [33, Section 4]. Let µ be a probability measure on Rn with a
regular, log-concave probability density ρ = e−ψ. For t Ê 0 and θ ∈Rn we denote

(3.1) pt ,θ(x) = 1

Z (t ,θ)
e〈θ,x〉−t |x|2/2ρ(x) (x ∈Rn)

where Z (t ,θ) = ´
Rn e〈θ,x〉−t |x|2/2ρ(x)d x. The barycenter and covariance matrix of the prob-

ability density pt ,θ are denoted by

a(t ,θ) =
ˆ
Rn

xpt ,θ(x)d x ∈Rn

and

A(t ,θ) =
ˆ
Rn

(x ⊗x)pt ,θ(x)d x − a(t ,θ)⊗a(t ,θ) ∈Rn×n ,

where x ⊗ x = (xi x j )i , j=1,...,n ∈ Rn×n . Write µt ,θ for the probability measure whose density
is the regular, log-concave probability density pt ,θ. We abbreviate

λ(t ,θ) =λ(µt ,θ),

the first non-zero eigenvalue of the operator −Lµt ,θ . Since ρ is log-concave, the probability
measure µt ,θ is t-uniformly log-concave, as we see from formula (3.1). We may therefore
apply the improved log-concave Lichnerowicz inequality, which is Theorem 1.3 above, and
obtain the bound

(3.2) λ(t ,θ) Ê
√

t

∥A(t ,θ)∥op
Ê t .

Given f ∈ L1(µ) we write

M f (t ,θ) =
ˆ
Rn

f (x)pt ,θ(x)d x.

This is a smooth function of θ ∈Rn , and by differentiating under the integral sign we obtain

∇θM f (t ,θ) =
ˆ
Rn

(x −a(t ,θ)) f (x)pt ,θ(x)d x

=
ˆ
Rn

(x −a(t ,θ))( f (x)−M f (t ,θ))pt ,θ(x)d x.(3.3)

The “tilt process” is the stochastic process (θt )tÊ0 attaining values in Rn and defined via
the stochastic differential equation

(3.4) θ0 = 0, dθt = dWt +a(t ,θt )d t ,
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where (Wt )tÊ0 is a standard Brownian motion inRn with W0 = 0. The existence and unique-
ness of a strong solution to (3.4) are proven via a standard argument (see, e.g. Chen
[14]). As explained in [33, Section 4], the process (θt )tÊ0 coincides in law with the pro-
cess (t X +Wt )tÊ0 where X is a random vector with law µ, independent of the Brownian
motion (Wt )tÊ0. Setting pt (x) = pt ,θt (x) and at = a(t ,θt ) we obtain from the Itô formula
that

d pt (x) = pt (x)〈x −at ,dWt 〉 (x ∈Rn)

with p0(x) = ρ(x). This stochastic process is central in the theory of non-linear filtering,
see e.g. Chiganski [15, Chapter 6] and references therein for its analysis and history. Its
usefulness for proving isoperimetric inequalities and functional inequalities, for bound-
ing mixing times, and for analyzing probability measures with convexity properties was
realized by Eldan [19], Lee and Vempala [26], Chen [14] and others. The process (pt (x))tÊ0

is a martingale with respect to the filtration induced by the Brownian motion, and in par-
ticular

(3.5) Ept (x) = p0(x) = ρ(x) (t Ê 0, x ∈Rn).

Abbreviate λt =λ(t ,θt ), At = A(t ,θt ) and note that λ0 =λ(µ).

Lemma 3.1. For any t > 0 and f ∈ L2(µ),

EV arpt ( f ) ÉV arp0 ( f ) É
(
2+ t

λ0

)
EV arpt ( f )

where we write V arpt ( f ) = ´
Rn f 2pt − (

´
Rn f pt )2.

Proof. Set Mt = M f (t ,θt ) = ´ f pt . It follows from (3.5) and Fubini’s theorem that

(3.6) V arp0 ( f ) =
ˆ
Rn

( f −M0)2p0 = E
ˆ
Rn

( f −M0)2pt = E
ˆ
Rn

( f −Mt )2pt +E(Mt −M0)2.

The first summand in (3.6) equals EV arpt ( f ), which is evidently at most V arp0 ( f ). As for
the second summand in (3.6), it equals

V ar (Mt ) =V ar (M f (t ,θt )),

where the random vector θt has the law of t X +Wt , where X is distributed according to µ,
and where Wt is a Gaussian random vector in Rn of mean zero and covariance matrix t · Id
that is independent of X . By the subadditivity property of the Poincaré constant (see e.g.
Courtade [17]),

(3.7) CP (θt ) =Cp (t X +Wt ) ÉCp (t X )+Cp (Wt ) = t 2/λ0 + t =αt

for α= 1+ t/λ0. According to (3.3) and to the Cauchy-Schwartz inequality, for any θ ∈Rn ,

|∇θM f (t ,θ)| = sup
η∈Sn−1

ˆ
Rn
〈x −a(t ,θ),η〉( f (x)−M f (t ,θ))pt ,θ(x)d x

É
√
∥A(t ,θ)∥op ·V arpt ,θ ( f ).
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Hence, by (3.7) and the Poincaré inequality for the random vector θt ,

(3.8) V ar (M f (t ,θt )) Éαt ·E|∇θM f (t ,θt )|2 Éαt ·E[∥At∥opV arpt ( f )
]Éα ·EV arpt ( f ),

where we used the second inequality in (3.2) in the last passage, which is equivalent to the
bound ∥At∥op É 1/t . Thus, by (3.6) and (3.8),

V arp0 ( f ) É EV arpt ( f )+α ·EV arpt ( f ) = (1+α)EV arpt ( f ).

□

Corollary 3.2. For any A > 0 and 0 < t < Aλ0,

(3.9) λ−1
0 ÉC (A+1)Eλ−1

t ÉC (A+1)
E
√∥At∥opp

t
,

where C > 0 is a universal constant.

Proof. E. Milman’s theorem [38] states that

(3.10) cλ−1
0 É sup

ϕ is 1-Lipschitz
V arµ(ϕ)

where the supremum runs over all 1-Lipschitz functions ϕ : Rn → R, and where c > 0 is a
universal constant. See [31] for a proof of this theorem that uses needle decompositions
rather than the regularity theory of the isoperimetric problem. Let f : Rn → R be a 1-
Lipschitz function with

(3.11) V arµ( f ) Ê cλ−1
0 /2.

By Lemma 3.1 and the Poincaré inequality,

(3.12) V arµ( f ) =V arp0 ( f ) É (2+ A)EV arpt ( f ) É (2+ A)Eλ−1
t

ˆ
Rn

|∇ f |2pt É (2+ A)Eλ−1
t .

The left-hand side inequality in (3.9) follows from (3.11) and (3.12). The right-hand side
inequality in (3.9) follows from (3.2). □

Consider the covariance process At = A(t ,θt ) defined for t Ê 0. Since µ is isotopic we
have At = Id for t = 0. One of the features of the covariance process is the fact that for
0 < t É cψ−2

n /logn,

(3.13) E∥At∥op ÉC .

A proof of inequality (3.13) appears in [32]. We remark that Corollary 5.4 in Klartag and
Lehec [34] states that (3.13) holds true whenever t É cκ−2

n /logn, where

κn = sup
X
E∥X1(X ⊗X )∥2

HS

and the supremum runs over all isotropic, log-concave random vectors X = (X1, . . . , Xn) ∈
Rn . The quantity κn was used by Eldan [19], and it satisfies

(3.14) κ2
n É 4sup

X
CP (X ) ÉCψ2

n

for a universal constant C > 0, where the supremum runs over all isotropic, log-concave
random vectors X ∈Rn . Indeed, the right-hand side inequality in (3.14) follows from (1.4)
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and (1.5) above. In order to prove the left-hand side inequality in (3.14) we argue as follows:
Let X be an isotropic, log-concave random vector, and denote B = EX1X ⊗ X and f (x) =
〈B x, x〉. Then,

∥B∥2
HS = EX1〈B X , X 〉 É

√
EX 2

1 ·
√

V ar ( f (X )) É
√

CP (X ) ·E|∇ f (X )|2

= 2
√

CP (X ) ·E|B X |2 = 2
√

CP (X )∥B∥HS .

This implies the left-hand side inequality in (3.14).

Proof of Theorem 1.2. Let µ be an isotropic, log-concave probability measure in Rn with

(3.15) ψµ Ê ψn

2
.

As we discussed above, for t = cψ−2
n /logn,

(3.16) E
√

∥At∥op É
√
E∥At∥op ÉC .

Since λ0 = 1/CP (µ), from (1.4) and (1.5) we know that

(3.17) t É c ′ψ−2
n É c̃ψ−2

µ É c̄λ0.

We now apply Corollary 3.2, together with (3.16) and (3.17), and obtain

(3.18) λ−1
0 É Cp

t
É C̃ψn

√
logn.

Consequently, by using (1.4), (3.15) and (3.18),

ψ2
n É 4ψ2

µ É C̃λ−1
0 É C̄ψn

√
logn.

This implies that ψn ÉC
√

logn. □

4. REMARKS

One point in the proof above which seems counter-intuitive is the fact that if the eigen-
function f satisfies

(4.1)

∣∣∣∣ˆ
Rn

f (x)xdµ(x)

∣∣∣∣2

= o
(∥Cov(µ)∥op

)
,

then our estimates become better. Here µ is an isotropic, regular, log-concave probability
measure in Rn , and f ∈ L2(µ) is an eigenfunction satisfying L f = −λ(µ) f and ∥ f ∥L2(µ) =
1. Intuitively, strong correlation between the eigenfunction and a linear function should
improve estimates towards the KLS conjecture, rather than the other way around. One
could speculate that analysis of the H−1-norm of linear functionals, which played a crucial
role in Klartag and Lehec [34], could help us understand this point. The H−1(µ)-norm may
be defined, for f ∈ L2(µ) with

´
Rn f dµ= 0, via

∥ f ∥H−1(µ) := sup

{ˆ
Rn

f g dµ ; g ∈ L2(µ) is locally Lipschitz with

ˆ
Rn

|∇g |2dµÉ 1

}
.
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See [4, 30] for basic properties of the H−1(µ)-norm and for the inequality

λ(µ) · ∥ f ∥2
H−1(µ) É ∥ f ∥2

L2(µ).

Here is a certain version of the improved log-concave Lichnerwicz inequality:

Proposition 4.1. Let t > 0 and assume that µ is a probability measure in Rn that is regular
and t-uniformly log-concave. Assume furthermore thatµ is centered, i.e., bµ =

´
Rn xdµ(x) =

0. Denote
R = sup

θ∈Sn−1
∥〈·,θ〉∥2

H−1(µ) .

Then λ(µ) Ê (t/R)1/3.

Proof. We use the notation from the proof of Theorem 1.3. From (2.7) and (2.8) we obtainˆ
Rn

[
(∇2ψ)∇ f ·∇ f

]
dµÉλ3

∣∣∣∣ˆ
Rn

f (x)xdµ(x)

∣∣∣∣2

=λ4 sup
θ∈Sn−1

∣∣∣∣ˆ
Rn

f (x)p
λ

〈x,θ〉dµ(x)

∣∣∣∣2

Éλ4 sup
θ∈Sn−1

∥〈·,θ〉∥2
H−1(µ) =λ4R.

Hence, from (2.12) we obtain tλÉλ4R, which yields λÊ (t/R)1/3. □

Remark 4.2. As explained in [4, 34], for any f ∈ L2(µ) with
´
Rn f dµ= 0 we have

∥ f ∥2
H−1(µ) =−

ˆ
Rn

(L−1 f ) f dµ,

where here L is the unique self-adjoint extension of the operator defined on Fµ via (2.3).
Observe that Lx = −∇ψ, and that the vector-valued functions ∇ψ and x are µ-tempered.
Therefore,

(4.2) −
ˆ
Rn
〈L−1(∇ψ),∇ψ〉dµ=

ˆ
Rn
〈x,∇ψ〉e−ψ =−

n∑
i=1

ˆ
Rn

xi∂i (e−ψ) = n ·
ˆ
Rn

e−ψ = n.

The H−1-inequality [4, 30] states that for any Lipschitz function f :Rn →Rwith
´ ∇ f dµ= 0,

(4.3) V arµ( f ) É
n∑

i=1

∥∥∥∂i f
∥∥∥2

H−1(µ)
=:

∥∥∇ f
∥∥2

H−1(µ) ,

where V arµ( f ) = ´ f 2dµ− (
´

f dµ)2. Hence, from (4.2) and (4.3) we obtain an alternative
proof of the varentropy inequality of Bobkov and Madiman [6] and Nguyen [39], which is
the inequality:

V arµ(ψ) É ∥∇ψ∥2
H−1(µ) = n.

There is more than one way to deduce Theorem 1.2 from the improved log-concave
Lichnerowicz inequality. The following variant of the integrated Bochner formula shows
another connection between the Laplace operator associated with p0 and the one asso-
ciated with pt , in addition to the connection established in Corollary 3.2 above by using
1-Lipschitz functions.



Isoperimetry and slices of convex sets 13

Proposition 4.3 (“Localized Bochner formula”). Let µ be a probability measure on Rn with
a regular, log-concave probability density ρ = e−ψ. Let u ∈ Fµ, t > 0, and consider the ran-
dom probability density pt defined in Section 3. Write µt for the regular, log-concave prob-
ability measure on Rn whose density is pt and abbreviate Lt = Lµt and L = Lµ. Then with
probability one, u ∈Fµt andˆ

Rn
(Lu)2dµ+ t

ˆ
Rn

|∇u|2dµ= E
ˆ
Rn

(Lt u)2dµt .

Proof. We know that dµt /dµ is a Gaussian density, hence the fact that u ∈Fµ implies that
u ∈Fµt . Write pt = e−ψt and apply the Bochner formula for the measure µt to obtain

(4.4)

ˆ
Rn

(Lt u)2dµt =
ˆ
Rn

∥∇2u∥2
HSdµt +

ˆ
Rn
〈(∇2ψt )∇u,∇u〉dµt .

From formula (3.1) we know that

∇2ψt (x) =∇2ψ(x)+ t · Id (x ∈Rn).

Therefore, by combining (4.4) with (3.5) and Fubini’s theorem,

E

ˆ
Rn

(Lt u)2dµt = E
ˆ
Rn

∥∇2u∥2
HSdµt +E

ˆ
Rn
〈(∇2ψ)∇u,∇u〉dµt + t ·E

ˆ
Rn

|∇u|2dµt

=
ˆ
Rn

∥∇2u∥2
HSdµ+

ˆ
Rn
〈(∇2ψ)∇u,∇u〉dµ+ t ·

ˆ
Rn

|∇u|2dµ.

The proposition now follows from the Bochner formula (2.5) applied for the measure µ.
□

5. APPENDIX

Write γs for the density of a Gaussian random vector of mean zero and covariance s · Id
in Rn , i.e., γs(x) = (2πs)−n/2 exp

(−|x|2/(2s)
)

for x ∈ Rn . The following lemma allows us to
interchange Gaussian convolution and multiplication by a Gaussian density.

Lemma 5.1. For f : Rn → R and r > 0 denote Sr f (x) = r n f (r x), the scaling of f when
viewed as a density. Let s, t > 0 and set

p = st

s + t
, q = t 2

s + t
and r = t

s + t
.

Then for any measurable function f :Rn →R such that f γt is integrable,

( f γt )∗γs = Sr
[
( f ∗γp )γq

]
.
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Proof. Let x ∈Rn and set X = px/s. Then,

[( f γt )∗γs](x) = (2π)−n(st )−n/2
ˆ
Rn

f (y)e− |y |2
2t − |x−y |2

2s d y

= (2π)−n(st )−n/2e
|x|2(−1/s+p/s2)

2

ˆ
Rn

f (y)e− |y−px/s|2
2p d y

= (2π)−n(st )−n/2e− |X |2
2q

ˆ
Rn

f (y)e− |y−X |2
2p d y = r n [

( f ∗γp )γq
]

(X ).

□

Corollary 5.2. Let s, t > 0, and let µ be an absolutely-continuous probability measure on
Rn which is 1/t-uniformly log-concave. Then the convolution µ∗γs is 1/(t + s)-uniformly
log-concave.

Proof. We say that f is more log-concave than γt if f /γt is log-concave, i.e., if f is 1/t-
uniformly log-concave. Write ργt for the density of µ, thus ρ is log-concave. Define p, q,r
as in Lemma 5.1. By the Prékopa-Leindler inequality, the function ρ ∗γp is log-concave,
where the convolution is well-defined by Lemma 5.1. The density of µ∗γs is (ργt )∗γs ,
which by Lemma 5.1 is more log-concave than

Srγq = γs+t .

Indeed, we compute that

Srγq (x) = (2πq/r 2)−n/2 exp
(−|r x|2/(2q)

)= γq/r 2 = γs+t .

□

Proof of Lemma 2.1. Let 0 < δ < 1 be a sufficiently small number, and write ρ for the log-
concave density of µ. The measure ν= νδ is obtained by convolving ρ with γδ, then multi-
plying the resulting density by γ1/δ, and then normalizing to obtain a probability density.
The Prekopá-Leindler inequality shows that ν is a log-concave measure, and ν clearly has
a smooth, positive density e−ψδ . We claim that

(5.1) δÉ∇2ψδ(x) É δ+1/δ for all x ∈Rn .

The left-hand side inequality in (5.1) follows from the fact that ν is obtained by multiplying
a log-concave density by γ1/δ and then normalizing. For the right-hand side inequality, we
write

(5.2) e−ψδ(x) = e−(δ+1/δ)|x|2/2
ˆ
Rn

e
〈x,y〉
δ − |y |2

2δ ρ(y)d y/Zδ

where Zδ > 0 is a normalizing constant. The logarithm of the integral in (5.2) is a convex
function of x, leading to the right-hand side inequality in (5.1). The fact that the function
ψδ, as well as each of its partial derivatives, grows at most polynomially at infinity is proven
in [33, Lemma 2.2]. Thus νδ is a regular, log-concave probability measure for any 0 < δ< 1.
Next, consider a smooth function f withˆ

Rn
f 2dµ−

(ˆ
Rn

f dµ

)2

Ê (CP (µ)−ε/2)

ˆ
Rn

|∇ f |2dµ.
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By the dominated convergence theorem we may replace the integrals with respect to µ

by integrals with respect to νδ while accumulating only a tiny error. This shows that for a
sufficiently small δ> 0,

CP (νδ) ÊCP (µ)−ε.

The dominated convergence theorem also shows that the covariance matrix of ν = νδ
can be made arbitrarily close to that of ν, for a sufficiently small δ > 0. Finally, if µ is
t-uniformly log-concave, then Corollary 5.2 implies that νδ is [δ+ t/(1+ tδ)]-uniformly
log-concave. □

Proof of Lemma 2.2. Letϕk ∈ L2(µ) be an eigenfunction of Lµ corresponding to some eigen-
value −λk . Since L is an elliptic operator, the function ϕk is smooth. As in Remark 2.7 in
Klartag and Putterman [33], for any k Ê 0 the smooth function ϕ̃k =ϕk ·pρ ∈ L2(Rn) is an
eigenfunction of the Schrödinger operator −∆+V for

V = |∇ψ|2/4−∆ψ/2,

where we recall that ρ = e−ψ. The potential V (x) is a smooth function that tends to infinity
as x →∞. In fact, since µ is regular then

V (x) Ê ε|x|−1/ε

for some ε> 0 depending on µ. It is known that any eigenfunction ϕ̃k of the Schrödinger
operator −∆+V decays exponentially at infinity, see Agmon [1, Chapter 5], Carmona [12],
Combes and Thomas [16], O’Connor [40] or Reed and Simon [41, Theorem XIII.70]. More-
over, since µ is regular, the potential V and each of its partial derivatives grows at most
polynomially at infinity. Hence both functions ϕ̃k and ∆ϕ̃k = (V −λk )ϕ̃k decay exponen-
tially at infinity. This implies that each partial derivative of ϕ̃k decays exponentially at
infinity; to see this, consider a unit ball centered at a faraway point x ∈ Rn , and express
ϕ̃k via Green’s representation for solutions to the Poisson equation in this unit ball (e.g.
[21, Section 2.2.4]). For any multi-index α = (α1, . . . ,αn) of non-negative integers, in the
notation of [33, Section 2],

(5.3) ∂αϕk = ∂α(ϕ̃k eψ/2) = ∑
0ÉβÉα

(
α

β

)
∂βϕ̃k ·∂α−βeψ/2,

where we used the Leibnitz rule. Each of the summands in (5.3) is some coefficient multi-
plied by the product of three factors: the exponentially decaying function ∂βϕ̃k , a certain
expression involving derivatives of ψ that grows at most polynomially, and the function
eψ/2. This implies that ϕk ∈Fµ. □
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