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Abstract

A distributed network is composed of a collection of interconnected entities that collaborate and

communicate with each other to achieve a shared goal. The communication over distributed net-

works is often subject to either random or adversarial noise. In this thesis, we study distributed

networks with noisy communication from two perspectives. In the first part of the thesis, we

focus on stochastic noise in biologically inspired neural networks. We consider the model of

spiking neural networks (SNN) [129, 128], a simple yet biologically plausible model that cap-

tures the spiking behavior observed in real neural networks. In this setting, we focus on two

results. First, we study algorithmic aspects of time measurement and counting. Second, we

study biological neural networks from the perspective of streaming algorithms, establishing

novel connections between the two models.

The second part of the thesis considers adversarial noise, where we study distributed al-

gorithms that are resilient against adversarial attacks. We focus on the classical CONGEST

model of distributed computing [164], in which the network is represented as an undirected

graph, and the vertices communicate in synchronous rounds with messages of limited size. We

consider a computational-unbounded adversary that corrupts the computation by sending mali-

cious messages over (apriori unknown) controlled edges. In this setting, we start with studying

the broadcast problem, where a designated source vertex wishes to send a message to all other

vertices in the graph. We then turn to a more general framework and provide a compiler that

simulates any CONGEST algorithm in the adversarial setting.
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Introduction

The main focus of this thesis is the study of distributed computation with noisy communication.

Essentially, a distributed network is a collection of interconnected entities (computers, agents,

etc.) that communicate and collaborate to perform a computation for the entire network. Dis-

tributed networks exhibit pervasive characteristics and capture a diverse range of computational

settings. Among the many forms of distributed networks are computer networks, servers in data

centers, ant colonies, and neural networks within the brain. In real-world scenarios, distributed

networks are often subject to disruptions and noise. There are two common sources of noise that

can significantly impact the networks computation: stochastic and adversarial. Stochastic noise

refers to random fluctuations that arise naturally in the network due to various factors such as

signal interference, environmental conditions, or inherent variability in the system components.

Stochastic noise appears naturally in biological systems such as the human brain. Adversarial

noise, on the other hand, consists of malicious entities intentionally interfering with the nor-

mal flow of information within the network. Adversarial noise can be strategically designed to

exploit vulnerabilities and compromise the computation’s correctness.

The primary goal of this work is to develop distributed networks and algorithms in noisy

distributed models. Taking into account the natural characteristics of each noise type, we con-

sider two distinct distributed settings. The first part of the thesis focuses on stochastic noise

in biological neural networks. We study the biologically inspired model of spiking neural net-

works from the point of view of distributed algorithms. Since neuronal spikes are subject to

probabilistic disturbances, stochastic noise plays an important role in this model. The second

part of the thesis focus on adversarial noise. Specifically, we study distributed algorithms that

are resilient against adversarial edge corruption in the classical CONGEST model. We note that

while the first part of this thesis leverages from stochastic noise, the second part counteracts the

adversarial noise which threatens the correctness of the computation. The rest of this chapter

elaborates on each part separately, and briefly summarizes our main results.
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Spiking Neural Networks From an Algorithmic Perspective

We consider resilient distributed computation in one of the most fascinating biological systems

– networks of spiking neurons like those found in the human brain. The human brain is a

complex network performing a variety of computational tasks. Understanding how the brain

works as a computational device is a central challenge of modern neuroscience and artificial

intelligence. Different research communities approach this task in different ways, including

functional imaging that studies neural activation patterns, examining neural network structures

as a clue to computational function, and engineering neural-inspired machine learning architec-

tures. We study neural networks from the perspective of distributed networks and the theory of

computation in general.

We consider a simple yet biologically plausible model of spiking neural networks (SNN)

[128, 129, 96]. In this model, neurons fire in discrete pulses, in response to a sufficiently high

membrane potential. This potential is induced by spikes from neighboring neurons, which can

have an excitatory or inhibitory effect, either increasing or decreasing the potential. The neurons

then spike with a sigmoidal probability that depends on their membrane potential. In this part

of the thesis, we highlight two results. The first work studies time measurement and counting

tasks in spiking neural networks. In the second work we study the connection between spiking

neural networks and streaming algorithms.

Related Work. Neural networks have been studied in several academic communities, from

varying perspectives. Significant work in computational neuroscience focuses on developing

somewhat realistic mathematical models for neural networks and studying their capacity to

process information [96, 185, 74, 175]. On the more theoretical side, a variety of artificial

network models such as perceptrons, sigmoidal networks, Hopfield networks and Boltzmann

machines have been developed [54]. These models are tractable for theoretical analysis, and

have been studied in the context of their computational power, and their ability to solve prob-

lems of function approximation, classification, and memory storage [90, 133, 178, 129]. In

practical machine learning, biological fidelity and often theoretical tractability are set aside,

and researchers study how neural-like networks can be used to efficiently represent and learn

complex concepts [83, 110]. Mass at el. considered the computational power of spiking neu-

ral networks [129, 130, 131], whereas Valiant [189, 190, 191] defined models of computation

and investigated implementations of basic learning tasks within these models. The algorithmic

aspects of spiking neural networks have recently received quite a lot of attention in the algorith-

mic community [119, 124, 123, 112, 148, 44, 132, 120, 6, 151, 45, 7, 177, 147, 123]. The goal

of this thesis is to further expand this line of research by exploring the algorithmic aspects of a

number of fundamental problems in SNN, as well as generalizing their connections to different

models in theoretical computer science.
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Main Results

We next give a brief overview of each chapter in this section.

Time measurement and compressed counting. In Chapter 2 (based on [86]), we consider the

algorithmic aspects of measuring time in the model of spiking neural networks. Discovering the

underlying mechanisms by which the brain perceives the duration of time is one of the largest

open enigmas in computational neuroscience. Humans measure time using a global clock based

on standardized units of minutes, days, and years. In contrast, the brain perceives time using

specialized neural clocks that define their own time units.

In this work, first we consider a deterministic setting where a neuron fires in a given round

if the membrane potential exceeds a fixed threshold. In this setting, we show a network con-

struction that can measure t time units with an optimal number of O(log t) neurons. Another

goal of this work is to understand the power and limitations of stochastic noise in neural net-

works. Neural computation in general, and neural spike responses in particular, are inherently

stochastic. We therefore consider a randomized variant of the problem in a stochastic setting

where each neuron spikes randomly, with probability determined by its membrane potential,

and the goal is to count O(t) time units. This randomized variant led to an improved solution

using O(log log t) neurons, providing the first theoretical proof that randomization (i.e., noise)

can in fact facilitate neural computation1.

Additionally, we consider a counting variant of the problem where we wish to count ef-

ficiently the number of times a neuron spikes during a given period of time in a compressed

manner. Spiking neurons are believed to encode information via their firing rates. This under-

lies the rate coding scheme in which the spike count of the neuron in a given period is interpreted

as a letter in a larger alphabet. In a network of memory-less spiking neurons, it is not so clear

how to implement this rate-dependent behavior. We show how the deterministic timer can be

modified to count the number of times a neuron fired in a time span of t rounds using O(log t)

many additional neurons.

As for neural counting in the randomized setting, the problem of maintaining a counter using

a small amount of space has received a lot of attention in the dynamic streaming community.

The well-known Morris algorithm [70, 140] maintains an approximate counter for t counts using

only an order of log log t bits. By following ideas from [70], carefully adapted to the neural

setting, we show a neural construction for approximate counting in a compressed manner using

an order of log log t additional neurons. The approximate counting problem provides just one

indication of the relation between succinct neural networks and dynamic streaming algorithms,

as shown in Chapter 3.

Finally, we demonstrate the usefulness of compressed counting and timer networks for syn-

chronizing neural networks. In the spirit of distributed synchronizers [15], we provide a general

transformation that can take any synchronized network solution and simulate it in an asyn-

1We note that in the deterministic setting solving this variate also requires at least Ω(t) neurons.

3



chronous setting (where edges have arbitrary response latencies) while incurring a small over-

head w.r.t the number of neurons and computation time.

Connection to streaming algorithms. In Chapter 3 (based on [85]), we study biological neural

networks from the perspective of streaming algorithms. Like computers, human brains suffer

from memory limitations which pose a significant obstacle when processing large-scale and dy-

namically changing data. In computer science, these challenges are captured by the well-known

streaming model and have had a significant impact in theory and beyond. In the classical stream-

ing model [142], one must compute some function f of a stream of updates, given restricted

single-pass access to the stream. The primary complexity measure is the space used by the

algorithm. In contrast to the large body of work on streaming algorithms, relatively little is

known about the computational aspects of data processing in biological neural networks. In this

work, we aim at connecting these two models, leveraging techniques developed for streaming

algorithms to better understand neural computation.

Previous algorithmic work in spiking neural networks has many similarities with streaming

algorithms. In the study of spiking neural networks, space-efficient SNNs have been devised

for the winner-takes-all problem [118, 182], similarity testing and compression [124, 148],

clustering [84, 112], approximate counting, and time estimation [120, 86]. Interestingly, many

of these works borrow ideas from related streaming algorithms. However, despite the flow of

ideas from streaming to neural algorithms, the connection between these models has not been

studied formally.

In this work, we take the first steps toward understanding this connection. On the upper

bound side, we design neural algorithms based on known streaming algorithms for fundamen-

tal tasks, including distinct elements, approximate median, and heavy hitters. The number of

neurons in our neural solutions almost matches the space bounds of the corresponding stream-

ing algorithms. As a general algorithmic primitive, we show how to implement the important

streaming technique of linear sketching efficiently in spiking neural networks. On the lower

bound side, we give a generic reduction, showing that any space-efficient spiking neural network

can be simulated by a space-efficiently streaming algorithm. This reduction lets us translate

streaming-space lower bounds into nearly matching neural-space lower bounds, establishing a

close connection between these two models.

Distributed Computing Against Adversarial Edges

Guaranteeing the uninterrupted operation of communication networks is a significant objective

in network algorithms. The area of resilient distributed computation has been receiving a grow-

ing attention over the last years as computer networks grow in size and become more vulnerable

to adversarial failures. In this part of the thesis, we focus on resilience against adversarial edge

corruptions in the classical CONGEST model of distributed computing [164]. In this model,

4



distributed systems are modeled as graphs with n vertices connected by communication links.

The computation proceeds in synchronous rounds, in which every vertex can send a message

of size O(log n) bits to each of its neighbors. The main complexity measure considered in this

model is the round complexity.

In the adversarial CONGEST model, an adversary with unbounded computational power

controls a fixed set of edges in the graph (unknown to the vertices). It is allowed to see the

entire graph, the messages sent throughout the algorithm, and the internal randomness of the

vertices. within this setting, our goal is to provide efficient distributed algorithms for funda-

mental computational tasks. These algorithms are required to preserve the correctness of the

computation (despite the adversarial attack) while being also efficient in terms of the number of

rounds.

A key limitation of many of the previous resilient algorithms is that they assume that the

communication graph is the complete graph. In this research direction, we concentrate on com-

munication graphs of arbitrary topologies. We began with studying the corner-stone broadcast

problem in which a designated source vertex wishes to send a message to all the other vertices

in the graph. We then turn to a more general framework, and provided a general simulation

methodology that compiles any (reliable) CONGEST algorithm A into an equivalent algorithm

A′ in the presence of adversarial edges.

Related Work. Since the introduction of the adversarial setting by Pease et al. [159] and

Lamport et al. [109, 159] distributed algorithms against various adversarial models have been

studied in theory and practice. In most resilient distributed algorithms, the communication

graph is assumed to be a complete graph e.g., [24, 47, 57, 58, 63, 103, 137, 162, 75, 159], and

little is known about the complexity of resilient computations in general graph topologies. See

[167] for an overview. In their seminal works, Dolev and Pelc [57, 160] showed that any given

graph can tolerate up to f adversarial vertices or edges iff the graph is (2f + 1) vertex or edge

connected. Unfortunately, the existing distributed algorithms for general (2f + 1) connected

graphs usually require a polynomial number of rounds in the CONGEST model. Other than that,

resilient algorithms for general graph topologies have been addressed mostly under simplified

settings [162], e.g., probabilistic faulty models [163, 160], cryptographic assumptions [73, 2,

1, 145, 32, 1, 19, 18], or under bandwidth-free settings (e.g., allowing neighbors to exchange

exponentially large messages) [57, 137, 105, 107, 59, 105, 43].

One exception is the work of Parter and Yogev [158, 156, 155]. Motivated by various

applications for resilient distributed computing, Parter and Yogev introduced the notion of low-

congestion cycle covers as a basic communication backbone for reliable communication [155].

At the high level, a low-congestion cycle cover is a collection of cycles covering all the edges in

the graph, where all cycles are both short and nearly edge-disjoint. [155] proved the existence

of cycle covers in bridgeless graphs, and demonstrate their usefulness in resilient computation.

Specifically, they show that by computing these cycle covers in a pre-processing step, one can
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compile any algorithm in the (fault-free) CONGEST model into an equivalent algorithm that is

resilient against a single adversarial edge. In chapter 6 we extend their simulation methodology

to handle multiple edge faults and eliminate the need for fault-free preprocessing.

Main Results

We next give an overview of the main results presented in each chapter.

The broadcast problem. In Chapter 5 (based on [87]), we consider the corner-stone broad-

cast problem in the adversarial CONGEST model, where an adaptive adversary controls a fixed

number of f edges in the input communication graph. In this work, we provide the first round-

efficient broadcast algorithms against edge adversaries. Our approach is based on combining

the perspectives of fault tolerant (FT) network design, and distributed graph algorithms. The

combined power of these points of view allows us to characterize the round complexity of re-

silient broadcast algorithms as a function of the graph diameterD, and the number of adversarial

edges f . This is in contrast to prior algorithms that obtain a polynomial round complexity (in

the number of vertices).

We take a gradual approach and start by studying broadcast algorithms against a single

adversarial edge. In this setting, we present a deterministic algorithm that solves the problem

within Õ(D2) rounds1, provided that the graph is 3 edge-connected. This improves considerably

upon the (implicit) state-of-the-art nO(D) bound obtained by previous algorithms (e.g., by [137,

43]). In addition, in contrast to many previous works (including [137, 43]), our algorithm does

not assume global knowledge of the graph or any estimate on the graph’s diameter. In fact,

at the end of the broadcast algorithm, the vertices also obtain a linear estimate of the graph

diameter. We then extend this algorithm to a Õ(DO(f))-round algorithm against f adversarial

edges in (2f + 1) edge-connected graphs.

Next, we turn to consider the family of expander graphs, which has been shown to have

various applications in the context of resilient distributed computation [61, 187, 106, 12]. For

expander graphs with conductance φ and minimum degree of Θ(f 2 log n/φ), we give a consid-

erably improved broadcast algorithm with O(f log2 n/φ) rounds against f = O( n·φ
logn

) adversar-

ial edges. This algorithm exploits the connectivity and conductance properties of G-subgraphs

obtained by employing Karger’s edge sampling technique [100].

General Compiler. In Chapter 6 (based on [88]), we present a compilation methodology that

converts any given distributed algorithmA in the standard CONGEST model into an equivalent

algorithm A′ that can perform the same computation in the presence of adversarial edges. The

compilation process involves translating each round of the fault-free algorithm into a phase of

multiple rounds in the resilient algorithm. The goal is to ensure that by the end of each phase,

all vertices hold the correct messages sent by their neighbors in that round, while disregarding

1The notation Õ(·) hides poly-logarithmic terms in the number of vertices n.
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any remaining corrupted messages. The main complexity measure of the compilation process is

the round complexity of compiling a single-round, which represents the compilation overhead

of the compiler.

In order to handle multiple adversarial edges, we introduce the concept of a fault-tolerant

(FT) cycle cover, which extends the low-congestion cycle cover of [155]. An f -FT cycle cover

is a collection of cycles that covers all the edges of the graph, such that for any set of at most

f edges F and every edge e, there exists a cycle that covers e while avoiding the edges in

F . This guarantees that every edge is covered by a reliable cycle, avoiding all f adversarial

edges. We start with exploring the combinatorial properties of FT cycle covers, and then focus

on constructing FT cycle covers in the presence of adversarial edges. The main challenge in

constructing FT cycle covers in the adversarial setting is covering the unknown adversarial

edges.

Given a FT cycle cover construction, we show general compilation algorithms in the adver-

sarial CONGEST model. Initially, we consider graphs with a single adversarial edge. For every

3 edge-connected graph with a diameter of D, we demonstrate the existence of a general com-

piler against a single adversarial edge, achieving a compilation overhead of Ô(D3) rounds1.

This improvement surpasses the Ô(D5) round overhead obtained by Parter and Yogev [154],

while eliminating the need for a fault-free preprocessing phase. Subsequently, we extend our

algorithms to graphs with multiple adversarial edges. For any (2f + 1) edge-connected graph

G, we present a general compiler against f adversarial edges, achieving a compilation overhead

of Ô(DO(f)) rounds.

1The notation Ô(.) hides factors of 2O(
√
logn), which arise from the distributed algorithms of [156, 157].
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PART I

ALGORITHMIC NEURAL NETWORKS
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1
Background and Preliminaries

The study of neural networks is conducted in a variety of academic communities from a variety

of perspectives. Several studies in computational neuroscience focuses on understanding how

the brain encodes and decodes information, delving into the mechanisms through which sensory

neurons translate stimulus information into action potentials, or spikes. This involves analyzing

the collective activity patterns of neural populations using statistical tools, information theory,

and new mathematical models applied to real experimental data [175, 74, 76, 166, 144, 176]. In

this line of work, it has been highlighted that the combined activity of a neuronal cluster offers

more insights than merely considering individual neuronal activities, emphasizing the pivotal

role of neural correlations in processing information.

This research exemplifies the symbiotic relationship between neuroscience and computa-

tional methods. While neuroscience leans on computational techniques to analyze and integrate

large data sets, it conversely provides valuable inspiration for computational algorithms. One

example is the work of Afek et al. [5, 4], who drew connections between a task performed in

the fruit fly brain and the maximal independent set (MIS) problem. Leveraging from biologi-

cal findings on processes in developing flies, they designed a computational algorithm for MIS

selection that improves the efficiency and robustness of existing methods. Similarly, Dasgupta

et al. extrapolated principles from the fly’s olfactory system to devise novel solutions to com-

putational problems such as the nearest-neighbor search, and tasks like online image searching

[52]. In a followup work [51], they show that the fly’s olfactory system also utilizes a variant of

a Bloom filter, leading to improved Bloom filters, better suited for various computational and
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biological datasets. These instances demonstrate how studying biological neural networks can

significantly advance computational methodologies.

Another research area that utilizes biological insights to improve computational abilities is

Neuromorphic computing. Inspired by the structure and function of the human brain, Neuro-

morphic computing aims to develop more efficient and powerful computing systems by emu-

lating how neurons and synapses operate. These systems are designed to mimic the behavior

of individual neurons, which communicate through discrete electrical pulses or spikes. By us-

ing networks of neurons, neuromorphic systems can achieve a higher level of energy efficiency

compared to traditional computing architectures. This is because spikes occur only when there

is relevant information to be processed, reducing unnecessary power consumption. In practice,

both academic and industrial initiatives are working to scale up neuromorphic systems to in-

clude large numbers of neurons [139, 53, 104, 22, 172]. See [136, 72] for surveys on the topic.

From a theoretical point of view, a recent work focused on the design and analysis of neuro-

morphic algorithms based on recurrent neural networks, focusing on shortest path problems [6].

In their work, they developed comparison tools to compare neuromorphic algorithms with tra-

ditional computing, and demonstrated the resource advantages of the suggested neuromorphic

solutions.

In recent years, computational methods have been used to explore the brain’s formation of

structures and concepts found in biological experiments. The focus of these studies is on neural

networks with plasticity rules, in which synaptic strength, or edge weights, adjust over time due

to neural activity. As an example, one line of research examined the formation of assemblies

of neurons, which play an important role in memory traces for spatial information and real-

world items. This research studies the emergence and modification of neuronal assemblies, as

well as operations on assemblies, including projections, associations, and merges [50, 149, 141,

148, 147, 165, 112]. In another study, hierarchical structures have been studied, along with

how brain-like neural networks might be used to represent them, how they might be used to

recognize concepts, and how they might be learned[122, 121].

In this thesis, we consider a computational model for neural computation that balances

biological plausibility with theoretical tractability. Specifically, we focus on spiking neural

networks (SNNs) [128, 129, 96], in which a neuron fires in discrete pulses, in response to a

sufficiently high membrane potential. This potential is induced by spikes from neighboring

neurons, which can have an excitatory or inhibitory effect, either increasing or decreasing the

potential. The study of spiking neural networks was initiated by Maass, focusing on their com-

putational capabilities. In his research, he showed general constructions in the SNN model that

simulate a variety of computational paradigms, such as boolean circuits, finite automata, Turing

machines, and random access machines [126, 128]. More generaly, Maass also drew com-

parisons between SNNs and other computational models, including sigmoidal networks and

boolean threshold gates, emphasizing the computational advantages of SNNs [133, 127, 129].

Diverging from conventional approaches in computational neuroscience that emphasize
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general computation ability or broad learning tasks, our research builds upon the groundwork

laid by Parter, Lynch, and Musco, who focused on the algorithmic aspects of spiking neural

networks [123, 118, 124, 119]. This research direction is aimed at studying a wide range of

fundamental computational problems solved by actual brains. This includes problems such as

winner takes all, similarity testing, and compression. For these problems, they construct effi-

cient biologically–plausible algorithms, consider lower bounds on the size of the network and

computational time, and study the tradeoffs between the resources of the network.

In this thesis we cover work originally published in [86, 85]. In Chapter 2 [86], we consider

the implementation of core algorithmic primitives within neural computation, such as time per-

ception, counting, and synchronization, with a comprehensive analysis of time and space com-

plexities. We also illustrate how the neuronal stochastic behavior can be exploited to optimize

space complexity. In Chapter 3 [85], we study the relationship between SNNs and streaming

algorithms which process large data streams in a single pass with limited memory. As a result

of these connections, SNN upper and lower bounds can be obtained using results obtained in

the streaming model.

In a related study [84], we explored the execution of tasks such as clustering, novelty de-

tection, and sketching, which are evident in natural systems like the olfactory process in fruit

flies [35, 116, 52]. In a separate research [89], we delved deeper into the synchronization dy-

namics in SNNs, building on the foundation laid in [86]. In this work, we expanded the SNN

model to asynchronous settings by incorporating edge and vertex delays. We also study general

synchronization schemes and their cost in terms of the overhead in the number of neurons and

computation time.

The Computational Model

We consider the model of spiking neural networks (SNNs) [128, 129, 96] defined as follows.

Neurons. A deterministic neuron u is modeled by a deterministic threshold gate. Letting b(u)

be the threshold value of u, then u outputs 1 if the weighted sum of its incoming neighbors

exceeds the threshold b(u). A spiking neuron is modeled by a probabilistic threshold gate

which fires with a sigmoidal probability that depends on the difference between its weighted

incoming sum and b(u).

Spiking neural networks. A Spiking neural network (SNN)N = 〈X,Z, Y, w, b〉 consists of n

input neurons X = {x1, . . . , xn}, m output neurons Y = {y1, . . . , ym}, and k auxiliary neurons

Z = {z1, ..., zk}. In a deterministic neural network all neurons are deterministic threshold

gates. In randomized neural network, the neurons can be either deterministic threshold gates or

probabilistic threshold gates. The directed weighted synaptic connections between the neurons

V = X ∪ Z ∪ Y , are described by the weight function w : V × V → R. A weight w(u, v) = 0

indicates that a connection is not present between neurons u and v. Finally, for any neuron v, the

value b(v) ∈ R is the threshold value (activation bias). The in-degree of every input neuron xi
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is zero, i.e., w(u, x) = 0 for all u ∈ V and x ∈ X . Additionally, each neuron is either inhibitory

or excitatory: if v is inhibitory, then w(v, u) ≤ 0 and if v is excitatory, then w(v, u) ≥ 0 for

every u.

Network dynamics. The network evolves in discrete, synchronous rounds as a Markov chain.

The firing probability of every neuron in round τ depends on the firing status of its neighbors in

round τ − 1, via a standard sigmoid function, with details given below. For each neuron u, and

each round τ ≥ 0, let στ (u) = 1 if u fires (i.e., generates a spike) in round τ . Let σ0(u) denote

the initial firing state of the neuron. The firing state of each input neuron xj in each round is the

input to the network. For each non-input neuron u and every round τ ≥ 1, let pot(u, τ) denote

the membrane potential at round τ and p(u, τ) denote the firing probability (Pr[στ (u) = 1]),

calculated as pot(u, τ) =
∑

v∈V w(v, u) · στ−1(v) − b(u) and p(u, τ) = 1
1+e− pot(u,τ)/λ where

λ > 0 is a temperature parameter which determines the steepness of the sigmoid. λ does not

affect the computational power of the network, thus we set λ = 1.
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2
Counting to Ten with Two Fingers:

Compressed Counting with Spiking Neurons

2.1 Introduction

Understanding the mechanisms by which the brain experiences time is one of the major re-

search objectives in neuroscience [138, 8, 64]. Humans measure time using a global clock

based on standardized units of minutes, days, and years. In contrast, the brain perceives time

using specialized neural clocks that define their own time units. Living organisms have various

other implementations of biological clocks, a notable example is the circadian clock that gets

synchronized with the rhythms of a day.

In this work, we consider the algorithmic aspects of measuring time in a simple yet bio-

logically plausible model of stochastic spiking neural networks (SNN) [128, 129], in which

neurons fire in discrete pulses, in response to sufficiently high membrane potential. This model

is believed to capture the spiking behavior observed in real neural networks and has recently re-

ceived quite a lot of attention in the algorithmic community [118, 119, 124, 123, 112, 148, 44].

In contrast to the common approach in computational neuroscience and machine learning, the

focus here is not on general computation ability or broad learning tasks, but rather on specific

algorithmic implementation and analysis.
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2.1.1 Measuring Time with Spiking Neural Networks

We consider the algorithmic challenges of measuring time using networks of threshold gates

and probabilistic threshold gates. We introduce the neural timer problem defined as follows:

Given an input neuron x, an output neuron y, and a time parameter t, it is required to design

a small neural network such that any firing of x in a given nd invokes the firing of y for

exactly the next t rounds.

In other words, it is required to design a succinct timer, activated by the firing of its input neuron,

that alerts when exactly t rounds have passed.

A trivial solution with t auxiliary neurons can be obtained by taking a directed chain of

length t (Fig. 2.1): the head of the chain has an incoming edge from the input x, the output y

has incoming edges from the input x, and all the other t neurons on the chain. All these neurons

are simple OR-gates, they fire in round τ if at least one of their incoming neighbors fired in

round τ − 1. Starting with the firing of x in round 0, in each round i, exactly one neuron,

namely the i-th neuron on the chain fires, which makes y keep on firing for exactly t rounds

until the chain fades out. In this basic solution, the network spends one neuron that counts

+1 and dies. It is noteworthy that the neurons in our model are very simple, they do not have

any memory, and thus cannot keep track of the firing history. They can only base their firing

decisions on the firing of their neighbors in the previous round.

With such a minimal model of computation, it is therefore intriguing to ask how to beat this

linear dependency (of network size) in the time parameter t. Can we count to ten using only

two (memory-less) neurons? We answer this question in the affirmative and show that even

with just simple deterministic threshold gates, we can measure time up to t rounds using only

O(log t) neurons. It is easy to see that this bound is tight when using deterministic neurons

(even when allowing some approximation). The reason is that o(log t) neurons encode strictly

less than t distinct configurations, thus in a sequence of t rounds, there must be a configuration

that re-occurs, hence locking the system into a state in which y fires forever.

Theorem 1 (Deterministic Timers). For every input time parameter t ∈ N>0, (1) there exists

a deterministic neural timer network N with O(log t) deterministic threshold gates, (2) any

deterministic neural timer requires Ω(log t) neurons.

This timer can be easily adapted to the related problem of counting, where the network

should output the number of spikes (by the input x) within a time window of t rounds.

Does randomness help in time estimation? Neural computation in general, and neural spike

responses in particular, are inherently stochastic [117]. One of our broader scope agendas is to

understand the power and limitations of randomness in neural networks. Does neural computa-

tion become easier or harder due to the stochastic behavior of the neurons?
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We define a randomized version of the neural timer problem that allows some slackness

both in the approximation of the time, as well as allowing a small error probability. For a given

error probability δ ∈ (0, 1), the output y should fire for at least t rounds and must stop firing

after at most 2f rounds1 with probability at least 1− δ. It turns out that this randomized variant

leads to a considerably improved solution for δ = 2−O(t):

Theorem 2 (Upper Bound for Randomized Timers). For every time parameter t ∈ N>0,

and error probability δ ∈ (0, 1), there exists a probabilistic neural timer network N with

O(min{log log 1/δ, log t}) deterministic threshold gates and a single random spiking neuron.

Our starting point is a simple network with O(log 1/δ) neurons, each firing independently

with probability 1− 1/t. The key observation for improving the size bound into O(log log 1/δ)

is to use the time axis: we will use a single neuron to generate random samples over time, rather

than having many random neurons generating these samples in a single round. The deterministic

neural counter network with a time parameter of O(log 1/δ) is used as a building block to

gather the firing statistics of a single spiking neuron. In light of the Ω(log t) lower bound

for deterministic networks, we get the first separation between deterministic and randomized

solutions for error probability δ = ω(1/2t). This shows that randomness can help, but up to a

limit: Once the allowed error probability is exponentially small in t, the deterministic solution

is the best possible. Perhaps surprisingly, we show that this behavior is tight:

Theorem 3 (Lower Bound for Randomized Timers). Any SNN for the (randomized) neural

timer problem with time parameter t, and error δ ∈ (0, 1) must use Ω(min{log log 1/δ, log t})
neurons.

Neural counters. Spiking neurons are believed to encode information via their firing rates.

This underlies the rate coding scheme [3, 186, 77] in which the spike-count of the neuron

in a given period is interpreted as a letter in a larger alphabet. In a network of memory-less

spiking neurons, it is not so clear how to implement this rate-dependent behavior. How can a

neuron convey a complicated message over time if its neighboring neurons remember only its

recent spike? This challenge is formalized by the following neural counter problem: Given an

input neuron x, a time parameter t, and Θ(log t) output neurons represented by a vector ȳ, it is

required to design a neural network such that the output vector ȳ holds the binary representation

of the number of times that x fired in a sequence of t rounds. This problem is very much related

to the neural timer problem and can be solved deterministically using O(log t) neurons. Can we

do better?

The problem of maintaining a counter using a small amount of space has received a lot of

attention in the dynamic streaming community. The well-known Morris algorithm [140, 70]

maintains an approximate counter for t counts using only O(log log t) bits. The high-level idea

1Taking 2f is arbitrary here, and any other constant greater than one would work as well.
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of this algorithm is to increase the counter with a probability of 1/2C where C is the current

read of the counter. The counter then holds the exponent of the number of counts. By following

the ideas of [70], carefully adapted to the neural setting, we show:

Theorem 4 (Approximate Counting). For every time parameter t, and δ ∈ (0, 1), there exists

a randomized construction of an approximate counting network using O(log log t + log(1/δ))

deterministic threshold gates plus an additional single random spiking neuron, that computes an

O(1) (multiplicative) approximation for the number of input spikes in t rounds with probability

1− δ.

We note that unlike the deterministic construction of timers that could be easily adapted

to the problem of neural counting, our optimized randomized timers with O(log log 1/δ) neu-

rons cannot be adopted into an approximate counter network. We therefore solve the latter by

adopting Morris algorithm to the neural setting.

Broader scope: lessons from dynamic streaming algorithms. We believe that the approxi-

mate counting problem provides just one indication of the potential relation between succinct

neural networks and dynamic streaming algorithms. In both settings, the goal is to gather statis-

tics (e.g., over time) using a small amount of space. In the setting of neural networks, there are

additional difficulties that do not show up in the streaming setting. E.g., it is also required to

obtain fast update time, as illustrated in our solution to the approximate counting problem. See

Chapter 3 for more details on the connection to streaming algorithms.

2.1.2 Neural Synchronizers

The standard model of spiking neural networks assumes that all edges (synapses) in the network

have a uniform response latency. That is, the electrical signal is passed from the presynaptic

neuron to the postsynaptic neuron within a fixed time unit which we call a round. However,

in real biological networks, the response latency of synapses can vary considerably depending

on the biological properties of the synapse, as well as on the distance between the neighboring

neurons. This results in an asynchronous setting in which different edges have distinct response

times. We formalize a simple model of spiking neurons in the asynchronous setting, in which

the given neural network also specifies a response latency function ` : A → R≥1 that deter-

mines the number of rounds it takes for the signal to propagate over the edge. Inspired by the

synchronizers of Awerbuch and Peleg [15], and using the above-mentioned compressed timer

and counter modules, we present a general simulation methodology (a.k.a synchronizers) that

takes a network Nsync that solves the problem in the synchronized setting, and transform it into

an “analogous” network Nasync that solves the same problem in the asynchronous setting.

The basic building block of this transformation is the neural timer component adapted to the

asynchronous setting. The cost of the transformation is measured by the overhead in the number
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of neurons and in the computation time. Using our neural timers leads to a small overhead in

the number of neurons.

Theorem 5 (Synchronizer, Informal). There exists a synchronizer that given a network Nsync

with n neurons and maximum response latency1 L, constructs a network Nasync that has an

“analogous” execution in the asynchronous setting with a total number of O(n + L logL)

neurons and a time overhead of O(L3).

We note that although the construction is inspired by the work of Awerbuch and Peleg [15],

due to the large differences between these models, the precise formulation and implementation

of our synchronizers are quite different. The most notable difference between the distributed

and neural settings is the issue of memory: in the distributed setting, vertices can aggregate the

incoming messages and respond when all required messages have arrived. In striking contrast,

our neurons can only respond (by either firing or not firing) to signals arrived in the previous

round, and all signals from previous rounds cannot be locally stored. For this reason and unlike

[15], we must assume a bound on the largest edge latency. In particular, in [86] we show that

the size overhead of the transformed network Nasync must depend, at least logarithmically, on

the value of the largest latency L.

Observation 1. The size overhead of any synchronization scheme is Ω(logL).

This provably illustrates the difference in the overhead of synchronization between general

distributed networks and neural networks. We leave the problem of tightening this lower bound

(or upper bound) as an interesting open problem.

Additional related work. To the best of our knowledge, there are two main previous theoreti-

cal works on asynchronous neural networks. Maass [126] considered a quite elaborated model

for deterministic neural networks with arbitrary response functions for the edges, along with

latencies that can be chosen by the network designer. Within this generalized framework, he

presented a coarse description of a synchronization scheme that consists of various time mod-

ules (e.g., initiation and delay modules). Our work complements the scheme of [126] in the

simplified SNN model by providing a rigorous implementation and analysis for size and time

overhead. Khun et al. [108] analyzed the synchronous and asynchronous behavior under the

stochastic neural network model of DeVille and Peskin [55]. Their model and framework are

quite different from ours and do not aim at building synchronizers.

Turning to the setting of logical circuits, there is a long line of work on the asynchronous

setting under various model assumptions [11, 82, 180, 28, 135] that do not quite fit the memory-

less setting of spiking neurons.

2.2 Deterministic Constructions of Neural Timer Networks
In this section, we consider deterministic neural timer networks, defined as follows.

1I.e., L correspond to the length of the longest round.
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Figure 2.1: Illustration of timer networks with time parameter t. Left: The naı̈ve timer with Θ(t)

neurons. Mid: deterministic timer with Θ(log t) neurons. Right: randomized timer with O(log log 1/δ))

neurons, using the DetTimer modules with parameter t′ = log 1/δ.

Definition 1 (Det. Neural Timer Network). Given time parameter t, a deterministic neural

timer network DT is a network of threshold gates, with an input neuron x, an output neuron

y, and additional auxiliary neurons. The network satisfies that in every round τ , στ (y) = 1 iff

there exists a round τ > τ ′ ≥ τ − t such that στ ′(x) = 1.

For a given neural timer network N with N auxiliary neurons, the state of the network in

round τ denoted as στ , is described by an N -length vector indicating the firing neurons in that

round. We start by observing that neural networks have a memoryless property, in the sense that

each state depends only on the state of the previous round.

Observation 2 (Memoryless Property). Given a deterministic neural networkN , for any round

τ > 0, the state στ is fully determined by στ−1.

Similarly, given an SNN network, for every fixed state s∗ and round τ it holds that

Pr[στ = s∗ | σ1, ...στ−1] = Pr[στ = s∗ | στ−1].

Lower bound (Poof of Theorem 1(2)). Assume towards contradiction that there exists a neural

timer with N ≤ log t − 1 auxiliary neurons. Since there are at most 2N different states, by the

pigeonhole principle, there must be at least two rounds τ, τ ′ ≤ t − 1 in which the state of the

network is identical, i.e., where στ = στ ′ = s∗ for some s∗ ∈ {0, 1}N . By the correctness of

the network, the output neuron y fires in all rounds τ ′′ ∈ [τ + 1, τ ′ + 1]. By the memoryless

property (Obs. 2), we get that στ ′′ = s∗ for τ ′′ = τ + i · (τ ′ − τ) for every i ∈ N≥0. Thus,

y continues firing forever, in contradiction to the requirement that it stops firing after t rounds.

Note that this lower bound holds even if y is allowed to stop firing in any finite time window.

A matching upper bound (Proof. Theorem 1(1)). For ease of explanation, we first sketch

here the description of the network assuming that it is applied only once (i.e., the input x fires
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once within a window of t rounds). Taking care of the general case requires slight adaptations1,

Section 2.2.1 for the complete details. At the high-level, the network consists of k = Θ(log t)

layersA1, . . . , Ak each containing two excitatory neurons ai,1, ai,2 denoted as counting neurons,

and one inhibitory neuron di. Each layer Ai gets its input from layer Ai−1 for every i ≥ 2, and

A1 gets its input from x. The role of each layer Ai is to count two firing events of the neuron

ai−1,2 ∈ Ai−1. Thus the neuron alog t,2 counts 2log t many rounds.

Because our network has an update time of log t rounds (i.e., number of rounds to update

the timer), for a given time parameter t, the construction is based on the parameter t̂ where

t̂+ log t̂ = t.

• The first layer A1 consists of two neurons a1,1, a1,2. The first neuron a1,1 has positive

incoming edges from x and a1,2 with weights w(x, a1,1) = 3 , w(a1,2, a1,1) = 1, and

threshold b(a1,1) = 1. The second neuron a1,2 has an incoming edge from a1,1 with

weight w(a1,1, a1,2) = 1 and threshold b(a1,2) = 1. Because we have a loop going from

a1,1 to a1,2 and back, once x fired a1,2 will fire every two rounds.

• For every i = 2 . . . log t̂, the i-th layer Ai contains 3 neurons, two counting neurons ai,1,

ai,2 and a reset neuron di. The first neuron ai,1 has positive incoming edges from ai−1,2,

and a self-loop with weights w(ai−1,2, ai,1) = w(ai,1, ai,1) = 1, a negative incoming edge

from di with weight w(di, ai,1) = −1, and threshold b(ai,1) = 1. The second count-

ing neuron ai,2 has incoming edges from ai−1,2 and ai,1 with weights w(ai−1,2, ai,2) =

w(ai,1, ai,2) = 1, and threshold b(ai,2) = 2. The reset neuron di is an inhibitory copy of

ai−1,2 and therefore also has incoming edges from ai−1,2 and ai,1 with weightw(ai−1,2, di) =

w(ai,1, di) = 1 and threshold b(di) = 2. As a result, ai,1 starts firing after ai−1,2 fires once,

and ai,2 fires after ai−1,2 fires twice. Then the neuron di inhibits ai,1 and the layer is ready

for a new count.

• The output neuron y has a positive incoming edge from x as well as a self-loop with

weights w(x, y) = 2, w(y, y) = 1. In addition, it has a negative incoming edge from

the last counting neuron alog t̂,2 with weight w(alog t̂,2, y) = −1 and threshold b(y) = 1.

Hence, after x fires the output y continues to fire as long as alog t̂,2 did not fire.

• The (inhibitory) last counting neuron alog t̂,2 also has negative outgoing edges to all count-

ing neurons (neurons of the form ai,j) with weight w(alog t̂,2, ai,j) = −2. As a result, after

the timer counts t rounds it is reset.

The key claim that underlines the correctness of Theorem 1(1) is as follows.

Claim 1. If x fires in round t0, for each layer i the neuron ai,2 fires in rounds t0 + ` · 2i + i− 1

for every ` = 1 . . . bt̂/2ic.
1I.e., whenever x fires again in a window of t rounds, one should reset the timer and start counting t rounds

from that point on.
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Proof. The proof is by induction on i. For i = 1, once x fires in round t0, neuron a1,1 fires in

round t0 +1 and a1,2 fires in round t0 +2. Because there is a bidirectional edge between a1,1 and

a1,2, the second counting neuron a1,2 keeps firing every two rounds. Assume the claim holds

for neuron ai−1,2, and consider the i-th layer Ai. Recall that ai,2 fires in round t′ only if ai,1 and

ai−1,2 fired in round t′ − 1. The neuron ai,1 fires one round after ai−1,2 fires and keeps firing

as long as di did not fire. By the induction assumption ai−1,2 fired for the first time in round

2i−1 + i− 2 and therefore ai,1 starts firing in round 2i−1 + i− 1. Note that in round 2i−1 + i− 1

the neuron ai−1,2 did not fire, and therefore the neurons ai,2 and di can start firing only after

ai−1,2 fires again. Hence, only in round 2 · 2i−1 + i− 2 + 1 = 2i + i− 1 the neurons ai,2 and di
fires for the first time. In the next round, because of the inhibition of di both counting neurons

ai,1 and ai,2 do not fire and we can repeat the same arguments considering the next time the

counting neurons ai,1, ai,2 fire.

We note that once the neuron alog t̂,2 fires for the first time in round t0 + 2log t̂ + log t̂− 1 =

t0 + t̂+ log t̂− 1, it inhibits all the counting neurons. Hence, as long as x did not fire again, all

counting neurons will be idle starting at round t0 + t̂+ log t̂ = t0 + t.

2.2.1 Adaptation of DetTimer to the General Case

We extend the DetTimer(t) network to handle the case where x fired more than once within the

execution.

• Case 1: x fires several times within a span of t rounds. We introduce an additional

reset (inhibitory) neuron r that receives input from x with weight w(x, r) = 1, and had

threshold value b(r) = 1. The reset neuron r has outgoing edges to all neurons except

a1,2 and y with negative weight of −2

• Case 2: x fires again just one round before alog t̂,2 fires. To process this new spike,

we introduce a control neuron c that receives input from x with weight w(x, c) = 1,

has threshold b(c) = 1, and therefore fires one round after x. The control neuron c has

outgoing edges to y and a1,2 with weights w(c, y) = w(c, a1,2) = 3. Therefore even if

alog t̂,2 fires one round after x, the control neuron will cancel the inhibition on the output

y and on a1,2 and the timer will continue to fire.

Fig. 2.2 illustrates the structure of the network.

We next use Claim 1 in order to prove the first part of Theorem 1.

Complete Proof of Theorem 1(1)

Proof. We start by considering the case where x fires once in round t′. If x fired in round t′,

due to the self-loop of y, starting from round t′+ 1, the output keeps firing as long as alog t̂,2 did

not fire. By Claim 1, alog t̂,2 fires in round t′ + t̂+ log t̂− 1 = t′ + t− 1, and therefore y will be
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Figure 2.2: Illustration of the DetTimer network. Left: The simplified network for the case that x fired

once. The neurons y, a1,2 and the set of neurons {a1,1, . . . , alog t̂,1} have threshold 1. For i ≥ 2 the

threshold of ai,2 and di is 2. Right: A complete network description for the general case, where the input

can fire several times during the execution. The reset neuron r resets the timer in case x fires several

times. The control neuron c takes care of the special extreme case where x fires again one round before

the last counting neuron alog t̂,2 fires.

inhibited in round t′+ t. Note that alog t̂,2 also inhibits all other auxiliary neurons, and therefore

as long as x will not fire again, y will also not fire. Next, we consider the case where x also

fired in round t′′ ≥ t′ + 1.

• Case 1: t′′ ≥ t′ + t. Because in round t′ + t − 1 the neuron alog t̂,2 inhibits all counting

neurons in the network, starting round t′ + t no counting neuron fires until x fires again

in round t′′. Thus, after x fires in round t′′, the network behaves the same as after the first

firing event.

• Case 2: t′′ ≤ t′+ t−3. In round t′′+1 ≤ t′+ t−2 the reset neuron r inhibits all counting

neurons except for a1,2. Hence, in round t′′ + 2 only y and a1,2 fire, and the neural timer

continues to count for additional t− 2 rounds.

• Case 3: t′′ = t′+ t−1. The neuron alog t̂,2 fires on the same round as x. Since the weights

on the edges from x to y and a1,1 are greater than the weight of the inhibition from alog t̂,2,

the timer continues to fire based on the last firing event of x.

• Case 4: t′′ = t′ + t− 2. In this case x fires in round t′′ and in the next round, alog t̂,2 fires

and inhibits the output y (at the same round that the reset neuron r fires). Recall that in

round t′′+ 1 the control neuron c also fires. Hence, in round t′′+ 2 the neuron c excites y

and a1,2 canceling the inhibition of alog t̂,2.
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2.2.2 Useful Modifications of Deterministic Timers

(1) Time parameter as a soft-wired input. We show a slightly modified variant of the neural

timer denoted by DetTimer∗ which receives as input an additional set of log t neurons that en-

code the desired duration of the timer. This modified variant is used in our improved randomized

constructions.

Specifically, the DetTimer construction is modified to receive a time parameter t′ ≤ t as a

(soft) input to the network. That is, we assume that t is the upper limit on the time parameter.

The same network can be used as a timer for any t′ ≤ t rounds, and this t′ can be given as

an input to the network. In such a case, once the input neuron x fires, the output neuron y

will fire for the next t′ consecutive rounds. The time parameter t′ is given in its binary form

using log t input neurons denoted as z1 . . . zlog t. We denote this network as DetTimer∗(t). The

idea is that given a time parameter t′, we want to use only log(t′′) layers out of the log t, where

t′′ = t′+log(t′) (we use t′′ due to the log(t′′) delay in the update of the timer). The modifications

are as follows.

1. The time input neurons z1, . . . , zlog t are set to be inhibitors.

2. We introduce an intermediate layer of neurons c1 . . . clog t̂ that determines how many lay-

ers of counting neurons we should use. Each ci has negative edges from z1, . . . , zlog t

with weights w(ci, zj) = −2j−1, and threshold b(ci) = −i − 1 − 2i−1. Hence ci fires iff

i− 1 + 2i−1 ≥ dec(z̄) = t′.

3. We introduce log t̂ inhibitors r1, . . . rlog t̂ in order to inhibit the output y after we count to

t′ and reached layer t′′. Each ri has incoming edges from ci and ai,1, and fires as an AND

gate. Hence, each ri fires only when the timer count reach 2i−1+i−1 and i−1+2i−1 ≥ t′.

4. The output neuron y receives negative incoming edges from the neurons r1 . . . rlog t̂ with

weightw(ri, y) = −1, and stops firing if at least one neuron ri fired in the previous round.

5. Every neuron ri also has negative outgoing edges to all counting neurons aj,k k ∈
{1, 2}, j = 1 . . . log t̂ with weight w(ri, aj,k) = −2 in order to reset the timer when

we finish counting to t′.

See Fig. 2.3 for an illustration of DetTimer∗(t) network.

(2) Extension to neural counting. We next show a modification of the timer into a neural

counter network DetCounter that instead of counting the number of rounds, counts the number

of input spikes in a time interval of t rounds.

Lemma 1. Given time parameter t, there exists a deterministic neural counter network which

has an input neuron x, a collection of log t output neurons represented by a vector ȳ, and

O(log t) additional auxiliary neurons. In a time window of t rounds, for every round τ , if x

fired rτ times in the last τ rounds, the output ȳ encodes rτ by round τ + log rτ + 1.
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Figure 2.3: Left: Det. neural timer DetTimer∗ with a soft-wired time parameter. The input neurons

z1, . . . , zlog t encode the time parameter t′. The intermediate neurons c1, . . . , clog t control how many

layers are used depending on the time parameter t′. Once the timer reaches layer i = Θ(log(t′)) for

which ci fires, the inhibitor ri inhibits the output y and the counting terminates. Right: neural counter

DetCounter, the output neurons ȳ encode the number of times x fired in a time window of t rounds.

This extra-additive factor of log rτ is due to the update time of the counter. In Section 2.5,

we revisit the neural counter problem and provide an approximate randomized solution with

O(log log t+log(1/δ)) many neurons where δ is the error parameter. This construction is based

on the well-known Morris algorithm (using the analysis of [70]) for approximate counting in

the streaming model.

We next describe the required adaptations for constructing the network DetCounter. The

DetCounter network with parameter t contains log t layers, all layers i ≥ 2 are the same as

in DetTimer and only the first layer is slightly modified. The first counting neuron a1,1 has

a positive incoming edge from x with weight w(x, a1,1) = 4, and a self-loop with weight

w(a1,1, a1,1) = 1. In addition a1,1 has a negative edge from the inhibitor d1 with weight

w(d1, a1,1) = −1, and threshold b(a1,1) = 1. The second counting neuron a1,2 has pos-

itive edges from x and a1,1 with weights w(x, a1,2) = w(a1,1, a1,2) = 1, a negative edge

from d1 with weight w(d1, a1,2) = −2 and threshold b(a1,2) = 2. The reset neuron d1 is

an inhibitory copy of a1,2 and therefore also has positive edges from x and a1,1 with weights

w(x, d1) = w(a1,1, d1) = 1, a negative self-loop with weight w(d1, d1) = −2 and threshold

b(d1) = 2. We then connect the counting neurons a1,1, · · · alog t,1 to the output vector directly,

where yi has an incoming edge from ai,1 with weight w(ai,1, yi) = 1 and threshold b(yi) = 1.

Fig. 2.3 demonstrates the DetCounter(t) network.

Next, we show that once the counter is updated, the number of times that x fired is repre-

sented as a binary number where the counting neuron ai,1 represents the i-th bit in the binary

representation (a1,1 is the least significant bit). We note that if the last firing of x occurs in round
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τ then after at most log c + 1 rounds the counter is updated with the new value, where c is the

value of the counter before round τ . We start with the following claim concerning the first layer.

Claim 2. If x fired in round τ , the neurons d1 and a1,2 fire in round τ + 1 iff x fired an even

number of times by round τ .

Proof. By induction on the number of times x fired, denoted as n. Since d1 and a1,2 have

identical potential functions it is sufficient to prove the claim for the neuron d1. For n = 1, if

x fired once in round τ , then a1,1 fires for the first time in round τ + 1, and since d1 fires only

if a1,1 fired in the previous round, in round τ + 1 both neuron d1 and a1,2 are idle. For n = 2,

since x fired for the first time in some round τ ′ ≤ τ − 1, starting round τ ′ + 1 neuron a1,1 fires

on every round until d1 fires. Hence, in round τ + 1 the neuron d1 receives spikes from both

x and a1,1 and therefore fires. Assume the claim holds for every k ≤ n − 1 and we will show

correctness for n. Denote the round in which x fired for the (n− 1)-th time by τ ′ ≤ τ − 1.

• (Case 1: n is even.) Since n − 1 is odd, by the induction assumption d1 did not fire in

round τ ′ + 1. Hence a1,1 is not inhibited until round τ + 1, and due to the self-loop a1,1

also fires in round τ . Therefore d1 and a1,2 fire in round τ + 1.

• (Case 2: n is odd.) If τ ′ = τ−1, by the induction assumption d1 fires in round τ ′+1 = τ ,

and due to the negative edges from d1, both d1 and a1,2 are idle in round τ +1. Otherwise,

τ ′ ≤ τ − 2. By the induction assumption, d1 fires in round τ ′ + 1. Since x did not fire

in round τ ′ + 1 (as it fires again only in round τ ), in round τ ′ + 2 ≤ τ the neuron a1,1

is inhibited by d1 and therefore in round τ the neurons d1 and a1,2 receives a signal only

from x and does not fire.

Next, we show that if x fired in round τ for the last time, for each layer i ∈ [1, log n], neuron

ai,2 fires in round τ + i only if x fired ` · 2i−1 times by round τ for some integer ` ≥ 1.

Claim 3. For every layer i ∈ [2, log t], if ai−1,2 fired in round τ for the n-th time, the neurons di
and ai,2 fire in round τ + 1 iff n is even.

Proof. By induction on n. For n = 1, one round after the first time neuron ai−1,2 fires, the

neuron ai,1 fires for the first time, and therefore ai,2, di do not fire. For n = 2, the second time

ai−1,2 fires, due to the self-loop on ai,1 it fires as well, and therefore after one round ai,2 and

di fire. Assume that ai−1,2 fired in round τ ′ for the (n − 1)-th time. If n is even, then by the

induction assumption di does not fire in round τ ′+ 1 ≤ τ . Hence, due to the self-loop of ai,1, in

round τ also ai,1 fires and therefore di and ai,2 fire in round τ + 1. If n is odd, by the induction

assumption di fires in round τ ′ + 1. By Claim 2, there is at least one round distance between

every two firing events of a1,2. Thus, there is at least one round distance between every two
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firing events of ai−1,2, and therefore τ ≥ τ ′ + 2. Hence, because ai,1 was inhibited by di in

round τ ′ + 1 < τ , it is idle in round τ and the neurons di and ai,2 do not fire in round τ + 1.

Corollary 1. If x fired for the n-th time in round τ , for every layer i ∈ [1, log t] the neurons di
and ai,2 fire in round τ + i iff (n mod 2i) = 0.

Proof. By induction on i. The base case for i = 1 follows from Claim 2. Assume that the

claim holds for layer i and we will show it also holds for layer i + 1. If (n mod 2i) = 0, then

n = q · 2 · 2i−1 for some integer q. Therefore by the induction assumption, ai,2 fires in round

τ + i, and moreover it fired an even number of times by that round. Hence, by Claim 3 the

neurons di+1 and ai+1,2 fire in round τ + i+ 1. Otherwise, if (n mod 2i) 6= 0, by the induction

assumption ai,2 does not fire in round τ + i and therefore di+1 and ai+1,2 do not fire in round

τ + i+ 1. If (n mod 2i) = 0 but (n mod 2i+1) 6= 0, then by the induction assumption ai,2 fired

an odd number of times by round τ + i and by Claim 3 neurons di and ai,2 do not fire in round

τ + i+ 1.

Proof of Lemma 1. The first counting neuron ai,1 fires one round after ai−1,2 fires, and as long

as di and ai,2 did not fire. Hence, by Cor. 1 we can conclude that if x fired for the last time in

round τ , by round τ + log rτ + 1, the neurons a1,1, . . . , alog t,1 hold a binary representation of

the number of times rτ that x fired by round τ .

2.3 Randomized Constructions of Neural Timer Networks
We now turn to consider randomized implementations. The input to the construction are a time

parameter t and an error probability δ ∈ (0, 1), that are hard-wired into the network.

Definition 2 (Rand. Neural Timer Network). A randomized neural timer RT for parameters

t ∈ N>0 and δ ∈ (0, 1), satisfies the following for a time window of poly(t) rounds.

• For every fixed firing event of x in round τ , with probability 1 − δ, y fires in each of the

following t rounds.

• στ ′(y) = 0 for every round τ ′ such that τ ′ − Last(τ ′) ≥ 2f with probability 1− δ, where

Last(τ ′) = max{i ≤ τ ′ | σi(x) = 1} is the last round τ in which x fired up to round τ ′.

Note that in our definition, we have a success guarantee of 1 − δ for any fixed firing event

of x, on the event that y fires for t many rounds after this firing. In contrast, with a probability

of 1− δ over the entire span of poly(t) rounds, y does not fire in cases where the last firing of x

was 2f rounds apart. We start by showing a simple construction with O(log 1/δ) neurons.
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2.3.1 Warm Up: Randomized Timer with O(log 1/δ) Neurons

The network BasicRandTimer(t, δ) contains a collection of ` = Θ(log 1/δ) spiking neurons

A = {a1, . . . , a`} that can be viewed as a time-estimator population. Each of these neurons

has a positive self-loop, a positive incoming edge from the input neuron x, and a positive out-

going edge to the output neuron y. See Fig. 2.4 for an illustration. Whereas these ai neurons

are probabilistic spiking neurons1, the output y is simply a threshold gate. We next explain

the underlying intuition. Assume that the input x fired in round 0. It is then required for the

output neuron y to fire for at least t rounds 1, . . . , t, and stop firing after at most 2f rounds

with probability 1 − δ. By having every neuron ai fire (independently) w.p (1 − 1/t) in each

round given that it fired in the previous round2, we get that ai fires for t consecutive rounds with

probability (1− 1/t)t ≈ 1/e. On the other hand, it fires for 2f consecutive rounds with proba-

bility (1− 1/t)2f = 1/e2. Since we have Θ(log 1/δ) many neurons, by a simple application of

Chernoff bound, the output neuron y (which simply counts the number of firing neurons in A)

can distinguish between round t and round 2f with probability 1− δ.

x

y

…
𝑎1 𝑎2 𝑎

log(
1
𝛿
)

Figure 2.4: Illustration of the BasicRandTimer(t, δ) network. Each neuron ai fires with probability

1 − 1/t in round τ given that it fired in the previous round, and therefore fires for t consecutive rounds

with constant probability. The output y fires if at least 1/(2e) fraction of the ai neurons fired in the

previous round.

Detailed construction. The network BasicRandTimer(t, δ) has input neuron x, output neuron

y, and ` = Θ(log 1/δ) spiking neurons A = {a1, . . . , a`}. We set the weights of the self-

loop of each ai, and the weight of the incoming edge from x to be w(x, ai) = w(ai, ai) =

log(t − 1) + b(ai). The threshold value of ai is set to b(ai) = Θ(log(t`/δ)). This makes sure

that given a firing of either x or ai in round τ , the probability that ai fires in round τ + 1 is

1− 1/t. In the complementary case (neither x nor ai fired in round τ ), ai fires in round τ with

probability at most O(δ/poly(t`)). For the output y, we set w(ai, y) = 1 for each ai, the weight

of the edge from x to be w(x, y) = `
2e

, and its threshold b(y) = `
2e

. This makes sure that y fires

in round τ ′ if either x or at least 1/2e fraction of the ai neurons fired in round τ ′ − 1. We next

analyze the construction.

Lemma 2 (Correctness). Within a time window of poly(t) rounds it holds that:

1A neuron that fires with a probability that depends on its potential as specified in Chapter 1.
2A neuron ai that stops firing in a given round, drops out and would not fire again with good probability.
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• For every fixed firing event of x in round τ , with probability 1 − δ, y fires in each of the

following t rounds.

• στ ′(y) = 0 for every round τ ′ such that τ ′−Last(τ ′) ≥ 2f with probability at least 1− δ.

Proof. When x fires in round τ0, each neuron ai fires for the following t consecutive rounds

independently with probability 1/e. Therefore, the expected number of neurons in A that fired

for t consecutive rounds starting round τ0 + 1 is `
e
. Using Chernoff bound upon picking a large

enough constant c s.t ` = c · log(1/δ), at least `/2e auxiliary neurons fired for t consecutive

rounds and y fires in rounds [τ0 + 2, τ0 + t] with probability 1 − δ. Since y has an incoming

edge from x, it fires in round τ0 + 1 as well.

Next, recall that for each neuron ai ∈ A, given that ai or x did not fire in round τ , the

probability that ai fires in round τ + 1 is at most δ/poly(`t). Hence by union bound, in a

window of poly(t) rounds, the probability there exists a neuron ai ∈ A that fired in round τ ′ but

did not fire in round τ ′ − 1 is at most δ/2. Assuming no ai ∈ A fires unless it fired previously,

each ai ∈ A fires for 2f consecutive rounds with probability 1/e2. Using Chernoff bound the

probability at least `
2e

neurons from A fired for 2f consecutive rounds is at most δ/2 (again

we choose ` accordingly). Thus, we conclude that the probability there exists a round τ ′ s.t

τ ′ − Last(τ ′) ≥ 2f in which στ ′(y) = 1 is at most δ.

2.3.2 Improved Construction with O(log log 1/δ) Neurons

We next describe an optimal randomized timer ImprovedRandTimer with an exponentially im-

proved number of auxiliary neurons. This construction also enjoys the fact that it requires a

single spiking neuron, while the remaining neurons can be deterministic threshold gates. Due

to the tightness of Chernoff bound, one cannot really hope to estimate time with probability 1−δ
using o(log(1/δ)) samples. Our key idea here is to generate the same number of samples by

re-sampling one particular neuron over several rounds. Intuitively, we are going to show that for

our purposes having ` = log(1/δ) neurons a1, . . . , a` firing with probability 1 − 1/t in a given

round is equivalent to having a single neuron a∗ firing with probability 1− 1/t (independently)

in a sequence of ` rounds.

Specifically, observe that the distinction between round t and 2f in the BasicRandTimer

network is based only on the number of spiking neurons in a given round. In addition, the

distribution on the number of times a∗ fires in a span of ` rounds is equivalent to the distribution

on the number of firing neurons a1, . . . , a` in a given round. For this reason, every phase of

ImprovedRandTimer simulates a single round of BasicRandTimer. To count the number of firing

events in ` rounds, we use the deterministic neural counter module with log ` = O(log log 1/δ)

neurons.
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We now further formalize this intuition. The network ImprovedRandTimer simulates each

round of BasicRandTimer using a phase of `′ = Θ(log 1/δ) rounds 1, but with onlyO(log log 1/δ)

neurons. In the BasicRandTimer network each of the neurons ai fires (independently) in each

round w.p 1 − 1/t. Once it stops firing in a given round, it basically drops out and would not

fire again with good probability. Formally, consider an execution of the BasicRandTimer and

let ni be the number of neurons in A that fired in round i. In round i + 1 of this execution, we

have ni many neurons each firing w.p 1−1/t (while the remaining neurons in A fire with a very

small probability). In the corresponding i + 1 phase of the network ImprovedRandTimer, the

chief neuron a∗ fires w.p 1− 1/t′ where t′ = t
`′

for n′i ≤ ` consecutive rounds2 where n′i is the

number of rounds in which a∗ fired in phase i.

The dynamics of the network ImprovedRandTimer is based on discrete phases. Each phase

consists of a fixed number of `′ = O(`) rounds but has a possibly different number of active

rounds, namely, rounds in which a∗ attempts firing. Specifically, a phase i has an active part of

n′i rounds where n′i is the number of rounds in which a∗ fired in phase i − 1. In the remaining

`′ − n′i rounds of that phase, a∗ is idle. To implement this behavior, the network should keep

track of the number of rounds in which a∗ fires in each phase, and supply it as an input to the

next phase (as it determines the length of the active part of that phase). For that purpose, we will

use the deterministic modules of neural timers and counters. The module DetCounter with time

parameter Θ(log 1/δ) is responsible for counting the number of rounds that a∗ fires in a given

phase i. The output of this module at the end of the phase is the input to a DetTimer∗ module3

at the beginning of phase i+ 1. In addition, we also need a phase timer module DetTimer with

time parameter Θ(log 1/δ) that “announces” the end of a phase and the beginning of a new one.

Similarly to the network BasicRandTimer, the output neuron y fires as long as a∗ fires for at least

(1/2e) fraction of the rounds in each phase (in an analogous manner as in the BasicRandTimer

construction). See Fig. 2.5 for an illustration of the network. Note that since we only use

deterministic modules with time parameter Θ(log 1/δ), the total number of neurons (which are

all threshold gates) will be bounded by O(log log 1/δ). We next give a detailed description of

the network and prove Theorem 2.

Complete proof of Theorem 2: We first describe the modules of the network ImprovedRandTimer

which receives as input the time parameter t and error probability δ.

Network modules:

• A Global-Phase-Timer module implemented by a (slightly modified) module of DetTimer(`′).

Due to the update time of DetCounter (Lemma 1), we set the length of each phase to

`′ = ` + log ` where ` correspond to the number of spiking neurons in BasicRandTimer.

Upon initializing this timer, the output neuron of this module fires after `′ rounds (instead

1Due to technical reasons each phase consists of `′ = `+ log ` rounds instead of `.
2Note that because each phase takes `′ = Θ(log 1/δ) rounds, we will need to count t′ = t

`′ many phases. Thus
a∗ fires with probability 1− 1/t′ rather than w.p 1− 1/t.

3Here we use the variant of DetTimer in which the time is encoded in the input layer of the network.
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of firing for `′ rounds). This firing is the wake-up call for the network that a phase has ter-

minated (`′ rounds have passed). This will activate some cleanup steps and a subsequent

“announcement” for the start of a new phase.

To allow this module to inhibit as well as excite other neurons in the network, we will

have two output (copy) neurons, one will be an inhibitory neuron and the other is an ex-

citatory neuron. The inhibitor activates a clean-up round (in order to clear the counting

information from the previous phase). After one round, using a delay neuron the excita-

tory neuron safely announces the beginning of a new phase.

• An Internal-Phase-Timer module also implemented by a (yet a differently slightly mod-

ified) variant of DetTimer. The role of this module is to indicate to the spiking neuron

a∗ the number of rounds in which it should attempt firing in each phase. Recall that each

phase i starts by an active part of length ni in which a∗ attempts firing w.p. 1 − 1/t′

in each of these rounds. In the remaining `′ − ni rounds till the end of the phase, a∗

is idle. In each phase i, we then set the internal timer to ni, this will activate a∗ for ni
rounds. The time parameter ni is given as input to this module. For that purpose, we use

the DetTimer∗ variant in which the time parameter is given as an input. In our case, this

input is supplied by the output layer of the counting module (describe next) at the end of

phase i − 1. In particular, at the end of the phase, the output of the counting module is

fed into the input layer of the Internal-Phase-Timer module. Then, the information will

be deleted from the counting module, ready to maintain the counting in the next phase.

Since we would need to keep on providing the counting information throughout the entire

phase, we augment the input layer of this module by self-loops that keep on presenting

this information throughout the phase.

• A Phase-Counter module implemented by the DetCounter network, maintains the num-

ber of rounds in which a∗ fires in the current phase. At the end of every i-th phase, the

output layer of this module stores the number of rounds in which a∗ fired in phase i. At

the end of the phase, upon receiving a signal from the Global-Phase-Timer, the output

layer copies its information to the input layer of the Internal-Phase-Timer module us-

ing an intermediate layer of neurons, and the information of the module is deleted (by

inhibitory connections from the Global-Phase-Timer module).

Complete network description.

• The neuron a∗ has threshold b(a∗) = Θ(log(`t/δ)), and a positive incoming edge from the

output z1 of the Internal-Phase-Timer module with weight w(z1, a
∗) = ln(t′−1)+ b(a∗).

Therefore a∗ fires with probability 1 − 1/t′ if z1 fired in the previous round, and w.h.p1

does not fire otherwise.
1Here high probability refers to probability of 1− δ/poly(t).
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• Each neuron in the output of the Phase-Counter has a positive outgoing edge to an inter-

mediate copy neuron ci with weight 1. In addition, each ci has a positive incoming edge

from the Global-Phase-Timer excitatory output with weight 1, and threshold b(ci) = 2.

The copy neurons have outgoing edges to the input of the Internal-Phase-Timer and are

used to copy the current count for the next phase.

• The inhibitory output of the Global-Phase-Timer has outgoing edges to all neurons in the

Internal-Phase-Timer and Phase-Counter with weight −5. This is used to clean up the

outdated counting information at the end of the phase.

• The excitatory output of the Global-Phase-Timer has an outgoing edge to a delay neuron

d with weight 1 and threshold b(d) = 1. Hence, d fires one round after a phase ended,

and alerts the beginning of the new phase. The neuron d has outgoing edges to the input

of Global-Phase-Timer and Internal-Phase-Timer with large weight.

• The output neuron y has incoming edges from the time input neurons q1, . . . , qlog ` of the

Internal-Phase-Timer module each with weight w(qi, y) = 1 and threshold b(y) = `
2e

.

Therefore y fires if a∗ fired for at least `
2e

times in the previous phase. In addition, y

has positive incoming edges from x and the delay neuron d of the Global-Phase-Timer

module, each with weight `
2e

. This insures that y also fires between phases.

• The Global-Phase-Timer input has an incoming edge from x with a large weight, in order

to initialize the timer when the input x fires. In addition, x has outgoing edges with a

large weight to the time input of the Internal-Phase-Timer, such that the decimal value of

the input is set to `.

All neurons except for a∗ are threshold gates, see Fig. 2.5 for a schematic description of the

ImprovedRandTimer network.

Correctness. For simplicity we begin by showing the correctness of the construction assuming

that there is a single firing of the input x during a period of 2f rounds. Taking care of the

general case requires minor modifications that are described at the end of this section.

Our goal is to show that each phase of the ImprovedRandTimer network is equivalent to a

round in the BasicRandTimer network. Toward that goal, we start by showing that the length

of the active part of phase i has the same distribution as the number of neurons ni−1 that fire

in round i − 1 in BasicRandTimer(t′, δ), where t′ = t/`′. In the BasicRandTimer(t′, δ) con-

struction, let B̄i be a random variable indicating the event that there exists a neuron a ∈ A

which fired in round τ ≤ i but a as well as x did not fire in round τ − 1. Similarly, for the

ImprovedRandTimer(t, δ) construction, let B̄′i be a random variable indicating the event that

there exists a phase τ ≤ i, where neuron a∗ fired in an inactive round of phase τ . Note that

in both constructions, the probability that a∗ fired in an inactive round, and the probability that

a ∈ A fired given that it did not fire in the previous round is identical. Moreover, within a
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Figure 2.5: Schematic description of the randomized timer. In each module, only the input layer and the

output layer are shown. Excitatory (inhibitory) relations are shown in green (red) arrows. Each module

is deterministic and has Θ(log log 1/δ) threshold gates. The lower right module (Internal-Phase-Timer)

uses the variant of the deterministic neural timer in which the time parameter is softly encoded in the

input layer. This is crucial as the length of the (i+ 1)-th active phase depends on the spike counts of a∗

in phase i. This value is encoded by the output layer of the Phase-Counter module at the end of phase i.

In contrast, the Global-Phase-Timer module uses the standard neural timer network (hard-wired), as the

length of each phase is fixed.

window of τ = poly(t) rounds, by union bound both probabilities Pr[Bτ ] and Pr[B′τ ] are at

most δ/2.

Let Yi be a random variable for the number of neurons that fired in the i-th round in

BasicRandTimer(t′, δ), and let Xi be the random variable for the number of rounds a∗ fired

during phase i in ImprovedRandTimer(t, δ). In both constructions, we assume that the input

neuron x fired only in round 0.

Claim 4. For any k ≥ 0 and i ≥ 1, Pr[Xi = k | B̄′i] = Pr[Yi = k | B̄i].

Proof. By induction on i. For i = 1, given B̄1, B̄′1, the random variable X1 as well as Y1 are

the sum of ` independent Bernoulli variables with probability 1 − 1/t′ and therefore X1 = Y1.

Assume Pr[Xi = k | B̄i] = Pr[Yi = k | B̄i] and we will show the equivalence for i + 1.

First recall that in the BasicRandTimer(t′, δ) construction, each a ∈ A fires with probability

1 − 1/t′ given that it fired in the previous round. Moreover, conditioning on B̄i+1, given that

a did not fire in round i, it does not fire in round i + 1 as well. Thus, for any k, j it holds

that Pr[Yi+1 = k | Yi = j, B̄i+1] =
(
j
k

)
(1 − 1/t′)k · (1/t′)j−k (i.e., a binomial distribution).

Similarly, in the ImprovedRandTimer(t, δ) construction, since we assumed that a∗ fires only in

the active rounds of each phase, given that a∗ fired j times in phase i, in phase i+ 1 it holds that

Pr[Xi+1 = k | Xi = j, B̄′i+1] =
(
j
k

)
(1− 1/t′)k · (1/t′)j−k. By the law of total probability, we

conclude that
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Pr[Xi+1 = k | B̄′i+1] =
∑̀
j=0

Pr[Xi+1 = k | Xi = j, B̄′i+1] · Pr[Xi = j | B̄′i+1]

=
∑̀
j=0

Pr[Xi+1 = k | Xi = j, B̄′i+1] · Pr[Yi = j | B̄i]

=
∑̀
j=0

(
j

k

)
(1− 1/t′)k · (1/t′)j−k · Pr[Yi = j | B̄i]

=
∑̀
j=0

Pr[Yi+1 = k | Yi = j, B̄i+1] · Pr[Yi = j | B̄i] = Pr[Yi+1 = k | B̄i+1],

where the second equality is due to the induction assumption.

Hence, by the correctness of the network BasicRandTimer(t′, δ), with probability at least

1 − δ the neuron a∗ fires at least `/2e times in each of the first t′ phases. Since every phase

consists of `′ = ` + log ` rounds, y fires for at least `′ · t′ = t rounds w.h.p. On the other hand,

with probability at most δ/2 the neuron a∗ fires in an inactive round during one of the first 2t′

phases. Given that a∗ fired only in active-rounds, we conclude that with probability at most δ/2

the output y fires for at least 2f ′ phases. Altogether, with probability at least 1− δ the output y

stops firing by round 2f ′ · `′ = 2f .

Finally, we describe the small modifications needed to handle the case where x fires sev-

eral times within a window of 2f rounds. Upon any firing of x, all modules get reset, and a

new counting starts. To implement the reset, we connect the input neuron x to two additional

neurons, an inhibitory neuron x1, and an excitatory neuron x2 where w(x, x1) = w(x, x2) = 1

with thresholds b(x1) = b(x2) = 1. The inhibitor x1 has outgoing edges to all auxiliary neu-

rons in the network with weight −4. The excitatory neuron x2 has outgoing edges to the input

of Global-Phase-Timer and the time input of the Internal-Phase-Timer, such that the decimal

value is equal to ` with weights 6. Thus, after one round of cleaning-up, the network starts to

account the last firing of x. The output y has incoming edges from x and x2 each with weight

w(x, y) = w(x1, y) = `
2e

, this makes y fire during the reset period.

2.3.3 A Matching Lower Bound

We now turn to show a matching lower bound with randomized spiking neurons. Assume

towards contradiction there exists a randomized neural timer N for a given time parameter t

with N = o(log log 1/δ) neurons that succeed with probability at least 1− δ. This implies that

once x fired, y fires for t consecutive rounds with probability 1 − δ. Moreover, there exists

some constant c ≥ 2 such that y stops firing after (c− 1) · t rounds w.p 1− δ. Throughout the

proof, we assume w.l.o.g. that x fired in round 0. Recall that the state of the network in time τ
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denoted as sτ can be described as an N -length binary vector. Since we have N many neurons,

the number of distinct states (or configurations) is bounded by S = 2N = o(log 1/δ). We start

by establishing useful auxiliary claims.

We first claim that because we have a relatively small number of states and the memoryless

property of Obs. 2, in every window of t rounds there exists a state that occurs at least twice

(and with sufficient distance). Let s∗ be a state for which the probability that there exist rounds

t′, t′′ ≤ t such that t
3·S ≤ t′ − t′′ ≤ t and st′ = st′′ = s∗ is at least 1/S.

Claim 5. There exists such a state s∗.

Proof. Note that because N = o(log log 1/δ) and 1/δ ≤ 2poly(t) it holds that t
3·S ≥ 1. We

partition the interval [0, t] into 2 · (S + 1) balanced intervals, each of size t/2(S + 1). Because

we have only S different states, in every execution of the network for t many rounds, there must

be a state that occurs in at least two even intervals. Thus, there exists a state s∗ for which the

probability that s∗ occurred in two even intervals is at least 1/S. Because each interval is of

size t/2(S + 1) ≥ t/3S we conclude that the claim holds.

Next, we use the assumption that with probability at least 1− δ the output y fires in rounds

[0, t] combined with the memoryless property (Obs. 2) to show that given that state s∗ occurred

in round t′, with a sufficiently large probability, s∗ occurs again with a long enough interval, and

y fires in all rounds between the two occurrences of s∗. Let p(t′) = Pr[∃t′′ ∈ [t′ + t/(3S), t′ +

t], st′′ = s∗ and σt∗(y) = 1 ∀t∗ ∈ [t′, t′′] | st′ = s∗]. By Obs. 2, we have:

Observation 3. p(t′) = p(t′′) for every t′, t′′.

Define p∗ = p(1) = p(t′) for any round t′. The next claim shows that p∗ is sufficiently large.

Claim 6. p∗ ≥ 1/S − δ.

Proof. Let A be an indicator random variable for the event that there exist 0 < t′, t′′ < t such

that t′′ − t′ ∈ [t/3S, t], st′ = st′′ = s∗. Let B be the indicator random variable for the event

that there exists t∗ ∈ [0, t] such that σt∗(y) = 0. By Claim 5, Pr[A] ≥ 1/S, and by the success

guarantee of the network, Pr[B] ≤ δ. Hence, by union bound, we get Pr[A ∧ B̄] ≥ 1/S − δ .
Let A(t′, t′′) be the indicator random variable for the event that st′ = st′′ = s∗ and σt∗(y) =

1 for every t∗ ∈ [t′, t′′]. Let F (t′) be the indicator random variable for the event that s∗ appears

in round t′ for the first time. Hence, we get

1/S − δ ≤ Pr[A ∧ B̄] ≤
∑

0<t′<t−t/(3S)

Pr[F (t′) ∧ (∃t′′ ∈ [t′ + t/3S, t] s.t st′′ = s∗) ∧ B̄]

≤
∑

0<t′<t−t/(3S)

Pr[F (t′) ∧ (∃t′′ ∈ [t′ + t/3S, t] s.t A(t′, t′′) = 1)]

=
∑

0<t′<t−t/(3S)

Pr[F (t′)] · Pr[(∃t′′ ∈ [t′ + t/3S, t] s.t A(t′, t′′) = 1) | F (t′)]
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=
∑

0<t′<t−t/(3S)

Pr[F (t′)] · Pr[(∃t′′ ∈ [t′ + t/3S, t] s.t A(t′, t′′) = 1) | st′ = s∗]

=
∑

0<t′<t−t/(3S)

Pr[F (t′)] · p∗ ≤ p∗,

where the second inequality is by union bound over all possibilities for event A. The third

equation is due to the memoryless property, the probability that the event occurred conditioning

on F (t′), is equivalent to conditioning on st′ = s∗. The last equality follows by summing over

a set of disjoint events F (t′).

We are now ready to complete the proof of Theorem 3.

Proof of Theorem 3. We bound the probability that y fires in each of the first c · t rounds.

Let C be the indicator random variable for the event that there exists a sequence of rounds

0 = τ0 < τ1 < τ2 < · · · < τ3c·S such that for every i ≥ 1, it holds that:

• σt∗(y) = 1 for all t∗ ∈ [τi−1, τi].

• sτi = s∗.

• τi − τi+1 ∈ [t/3S, t].

Note that because τi+1− τi ≥ t/3S, it holds that τ3c·S ≥ c · t. Hence, the probability that y fires

in each of the first c · t rounds is at least Pr[C]. Next, we calculate the probability of the event

C. Recall that given that sτi = s∗, the probability there exists a round τi+1 ∈ [τi + t/3S, τi + t]

for which A(τi, τi+1) is equal to p(τi) = p∗. Moreover, by Claim 5 and the success guarantee,

the probability there exists 0 < τ1 < t such that A(0, τ1) is at least 1/S − δ. By Claim 6 and

the memoryless property, we have:

Pr[C] = Pr[∃τ1 < t s.t A(0, τ1)] ·
3c·S−1∏
i=1

Pr[∃τi+1 ∈ [τi + t/3S, τi + t] s.t A(τi, τi+1) | sτi=s∗ ]

≥ (1/S − δ)
3c·S−1∏
i=1

p∗ ≥ (1/S − δ)3cS .

Taking N ≤ (log log 1/δ − log log log 1/δ) − log 6c = log( log 1/δ
log log 1/δ

) − log 6c, the number of

different states is bounded by S < log 1/δ
6c·log log 1/δ

. Thus, the network fails with probability of at

least

(1/S − δ)3c·S >

(
6 · c · log log 1/δ

log 1/δ
· 1

2

) log 1/δ
log log 1/δ

> δ ,

in contradiction to the success guarantee of at least 1− δ.

35



2.4 Applications to Synchronizers

The asynchronous setting. In this setting, the neural network N = 〈X,Z, Y, w, b〉 also spec-

ifies a response latency function ` : V × V → N>0, where V = X ∪ Z ∪ Y . For ease of

notation, we normalize all latency values such that mine∈A `(e) = 1 and denote the maximum

response latency by L = maxe∈A `(e). Supported by biological evidence [91], we assume that

self-loop edges (a.k.a. autapses) have the minimal latency in the network, that `((u, u)) = 1

for self-edges (u, u). This assumption is crucial in our design1. Indeed the exceptional short

latency of self-loop edges has been shown to play a critical role in biological network synchro-

nization [125, 62]. The dynamic proceeds in synchronous rounds and phases. The length of a

round corresponds to the minimum edge latency, this is why we normalize the latency values

so that mine∈A `(e) = 1. If neuron u fires in round τ , its endpoint v receives u’s signal in round

τ + `(e). Formally, a neuron u fires in round τ with probability p(u, τ):

pot(u, τ) =
∑

v∈X∪Z∪Y

wv,u · στ−`(u,v)(v)− b(u) and p(u, τ) =
1

1 + e−
pot(u,τ)

λ

(2.1)

Synchronizer. A synchronizer ν is an algorithm that gets as input a network Nsync and outputs

a networkNasync = ν(Nsync) such that V (Nsync) ⊆ V (Nasync) where V (N ) denotes the neurons

of a networkN . The networkNasync works in the asynchronous setting and should have similar

execution to Nsync in the sense that for every neuron v ∈ V (Nsync), the firing pattern of v in

the asynchronous network should be similar to the one in the synchronous network. The output

network Nasync simulates each round of the network Nsync as a phase.

Definition 3 (Pulse Generator and Phases). A pulse generator is a module that fires to declare

the end of each phase. Denote by t(v, p) the (global) round in which neuron v receives the p-th

spike from the pulse generator. We say that v is in phase p during all rounds τ ∈ [t(v, p −
1), t(v, p)].

Definition 4 (Similar Execution (Deterministic Networks)). The synchronous execution Πsync

of a deterministic network Nsync is specified by a list of states Πsync = {σ1, . . . , } where each

σi is a binary vector describing the firing status of the neurons in round i. The asynchronous

execution of network Nasync denoted by Πasync is defined analogously only when applying the

asynchronous dynamics (of Eq. (2.1)). The execution Πasync is divided into phases of fixed

length. The networks Nsync and Nasync have a similar execution if V (Nsync) ⊆ V (Nasync), and

in addition, a neuron v ∈ V (Nsync) fires in round p in the execution Πsync iff v fires during phase

p in Πasync.

For simplicity of explanation, we assume that the network Nsync is deterministic. However,

our scheme can easily capture randomized networks as well (i.e., by fixing the random bits in

the synchronized simulation and feeding it to the async. one).
1In [89], we actually show that this assumption is necessary for the existence of synchronizers even when

L = 2.
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Extension for randomized networks. For networksNsync that contain also probabilistic thresh-

old gates, the notion of similar execution is defined as follows. Consider a fixed execution Πsync

of the network Nsync. In each round of simulating Nsync, the spiking neurons flip a coin with

probability that depends on their potential. Once we fix those random coins used by the neu-

rons in the execution Πsync, the process becomes deterministic. Formally, for every round p

and neuron v, let R(v, p) be the set of random coins used by the neuron v in round p in the

execution Πsync. The firing decision of v in round p is fully determined given those bits. The

asynchronous network Nasync contains a set of neurons V ′ that are analogous to the neurons in

Nsync and an additional set of deterministic threshold gates. When simulating this network, the

neurons in V ′ will use the same random coins as those used by their corresponding neurons in

Πsync: in each phase p in the execution Πasync, the neuron v will be given the bits R(v, p) and

will base its firing decision using a deterministic function of its current potential, bias value and

R(v, p). This allows us to restrict attention to deterministic networks1.

The challenge. Consider a (synchronous) network that consists of one output neuron z with

two incoming inputs: an excitatory neuron x, and an inhibitory neuron y. The weights are set

such that z computes X ∧ Y . Thus, z fires in round τ if x fired in round τ − 1 and y did not

fire. Implementing an X ∧ Y gate in the asynchronous setting is quite tricky. In the case where

both x and y fire in round τ , in the synchronous network, z should not fire in round τ + 1.

However, in the asynchronous setting, if `(x, z) < `(y, z), then z will mistakenly fire in round

τ + `(x, z). This illustrates the need of enforcing a delay in the asynchronous simulation: the

neurons should attempt firing only after receiving all their inputs from the previous phase. We

handle this by introducing a pulse-generator module, that announces when it is safe to attempt

firing.

To illustrate another source of challenge, consider the asynchronous implementation of an

AND-gate X ∧Y . If both x and y fire in round τ , then z fires in round τ + 1 in the synchronous

setting. However, if the latencies of the edges `(x, z) and `(y, z) are distinct, z receives the

spike from x and y in different rounds, preventing the firing of z. Recall, that z has no memory,

and therefore its firing decision is based only on the potential level in the previous round. To

overcome this hurdle, in the transformed network, each neuron in the original synchronous

network is augmented with 3 copy-neurons, some of which have self-loops. Since self-loops

have latency 1, once a neuron with a self-loop fires, it fires in the next round as well. This will

make sure that the firing states of x and y are kept on being presented to z for sufficiently many

rounds, which guarantees the existence of a round where both spikes arrive.

While solving one problem, introducing self-loops into the system brings along other trou-

bles. Clearly, we would not want the neurons to fire forever, and at some point, those neurons

should get inhibited to allow the beginning of a new phase. This calls for a delicate reset mech-

1The neurons in those networks are not necessarily threshold gates, but rather base their firing decision using
some deterministic function
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anism that cleans up the old firing states at the end of each phase, only after their values have

already been used. Our final solution consists of global synchronization modules (e.g., pulse-

generator, reset modules) that are inter-connected to a modified version of the synchronous

network. Before explaining those constructions, we start by providing a modified neural timer

DetTimerasync adapted to the asynchronous setting. This timer will be the basic building block

in our global synchronization infrastructures.

Asynchronous analog of DetTimer. A basic building block in our construction is a variant of

DetTimer to the asynchronous setting. Observe that the DetTimer implementation of Section

2.2 might fail miserably in the asynchronous setting, e.g., when the edges (ai−1,2, ai,2) have

latency 2 for every i ≥ 2, and the remaining edges have latency 1, the timer will stop counting

after Θ(log t) rounds, rather than after t rounds.

Lemma 3 (Neural Timer in the Asynchronous Setting). For a given time parameter t, there

exists a deterministic network DetTimerasync with O(L · log t) neurons, satisfying that in the

asynchronous setting with maximum latency L, the output neuron fires at least Θ(t) rounds,

and at most Θ(L · t) rounds after each firing of the input neuron.

The construction starts with t′ = t/2L layers of the DetTimer network. These layers are

modified as follows (see Fig. 2.6 for comparison with the standard construction).

• Neurons a1,1 and a1,2 are connected by a chain of length 4L. all neurons in the chain as

well as a1,2 have an incoming edge from the previous neuron in the chain with weight 1

and threshold 1.

• For every i ≥ 2, the inhibitor neuron di has an incoming edge only from ai,2 with weight

w(ai,2, di) = 1 and threshold b(di) = 1.

• For every i ≥ 1, the neurons ai−1,2 and ai,1 are connected by a chain of length L, instead

of a direct edge, where the weight of the edge from the end of the chain to ai,1, is 1.

• The neuron alog t′,2 is an excitatory (rather than an inhibitory) neuron, and the output

neuron y has one incoming edge from alog t′,2 with weight w(alog t′,2, y) = 1 and threshold

b(y) = 1.

• A newly introduced inhibitor neuron r that has an incoming edge from alog t′,2 with weight

w(alog t′,2, r) = 1, threshold b(r) = 1, and negative outgoing edges to all neurons in the

timer with weight −2 for clean-up purpose.

The correctness is based on the following auxiliary claim.

Claim 7. Fix a layer i ≥ 2. Assume that (1) ai−1,2 fired for the first time in round fi−1, and that

(2) it fires every τi−1 rounds. It then holds that (1a) ai,2 fires for the first time in round fi for

fi ∈ [fi−1 + τi−1 + 1, fi−1 + τi−1 +L2 +L], and that (1b) ai,2 fires from that point on for every

τi ∈ [2 · τi−1, 2 · τi−1 + (L2 + L)] rounds.
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Figure 2.6: DetTimerasync versus DetTimersync. Left: The deterministic timer DetTimersync network.

Right: The modified DetTimerasync network which works in the asynchronous setting. We add a chain

of L neurons in the first layer and between neurons ai−1,2 and ai,1, where L is the upper bound on the

response latency of a single edge in the asynchronous setting.

Proof. Assume that neuron ai−1,2 fires every τi−1 rounds starting round fi−1. It then holds that

ai,2 gets the spike from ai−1,2 strictly before the spike of ai,1. Specifically, it gets the spike from

ai−1,2 by round τ ≤ fi−1+L, and it receives the spike from ai,1 in some round τ ′ ≥ fi−1+L+1.

Note that it is crucial that the spike from ai−1,2 arrives earlier to ai,2, as otherwise ai,2 will fire

in round τ . As a result, the first time ai,2 fires is after round fi−1 + τi−1 + 1 and therefore

fi ≥ fi−1 + τi−1 + 1. Due to the self loop on ai,1, neuron ai,2 gets a spike from ai,1 in every

round τ ′′ ≥ τ ′. Because the latencies are fixed, ai,2 gets a signal from ai−1,2 every τi−1 rounds,

and therefore ai,2 fires by round τ ′ + τi−1. Since each edge has latency of at most L, it holds

that τ ′ ≤ fi−1 + L2 + L, hence fi ≤ fi−1 + L2 + L+ τi−1 and (1a) follows.

We now show (1b). We first observe that ai,1 stops firing at least L rounds before the next

firing of ai−1,2. This holds since once ai,2 fires in round fi, after at most L rounds the inhibitor

di fires, and after at most 2L rounds neuron ai,1 is inhibited. Since τj ≥ 4L (due to the chain in

the first layer), it indeed holds that in the next round when ai−1,2 fires, no neuron in layer i fires.

Since the latency of each edge is fixed and ai−1,2 fires every τi−1 rounds by our assumption, we

conclude that ai,2 fires every τi rounds where τi ∈ [2τi−1, 2τi−1 + L2 + L].

Claim 8. Assume that x fired in round τ0. Then for every i ≥ 1 it holds that: (1) the neuron

ai,2 fires for the first time during the interval [τ0 + 2i · 2L, τ0 + 2i · 8L2] and (2) it fires every τi
rounds for τi ∈ [2i · 2L, 2i · (4L2)].

Proof. Once the input neuron x fired in round τ0, the neuron a1,2 fires for the first time in round

f1 ∈ [τ0 + 4L, τ0 + 4L2 + L] and continue to fire every τ1 rounds for τ1 ∈ [4L, 4L2 + L]. This

is due to the chain between a1,1 and a1,2 and the fact that the latency `(e) is fixed for every e.

Using Claim 7 in an inductive manner, we conclude that for every i ≥ 1: (1) ai,2 fires every
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τi ∈ [2i ·2L, 2i ·4L2] rounds, (2) ai,2 fires for the first time in round fi ∈ [τ0+2i ·2L, τ0+2i ·8L2].

Proof of Lemma 3. Since the edge between neuron alog t′,2 and the output neuron has latency at

most L, we conclude that if the input neuron x fires in round τ0, the output neuron y fires in

round τ ∈ [τ0 + 2Lt′, τ0 + 9L2f ′]. Because t′ = t/2L, given that the input x fired in round τ ,

the output neuron fires between round τ + t and round τ + 5Lt. Lemma 3 follows.

The synchronizers description. The construction has two parts: a global infrastructure, that

can be used to synchronize many networks1, and an adaptation of the given network Nsync into

a network Nasync. The global infrastructure consists of the following modules:

• A pulse generator PG implemented by DetTimerasync with time parameter Θ(L3).

• A reset module R1 implemented by a directed chain of Θ(L) neurons 2 with input from

the output neuron of the PG module.

• A delay module D implemented by DetTimerasync with time parameter Θ(L2) and input

from the output of of the PG module.

• Another reset module R2 implemented by a chain of Θ(L) neurons with input from D.

The heart of the construction is the pulse-generator that fires once within a fixed number of

` ∈ [Θ(L3),Θ(L4)] rounds, and invokes a cascade of activities at the end of each phase. When

its output neuron g fires, it activates the reset and the delay modules, R1 and D. The second

reset module R2 will be activated by the delay module D. Both reset modules R1 and R2 are

implemented by chains of length L, with the last neuron on these chains being an inhibitor

neuron. The role of the reset modules is to erase the firing states of some neurons (in Nasync)

from the previous phase, hence their output neuron is an inhibitor. The timing of this clean-up

is very delicate, and therefore the reset modules are separated by a delay module that prevents a

premature operation. The total number of neurons in these global modules is O(L · logL). We

next consider the specific modifications to the synchronous network Nsync (see Fig. 2.7).

Modifications to the network Nsync. The input layer and output layer in Nasync are exactly as

in Nsync. We will now focus on the set of auxiliary neurons V in Nsync. In the network Nasync,

each v ∈ V is augmented by three additional neurons vin, vdelay and vout. The incoming (resp.,

outgoing) neighbors to vin (resp., vout) are the out-copies (resp., in-copies) of all incoming

(resp., outgoing) neighboring neurons of v. The neurons vin, v, vdelay and vout are connected by

a directed chain (in this order). Both vdelay and vout have self-loops.

1It is indeed believed that the neural brain has centers of synchronization.
2Each neuron in the chain has an incoming edge from its preceding neuron with weight 1 and threshold 1.
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In the case where the original network Nsync contains spiking neurons, the neuron vin will

be given the exact same firing function as v in Πsync. That is, in phase p, vin will be given the

random coins1 used by v in round p in Πsync. The other neurons v, vdelay and vout are determin-

istic threshold gates. The role of the out-copy vout is to keep on presenting the firing status of v

from the previous phase p− 1 throughout the rounds of phase p. This is achieved through their

self-loops. The role of the in-copy vin is to simulate the firing behavior of v in phase p. We will

make sure that vin fires in phase p only if v fires in round p in Πsync. For this reason, we set the

incoming edge weights of vin as well as its bias to be exactly the same as that of v inNsync. The

neuron v is an AND gate of its in-copy vin and the PG output g. Thus, we will make sure that v

fires at the end of phase p only if vin fires in this phase as well. The role of the delay copy vdelay
is to delay the update of vout to the up-to-date firing state of v (in phase p). Since both neurons

vdelay and vout have self-loops, at the end of each phase, we need to carefully reset their values

(through inhibition). This is the role of the reset modules R1 and R2. Specifically, the reset

module R1 operated by the pulse-generator inhibits vout. The second reset module R2 inhibits

the delay neuron vdelay only after we can be certain that its value has already been “copied” to

vout. Finally, we describe the connections of the neuron vout. The neuron vout has an incoming

edge from the reset module R1 with a super-large weight. This makes sure that when the reset

module is activated, vout will be inhibited shortly after. In addition, it has a self-loop also of

large weight (yet smaller than the inhibition edge) that makes sure that if vout fires in a given

round, and the reset module R1 is not active, vout also fires in the next round. Lastly, if vout
did not fire in the previous round, then it fires when receiving the spikes from both the delay

module and from the delay-copy vdelay. This will make sure that the firing state of vdelay will be

copied to vout only after the output of the delay module D fires.
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𝑣𝑑𝑒𝑙𝑎𝑦
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Pulse- Gen.
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Delay

Reset-II

𝐿3

𝐿

𝐿2

𝐿

Figure 2.7: Illustration of the synchronizer modules. Left: global modules implemented by neural timers. Right:

a neuron v ∈ Nsync augmented by three additional neurons that interact with the global modules.

Analysis. Throughout, we fix a synchronous execution Πsync and an asynchronous execution

Πasync. For every round p, recall that V +
sync(p) is the set of neurons that fire in round p in Πsync

(i.e., the neurons with positive entries in σp). In our simulation, we will make sure that each v

in Nasync has the same firing pattern as its copy in Nsync.

1I.e., the random coins that are used to simulate the firing decision of v.
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Observation 4. Consider a neuron v with incoming neighbors u1, . . . , uk. If there is a round τ

such that u1, . . . , uk fire in each round τ ′ ≥ τ , v fires in every round τ ′′ ≥ τ + maxui `(v, ui).

Lemma 4. The networks Nsync and ν(Nsync) = Nasync have similar executions.

In order to prove Lemma 4, we will show by induction on p that V +
sync(p) = V +

async(p).

Base case. For p = 1, let V +
sync(0) be the neurons that fired at the beginning of the simulation

in round 0. We now show that every neuron v ∈ V fires at the end of phase 1 iff v ∈ V +
sync(1).

Without loss of generality, assume that g fired at the end phase 0 and begins the simulation in

round 0. We begin with the following claim.

Claim 9. For every u ∈ V , for its in-copy uin there is a round τu ≤ c2L
3 + L in which all its

incoming neighbors in V +
sync(0) fire (and the remaining neighbors do not fire), for a constant c2.

Proof. We first show that for v ∈ V +
sync(0), the out-copy vout fires when it receives a signal from

the delay module D. Because each edge has latency at most L, by round L, neuron v has fired.

Since the delay neuron vdelay has a self-loop (with latency one), it starts firing in every round

starting round τd ∈ [2, 2L] (until it is inhibited by the reset moduleR2). Recall that the out-copy

vout is connected to the delay module D, and fires only when receiving a spike from both the

output neuron of D and the delay-neuron vdelay. We claim that vout receives a signal from D

and starts firing after it gets a reset from R1. The reset module R1 receives the signal from g

by round L and starts counting L rounds. Thus, the output neuron of R1 fires in some round

τ ′r1 ∈ [L + 1, L2 + L]. This insures that by round L2 + 2L the neuron vout is inhibited by the

output of R1. The delay module D is implemented by DetTimerasync with time parameter 2L2.

Therefore, the output neuron of D fires in round τD ∈ [2L2, 10L3], ensuring that it fires only

after vout has been reset by the module R1. Moreover, the reset module R2 counts L rounds

after receiving a signal from D. This ensures that the inhibitory output of R2 starts inhibiting

vdelay only after vout has received the signal from D in round τout. Overall, we conclude that

vout fires in round τout ∈ [c1 · L2, c2 · L3], for some constants c1, c2. Due to the self-loop, vout
also fires in each round τ ′′ ≥ τout in that phase. As a result for every u ∈ V , its in-copy uin has

a round τu ≤ c2L
3 + L in which all its incoming neighbors in V +

sync(0) fire. Note that for every

neuron v /∈ V +
sync(0), non of its copy neurons vout, vdelay fire during the phase.

Hence, uin start firing in round τu only if u fires in round 1 in Πsync, i.e., if u ∈ V +
sync(1).

We set the pulse-generator with time parameter c3 · L3 for a large enough c3 such that c3 · L3 >

c2L
3 + 2L. Since the out-copies keep on presenting the firing states of phase 0, uin continues to

fire in the last L rounds of the phase. Thus, when the pulse-generator spikes again, the neurons

in V +
sync(1) indeed fire as both g and vin fired in the previous rounds. Thus, we conclude that

V +
sync(1) = V +

async(1).

Induction step. Assume that V +
sync(p) = V +

async(p) and consider phase p+1. Let τ ∗ be the round

on which the PG fired at the end of phase p. We first show the following.
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Claim 10. For every v ∈ V , the neuron vdelay starts firing by round τ ∗ + 2L, iff v ∈ V +
sync(p).

Proof. Recall that all delay copies are inhibited by the reset module R2 at most L2 + 2L rounds

after the delay module D has fired. We choose the time parameter of the PG to be large enough

such that this occurs before the next pulse of PG in round τ ∗. Hence, when phase p ended in

round τ ∗, all delay copies vdelay are idle. Because each edge has latency of at most L, by round

τ ∗ + L, all the neurons in V +
sync(p) have fired (and by the assumption other neurons did not fire

during phase p). As a result, the neuron vdelay starts firing by round τ ∗+ 2L, iff v ∈ V +
sync(p).

We next show there exists a round in which the in-copies of V +
sync(p+ 1) begin to fire.

Claim 11. For every u ∈ V for its in-copy uin there is round τu ∈ [τ ∗+ c1 ·L2, τ ∗+ c2 ·L3 +L]

in which all its incoming neighbors in V +
sync(p) fire, and the remaining neighbors do not fire.

Proof. The output neuron of R1 fires in some round τ ′ ∈ [τ ∗ + L + 1, τ ∗ + L2 + L], and

therefore all neurons vout are inhibited by round τ ∗ + L2 + 2L. Recall that the delay module D

is implemented by DetTimerasync with time parameter 2L2. Therefore the output neuron of D

fires in round τD ∈ [τ ∗ + 2L2 + 1, τ ∗ + 10L2], ensuring D fires after vout was inhibited by R1.

Recall that the reset module R2 counts L rounds after receiving a signal from D. This ensures

that the inhibitory output of R2 starts inhibiting vdelay after vout received the signal from D. By

Claim 10 we conclude that when neuron vout receives the signal from the delay module D in

some round τout ∈ [τ ∗ + c1 · L2, τ ∗ + c2L
3], it fires iff v ∈ V +

sync(p). As a result, due to the

self-loops of the out-copies, uin has a round τu ∈ [τ ∗ + c1 · L2 + 1, τ ∗ + c2 · L3 + L] in which

all its incoming neighbors in V +
sync(p) fire.

Therefore, uin starts firing in round τu only if u ∈ V +
sync(p + 1) and it continues firing from

round τu ahead in that phase due to the self-loops of the out-copies of its neighbors. Since the

pulse generator fires to signal the end of phase p + 1 in round τ ∗ + c3L
3 > τ ∗ + c2 · L3 + 2L,

every neuron v ∈ V +
sync(p + 1) fires in round t(v, p + 1) since both g and vin fired previously

(and other neurons are idle). In follows that V +
sync(p+ 1) = V +

async(p+ 1).

2.5 Approximate Counting

In this section, we provide improved constructions for neural counters by allowing approxima-

tion and randomness. Our construction is inspired by the approximate counting algorithm of

Morris as presented in [140, 70] for the setting of dynamic streaming. The idea is to implement

a counter which holds the logarithm of the number of spikes with respect to base α = 1 + Θ(δ).

The approximate neural counter problem is defined as follows.

Definition 5 ((Approximate) Neural Counter). Given a time parameter t and an error probabil-

ity δ, an approximate neural counter has an input neuron x, a collection of log t output neurons
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represented by a vector ȳ, and additional auxiliary neurons. The network satisfies that in a time

window of t rounds, in every given round, the output ȳ encodes a constant approximation of the

number of times x fired up to that round, with probability at least 1− δ.

Throughout, we assume that 1/δ < t. For smaller values of δ, it is preferable to use the

deterministic network construction of DetCounter withO(log t) neurons described in Lemma 1.

For the sake of simplicity, we first describe the construction under the following promises:

• (S1) The firing events of x are sufficiently spaced in time, that is, there are Ω(log t) rounds

between two consecutive firing events.

• (S2) The state of ȳ encodes the right approximation in every round τ such that the last

firing of x occurred before round τ − log rτ where rτ is the number of x’s spikes (firing

events) up to round τ .

High level description. The network ApproxCounter(t, δ) consists of two parts, one for han-

dling a small number of spikes by the input x and one for handling large counts. The first part

that handles the small number of spikes is deterministic. Specifically, as long as the number

of spikes generated by x is smaller than s = Θ(1/δ2), we count them using the exact neural

counter network (Section 2.2.2), using O(log 1/δ) neurons. We call this module Small Counter

(SC) and it is implemented by the DetCounter network with time parameter Θ(1/δ2).

To handle a large number of spikes, we introduce the Approximate Counter (AC) imple-

mented by DetCounter with time parameter logα t. TheAC module approximates the logarithm

of the number of rounds x fired with respect to base α = 1 + Θ(δ). This module is randomized

and provides a good estimate for the spike count given that it is sufficiently large. The idea is

to update the AC module (by adding +1) upon every firing event of x with probability 1
1+αc

where c is the current value stored in the counterTo do so, we have a spiking neuron a∗ that

has incoming edges from the output of the AC module, and fires with the desired probability.

The reason we use probability 1
1+αc

instead of 1
αc

as suggested in Morris algorithm, is due to

the sigmoid probability function of spiking neurons (see Chapter 1). Once the count is large

enough (more than s), we start using the AC module. This is done by introducing an indicator

neuron vI , indicating that the small-counter is full. The neuron vI starts firing after SC is full

(finished the count), and keeps on firing due to a self-loop.

The input to AC, denoted as xac computes an AND of the input x, the spiking neuron a∗,

and the indicator neuron vI . In addition, vI initiates a reset of the small counter SC to make sure

that the output ȳ receives only information from the large-count module AC. Fig. 2.8 provides

a schematic description of the construction.

Detailed description. Let rn be the number of times x fired in the first n rounds, and let

α = 1 + Θ(δ) be the base of the counting in the approximate counting module.

• Handling small counts. The module Small-Counter (SC) is implemented by the DetCounter

module with time parameter s and input from x, where s = 1
δ(α−1)

. Since α = 1+Θ(δ), it
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Figure 2.8: Schematic description of the network ApproxCounter. In each module, only the input and

output layers are shown. The Small-Counter module SC is responsible for counting up to Θ(log 1/δ)

spikes, and is implemented by the DetCounter module with time parameter Θ(1/δ). For handling large

counts, we use the Approx-Counter AC module implemented by the DetCounter module with time pa-

rameter Θ(log t/δ). The Approx-Counter module simulates Morris’ algorithm and maintains an estimate

for the logarithm of the spikes count. The neurons vI and vr switch between the two stages (small and

large counts) during the execution.

holds that s = Θ(1/δ2). In addition, we introduce an excitatory indicator neuron vI that

has an incoming edge from the last layer of SC (i.e. neuron alog s,2) as well as a self-loop,

each with weight 1 and threshold b(vI) = 1. The indicator neuron vI has an outgoing

edge to an inhibitory reset neuron vr with weight w(vI , vr) = 1, which is connected to

all neurons in SC with negative weight −5. The reset neuron vr also has an incoming

edge from alog s,2 with weight 1 and threshold b(vr) = 1. As a result, one round after SC

reaches the value s, it is inhibited.

• Handling large counts. The Approximate-Counter (AC) is implemented by a DetCounter

module with time parameter logα t, and its input neuron is denoted by xac. Denote by

` = log2 logα t the number of layers in the AC module, and for every 1 ≤ i ≤ `, denote

the counting neuron ai,1 by ci. To initialize the counter we connect the last output neuron

of SC to the counting neurons ci1 . . . cik in AC which correspond to the binary represen-

tation of logα(1/δ + 1) with weights 5. We introduce a probabilistic spiking neuron a∗

that is used to increase the counter with the desired probability. In order for a∗ to receive

negative weights from AC, we connect each counting neuron ci to an inhibitory copy ci,2
with weight w(ci, ci,2) = 1 and threshold 1. We then connect the inhibitors c1,2, . . . , c`,2

to a∗ with weights w(ci,2, a
∗) = −2i−1 · lnα, and set b(a∗) = 0. Hence, a∗ fires in round τ

with probability 1
1+αc

, where c is the value ofAC in round τ−1. Finally, the input neuron

xac has incoming edges from a∗, x and vI each with weight 1 and threshold b(xac) = 3.

As a result, xac fires only if vI , x and a∗ fired in the previous round.
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• The output neurons. The counter modules SC and AC are connected to the output

vector ȳ as follows. Each yi has incoming edges from neurons c1, . . . , c` with weight

w(ci, y) = logα · 2i−1, and threshold b(yi) = i + log(α − 1). In addition, each output

neuron yi has an incoming edge from the ith output of SC with weight b(yi). Hence, yi
fires in round τ if either logα · (

∑
`

j=1 cj · 2j−1)− log(α− 1) ≤ i, or the ith output of SC

fired in the previous round.

Size complexity. All neurons except the spiking neuron a∗ are threshold gates. Recall that

α = 1 + Θ(δ). Hence the size of the counter AC is O(log2 logα t) = O(log log t + log(1/δ)).

Since the size of the counter SC isO(log 1/δ), overall we haveO(log log t+log(1/δ)) auxiliary

neurons.

Analysis. We start with showing the correctness of the ApproxCounter network under the as-

sumptions (S1) and (S2). At the end of the section we will show correctness for the general

case as well. Let rτ be the number of times x fired up to round τ . If rτ ≤ s the correctness

of ApproxCounter follows from the correctness of the DetCounter construction (see Lemma 1).

From now on, we assume rτ ≥ s + 1. Let zn be a random variable holding the value of AC

after x fired n times (i.e when rτ = n). We start with bounding the expectation of αzn .

Claim 12. E[αzn ] ∈ [n(α− 1)(1− δ) + 1, n(α− 1) + 1].

Proof. The AC counter starts to operate after x fired s = 1
δ(α−1)

spikes, and we initiate the

counter with value c = logα(1/δ + 1). Hence, for n = s we get αzn = n(α − 1) + 1 and the

claim holds. For n ≥ s+ 1 we get

E[αzn ] =
n−1∑
j=c

E[αzn | zn−1 = j] · Pr[zn−1 = j]

=
n−1∑
j=c

Pr[zn−1 = j] · (αj+1 · 1

αj + 1
+ αj · (1− 1

αj + 1
))

= E[αzn−1 ] + (α− 1) ·
n−1∑
j=c

Pr[zn−1 = j] · ( αj

1 + αj
) . (2.2)

Note that for j ≥ c, it holds that 1 > αj

1+αj
> 1− δ. Therefore

n−1∑
j=c

Pr[zn−1 = j] · ( αj

1 + αj
) ∈ [1− δ, 1] .

By combining this with Eq. (2.2) we conclude that E[αzn ] ∈ [n(α−1)(1− δ), n(α−1) + 1].

Claim 13. Pr[|αzn − µ| > 1/2 · µ] ≤ δ, where µ = E[αzn ].
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Proof. We will use Chebyshev’s inequality and start by computing E[α2zn ] in order to bound

the variance of αzn .

E[α2zn ] =
n−1∑
j=c

E[α2zn | zn−1 = j] · Pr[zn−1 = j]

=
n−1∑
j=c

Pr[zn−1 = j] ·
(
α2j+2 · 1

αj + 1
+ α2j · (1− 1

αj + 1
)

)

= E[α2zn−1 ] +
n−1∑
j=c

Pr[zn−1 = j] · (α
2j(α2 − 1)

αj + 1
) ≤ E[α2zn−1 ] + (α2 − 1)E[αzn−1 ]

≤ E[α2zn−1 ] + (α2 − 1) · ((n− 1)(α− 1) + 1) , (2.3)

where Ineq. (2.3) is due to Claim 12. For n = s, it holds that

E[α2zs ] = s2(α− 1)2 + 2s(α− 1) + 1 ≤ (α + 1)(α− 1)
s∑
i=1

i+ (α− 1)(α + 1)s ,

and combined with Eq. (2.3) we get

E[α2zn ] ≤ 1

2

(
n(3α2 − α3 + α− 3) + n2(α + 1)(α− 1)2

)
.

Therefore the variance is bounded by

V ar[αzn ] = E[α2zn ]− (E[αzn ])2

≤ 1

2
n2(α− 1)2

(
(α− 1) + δ2

)
+ n

(
(α− 1)(2α + 1− a2) + 2αδ

)
.

Using Chebyshev’s inequality and Claim 12 we can now conclude the following:

Pr[|αzn − µ| ≥ 1/2 · µ] ≤ V ar[αzn ]

((1/2) · µ)2
≤ 4V ar[αzn ]

n2(α− 1)2(1− δ)2

≤ 4
(
(α− 1) + δ2

)
+

8n (α− 1 + 2δ)

n2(α− 1)2(1− δ)2
, (2.4)

since we assume n ≥ s = 1/δ(α − 1) it holds that n ≤ n2(α − 1)δ. As a result, by Eq. (2.4)

we get:

Pr[|αzn − µ| ≥ 1/2 · µ] ≤ 4
(
(α− 1) + δ2

)
+ 10δ (1 + 2δ/(α− 1)) .

Since α = 1 + Θ(δ), we have that V ar[αzn ] ≤ Θ(δ). We can use δ′ = Θ(δ) in our construction

and set parameter α accordingly in order to achieve

Pr[|αzn − µ| ≥ 1/2 · µ] ≤ δ .
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Combining Claim 12 and Claim 13 we conclude that αzn ∈ [n(α − 1)/4, 2n(α − 1)] with

probability at least 1 − δ. Let S = logα · zn − log(α − 1). Thus, S ∈ [log(n/4), log(2n)].

Recall that after SC gets reset, each yi fires only if logα · zn − log(α− 1) ≤ i. As a result, the

value of the output ȳ is given by

dec(ȳ) =
S∑
i=1

2i = 2S+1 − 2 ∈ [n/2− 2, 4n− 1] ,

which is a constant approximation of n as desired.

Adaptation to the general case. We now explain the modifications needed to handle the gen-

eral case without the two simplifying assumptions. In order to fire with the correct probability

without the spacing guarantee, every time we increase AC, we wait until its value gets updated

before we attempt to increase it again. In order for the output ȳ to output the correct value also

during the update of the counter AC, we introduce an intermediate layer of neurons c′′1, . . . , c
′′
`

that will hold the previous state of AC during the update.

• Removing assumption (S1): In the DetCounter construction, we say that there are k

active layers in round τ if the value of the counter in round τ is at most 2k and no neu-

ron in layer j ≥ k + 1 fired. Once we increase the counter after at most k + 1 rounds

the value is updated. During this update operation, the network waits and ignores spikes

from x that might occur during this time window. To implement this waiting mecha-

nism, we introduce a Wait-Timer (WT ) module which uses the DetTimer∗ module1. This

DetTimer∗ gets an input from xac and the time parameter input q̄ with log ` neurons

where ` = log2 logα t is the number of layers in the module AC. The counting neurons

c1, . . . , c` of AC are connected to q̄ as follows. Each qi has an incoming edge from c2i−1

with weight w(c2i−1 , qi) = 1 and threshold b(qi) = 1. Hence, the value of q̄ is at least

k + 1 and at most 4k where k is the number of active layers in AC. In order for the time

parameter to stay stable throughout the update, for each qi we add a self-loop with weight

w(qi, qi) = 1. The WT module has two outputs, an inhibitor gr which fires as long as

the timer did not finish the count, and an excitatory g which fires after the count is over.

We connect rr to xac with weight w(gr, xac) = −5, preventing it from firing while the

counter is not updated. We connect g to an additional inhibitory neuron qr which inhibits

the time parameter neurons q1, . . . , q` one round after we finished the count. The size of

WT is O(log `) = O(log log 1/δ + log log log t).

• Removing assumption (S2): Two copies of the counting neurons c1, . . . , c` are intro-

duced. The first copy c′1, . . . c
′
` allows us to copy the state of the counter AC once its

update process is complete. Each c′i has incoming edges from ci and the excitatory output

of the WT module, each with weight w(g, c′i) = w(ci, c
′
i) = 1 and threshold b(c′i) = 2.

1Recall that DetTimer∗ is a variant of the neural timer in which the time parameter is given as a soft-wired
input and the upper bound on this input time is hard coded in the network.
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Figure 2.9: A description of the modifications in ApproxCounter (to handle the general case). The

Wait-Timer (WT ) module is implemented as a DetTimer∗ with input from xac and time input from the

counting neurons of AC. The inhibitor output of WT inhibits the input neuron xac, preventing it from

firing during the update process of the AC counter. We have two copies of the counting neurons of AC

denoted as c′ and c′′. These copies are used for the output vector ȳ to receive a correct input from AC

at all times, even during the update process of the AC counter. Once the WT module finishes its count,

in order to copy the information from c to c′′, we use c′ as that OR gates between c and the excitatory

output of the module WT .

Thus, c′i fires iff in the previous round both ci and g fired (implying that neuron ci was

active when the counter finished the update). The second copy c′′1, . . . , c
′′
` holds the pre-

vious state of AC during the update of the module. Each c′′i has an incoming edge from

c′i with weight 2, a self-loop with weight 1, a negative edge from the inhibitor gr with the

weight (−1) and threshold 1. Note that the inhibition of c′′i occurs on the same round it

receives the updated state from neuron c′i. Finally, the output layer ȳ has incoming edges

from neurons c′′1, . . . , c
′′
` instead of c1, . . . , c` with the same weights.

Fig. 2.9 illustrates the modifications made to handle the general case.

Proof of Theorem 4. Assume x fired n times up to round τ . If n ≤ s we count the number of

times x fired explicitly via the SC module. We note that in round τ the counter might be still

updating the lastO(log n) spikes of x. By the DetCounter construction, the value of the counter

is at least n−logn
2

= Θ(n), and therefore we indeed output a constant approximation of n with

probability 1.

Otherwise, n ≥ s. First note that when we switch from the SC to the AC counter, we might

omit at most Θ(log 1/δ) spikes due to the delay in the DetCounter module. Since n ≥ s =

Θ(1/δ2) this is negligible, as we want a constant approximation. Next, we bound the number

of times x might have fired during the rounds in which the wait module WT was active. As we

only omit attempts to increase the counter, by Claim 13 with probability at least 1− δ, the value

of the counter has been increased for at most logα(2n(α− 1)) times.

Each time that the counter value is increased, the waiting module WT is active for at most
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4 log2 logα 2n(α − 1) ≤ 4 log n rounds. Thus, in total we omit at most 4 log n · logα(2n(α −
1)) < 4

√
n log2 n spiking events. In addition, since the copy neurons c′′1, . . . , c

′′
` might hold the

previous value of the counter in round τ , we might lose another factor of two in the output layer.

Altogether, in round τ the output ȳ holds a constant approximation of n and Theorem 4 holds

for the general case as well.
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3
Spiking Neural Networks Through the Lens

of Streaming Algorithms

3.1 Introduction

In this work, we seek to understand the role of memory constraints in neural data processing.

We consider data-stream tasks, in which a long stream of inputs is presented over time and a

neural network must evaluate some function f of this stream. Examples include identifying

frequent input patterns (items) or estimating summary statistics, such as the number of distinct

items presented. The network cannot store the full stream and so must maintain some form of

compressed representation in its working memory, which allows the eventual computation of

f . The primary objective is to compute f with as few auxiliary (non-input or output) neurons

as possible. The number of auxiliary neurons can be thought of as the ‘space’ required by the

network.

In computer science, data processing under space limitations is extensively studied in the area

of streaming algorithms [142, 143]. We leverage this body of work to further our understand-

ing of space-efficient neural networks. We start by designing neural networks for a large class

of data-stream tasks, building off fundamental streaming algorithms and techniques, such as

linear sketching. We also establish general connections between these models, showing that

streaming-space lower bounds can be translated to neural-space lower bounds. We hope that

these connections are a first step in extending work on streaming computation to better under-
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stand neural processing of massive and dynamically changing data under memory constraints.

The spiking neural network (SNN) model [128, 129]. A spiking network is represented by

a directed weighted graph over n input neurons, r output neurons, and s auxiliary neurons.

The edges of the graph represent synapses of different strengths connecting the neurons. The

network evolves in discrete, synchronous rounds as a Markov chain where each neuron u acts

as a (possibly probabilistic) threshold gate that either fires (spikes) or is silent in each round.

In round t, the firing status of u depends on the firing status of its incoming neighbors in the

preceding round t−1, and the strength of the connections from these neighbors. In randomized

SNNs, there are possibly two sources of randomness: the spiking behavior of the neurons and

the selection of random edge weights in the network. In deterministic SNNs, the neurons are

deterministic threshold gates and the edge weights are deterministically chosen. Aside from

their relevance in modeling biological computation, SNNs have received significant attention as

more energy efficient alternatives to traditional artificial neural networks [111, 183].

A recent series of works in the emerging area of algorithmic SNNs [129, 131, 52, 119, 118,

192, 44, 112, 182, 132, 148, 89] focuses on network design tasks. In this framework, given

a target function f : {0, 1}n → {0, 1}r, one seeks to design a space-efficient SNN (with few

auxiliary neurons) that converges rapidly to an output spiking pattern matching f(x) when the

input spiking pattern matches x. Space-efficient SNNs have been devised for the winner-takes-

all problem [118, 182], similarity testing and compression [124, 148], clustering [84, 112],

approximate counting, and time estimation [120, 86]. Interestingly, many of these works borrow

ideas from related streaming algorithms. However, despite the flow of ideas from streaming to

neural algorithms, the connection between these models has not been studied formally.

The streaming model [142, 143]. A data-stream is a sequence of updates S = {u1, . . . , um}.
A streaming algorithmA computes some function of S, given restricted access to the stream. In

the standard single-pass model, the algorithm can only read the updates in S once, in the order

they are presented.

Most commonly, and throughout this work, each update ui represents the insertion or dele-

tion of an item xi belonging to a universe U with |U | = n. Without loss of generality, we will

always consider U to be the set of integers [n] = 1, . . . , n, and f is a function of the frequency

vector z ∈ Zn, which tracks the total frequency of each item in the stream (the number of inser-

tions minus the number of deletions). In the insertion-only setting, only insertions are allowed

– i.e., each update increments some entry of z. In the general turnstile (dynamic) setting, there

are both insertions and deletions – i.e., increments and decrements to entries in z. The primary

complexity measure of a streaming algorithm is the space (measured in number of bits) required

to maintain the evaluation of f on the data-stream.

Neural networks from a streaming perspective. Our primary goal is to devise space-efficient

spiking neural networks that solve natural data-stream tasks, which mirror data processing tasks

solved in real biological networks. In light of the large collection of space-efficient streaming
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algorithms that have been designed for various problems, we start by asking:

Question 1. Is it possible to translate a space-efficient streaming algorithm for a given task into

a space-efficient SNN algorithm for that task? Do generic reductions from SNNs to streaming

exist?

The streaming literature is also rich with space lower bounds. For many classical data-

stream problems, these lower bounds are nearly tight. To obtain space lower bounds for SNNs,

we ask if reductions in the reverse direction exist:

Question 2. Is it possible to translate a space-efficient SNN for a given task into a space-

efficient streaming algorithm for that task?

An affirmative answer to both of these questions would imply that the streaming and SNN

models are, roughly speaking, computationally equivalent. A priori, it is unclear if this is the

case. On the one hand, streaming algorithms have the potential to be more space-efficient than

SNNs. For example, a space-efficient algorithm may still have a lengthy description, which

is not taken into account in its space complexity. In the SNN setting, where the algorithm

description and memory are both encoded by the auxiliary neurons in the network and their

connections, a lengthy description may lead to a large, and hence not space-efficient network.

On the other hand, SNNs have the potential to be more space-efficient than streaming al-

gorithms. For example, a randomized SNN with a large number of input neurons but a small

number of auxiliary neurons may have a large number of random bits encoded in random con-

nections between its inputs and auxiliary neurons. These bits are not counted as part of its space

complexity. In contrast, a streaming algorithm that requires persistent access to many random

bits must store these bits, possibly leading to large space complexity.

3.1.1 Our Results
We take the first steps towards formally understanding the connections between streaming al-

gorithms and spiking neural networks. The first part of this work is devoted to studying upper

bounds for SNNs, addressing Question 1. We design space-efficient neural networks for a wide

class of streaming problems by simulating their respective streaming algorithms. These simu-

lations must overcome several challenges in implementing traditional algorithms in neural net-

works. Most notably, in an SNN, the spiking status of the auxiliary neurons encodes the working

memory of the algorithm, and their connections encode the algorithm itself. A space-efficient

network with few auxiliary neurons thus inherently has limited ability to express complex al-

gorithms. In many data-stream algorithms, the target space complexity is only polylogarithmic

in the input size, making this challenge significant. Additionally, unlike traditional algorithms,

a neural network evolves continuously in response to its inputs. This leads to synchronization

issues – for example, if an input is not presented for a sufficient number of rounds, the firing

status of the network may not converge to a proper state before the next input is presented.

The second part focuses on lower bound aspects, addressing Question 2. We show that

any space-efficient neural network can be translated into a space-efficient streaming algorithm,
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while paying a small additive term (logarithmic in the stream length/universe size). For deter-

ministic SNNs, such a reduction is not difficult. For randomized SNNs, the reduction is more

involved, as it must account for the large number of random bits that may be implicitly stored in

the random edge weights of the network. Throughout, we use the Õ() notation to hides factors

that are poly-logarithmic in n,m and 1/δ, where n is the size of the domain, m is a bound on

the stream length and δ is the error parameter.

3.1.1.1 Efficient Streaming Algorithms Yield Efficient SNNs

We consider data-stream tasks in which each update is an insertion or deletion of an integer

item x ∈ [n], and f is a function of the frequency vector z ∈ Zn of these items. In the streaming

setting, each update can be thought as an n-length vector with a single ±1 entry, corresponding

to an item insertion or deletion. In the SNN setting, each update may be encoded as the firing

of one of n input neurons along with a sign neuron indicating if the update is an increment or a

decrement. Or, the update may be encoded viaO(log n) input neurons, indicating the item to be

inserted or deleted. These different encodings correspond to different natural settings – the first

corresponds to a network that collects firing statistics from a large set of inputs and the second

to a network that records statistics on a large number of possible input patterns, encoded in the

spiking patterns of a smaller number of input neurons.

In either case, each input is presented for some persistence time, a certain number of rounds

in which the input is fixed to allow the network state to converge before the next input is pre-

sented.

Linear sketching. A linear sketching algorithm is a streaming algorithm in which the state

of the algorithm is a linear function of the updates seen so far. In particular, the state can

be represented as the multiplication of a sketching matrix A ∈ Rr×n with the frequency vector

z ∈ Zn. Such algorithms have many useful properties applicable in both the turnstile setting and

in distributed settings. For example, the additive nature of these algorithms allows one to split

the data-stream across multiple sites, which can process the data in an independent manner.

Additionally, the obliviousness of linear sketching algorithms to the ordering of the stream

yields an efficient generic derandomization scheme using the Nisan’s PRG for space bounded

computation [93]. Linear sketching algorithms constitute the state-of-the-art algorithms for

essentially all problems in the turnstile model, including heavy-hitters, coresets for clustering

problems [94], and `p estimation [48]. In fact, Li, Nguyen and Woodruff [114] present a general

reduction from the streaming turnstile model to linear sketching. This reduction, and its caveats

have been further studied in a recent work by Kallaugher and Price [97]. Given their ubiquity

in turnstile streaming algorithms, an important step in designing space-efficient SNNs for data-

stream problems is an efficient implementation of linear sketching in the neural setting. We give

such an implementation:

Theorem 6 (Linear Sketch). Let A be an algorithm approximating a function f(x) in the turn-

stile model using a linear sketch with an integer matrix A of size r× n. Let ` be a bound on the
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maximum entry in |Ax| for every item x. There exists a network N with n + 1 input neurons,

r ·(dlog `e+1) output neurons, O(r · log `) auxiliary neurons which implementsA in the follow-

ing sense. The first n input neurons x = (x1, . . . , xn) represent the inserted item [1, n], and the

additional input neuron s indicates the sign of the update. Each input update has a persistence

time of O(log `) rounds. The output neurons are divided into r vectors y1, . . . , yr each of length

log `, and r neurons s1, . . . , sr. For every i ∈ {1, . . . , r}, the decimal value of the binary vector

yi is equal to the absolute value of the i-th entry of A · z, and the sign neuron si indicates the

sign, where z is the sum of all input items presented in the current stream.

Theorem 6 applies to linear sketches using integer matrices, which are commonly used, see

[114]. Via scaling, the construction can be extended to rational matrices as well. We note that

the network of Theorem 6 does not implement the ‘decoding’ step which estimates f(z) from

A · z. This step depends on the problem being solved, however it is often very simple and thus

implementable via a space-efficient SNN. E.g., in `p norm estimation one might just have to

compute the `p norm of A · z [93]. In frequency estimation, one might have to compute an

average of a subset of entries in A · z [39].

Beyond our generic linear sketching reduction, we give neural solutions for two challenging

problems in the insertion-only model, namely, distinct elements and median estimation. These

simulation results are less general and provide several tools for bypassing critical obstacles that

arise in streaming to SNN reductions.

Distinct elements. In the distinct elements problem one must approximate the number of dis-

tinct items appearing in a data-stream with repeated items. It is well known that an exact

solution by a single-pass streaming algorithm requires linear space. In fact, as we discuss later

on, one can also show that the exact computation requires linear space in the SNN setting.

Therefore, we restrict our attention to (1 + ε) approximation for the number of distinct ele-

ments for any ε ∈ (0, 1). This problem has been studied thoroughly in the streaming literature

[40, 17, 60, 71, 98, 29, 95, 194, 9].

In this work, we provide an efficient neural implementation for the well-known LogLog

streaming algorithm by [60, 71]. While the LogLog and its improved variant the hyper-Loglog

algorithm provide sub-optimal space bounds, they are commonly used in practice due to their

simplicity. As we will see, they are efficiently implementable in the neural setting. In addition,

we provide a nearly matching space lower bound.

Theorem 7 (Neural Computation of Distinct Elements). For every n ∈ N, ε, δ ∈ (0, 1), given

n input neurons representing the elements in [n] there exists a network N with log n output

neurons Õ(1/ε2) auxiliary neurons, andO(log log n) persistence time that encode the logarithm

of an (1 ± ε) approximation of the number of distinct elements in the current stream, with

probability 1− δ. In addition, any SNN requires Ω(log n+ 1/ε2) auxiliary neurons to compute

an (1± ε) approximation for the problem, with constant probability.

The lower bound is obtained via a communication complexity reduction that mimics the
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corresponding streaming reduction. We note that this reduction works perfectly, i.e., without

any asymptomatic loss in the space-bound (compared to the streaming bound).

Count-Min sketch. A common tool used in many of the streaming algorithms is the Count-Min

sketch data structure, which maintains frequency estimates for all items in a stream. Count-

Min sketch is in fact a linear sketch, and thus can be implemented via Theorem 6. However,

it is not immediately clear how to implement certain important operations, like approximate

frequency (count) queries via this reduction. We thus provide a direct implementation. Our

implementation applies in the setting where there are O(log n) input neurons representing each

insertion/deletion of an item x ∈ [n]. However, it can easily be extended to the setting in which

there are n input neurons, one for each item.

Definition 6 (Count-Min Sketch [49]). Given parameters ε, δ ∈ (0, 1), the Count-Min sketch is

a probabilistic data structure that serves as a frequency table of items in a stream. It supports

two operations: (i) inc(x) increases the frequency of x by one; (ii) count(x) returns an (1 + ε)

approximation of the frequency of x with probability 1− δ.

For given parameters ε, δ > 0, the Count-Min sketch data structure contains ` = O(log 1/δ)

hash tables T1, . . . T` each with b = O(1/ε) bins, and each table Ti is indexed using a different

pairwise independent hash function hi. The inc(x) operation applies Ti[hi(x)]← Ti[hi(x)] + 1

for every i ∈ [`]. The count(x) operation returns mini∈[`] Ti[hi(x)], which is shown to provide

a good approximation for the frequency of x. The Count-Min data structure is used in many

streaming algorithms including heavy-hitters, range queries, quantile estimation, and more. We

provide an efficient neural implementation of a Count-Min sketch data structure, and show:

Theorem 8 (Neural Implementation of Count-Min Sketch). For every n,m ∈ N and ε, δ ∈
(0, 1) there exists a networkN with log n input neurons,O(1/ε·poly(logm, log 1/δ))) auxiliary

neurons, and Õ(1) persistence time that implements a Count-Min sketch with approximation

ration (1 + ε) and success probability 1− δ, for an input stream of length at most m.

Our neural implementation of the Count-Min sketch can immediately be used to give, e.g.,

a simple neural approximate heavy-hitters algorithm, which returns TRUE if a presented item

has frequency ≥ m/k in a data-stream for some integer k, and FALSE if it has frequency

≤ (1− ε)m/k. Setting ε′ = O(ε/k), a count(x) query will return a frequency estimate ≥ m/k

for any true heavy-hitter x and ≤ m/k for any x with frequency ≤ (1 − ε)m/k. By keeping a

counter for m using O(logm) neurons and performing a comparison operation with the output

of count(x), we can thus solve the heavy hitters problem. Other applications of Count-Min

sketch require more complex processing of the data structure’s output. To illustrate how this

processing can be implemented efficiently in an SNN, we detail one such application, to median

approximation.

Approximate median. One of the most fundamental statistical measures of a data-stream is

its quantile. The 1/2-quantile known as the median, attracts most attention in the streaming
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literature [142, 134, 39, 42]. Its non-linearity nature makes it considerably harder to maintain

compared to its linear cousin, the mean. As in many other streaming problems, the exact com-

putation of the median requires linear space both in the streaming and in the SNN setting (as

will be discussed later on). This motivates the study of the relaxed (1 + ε) approximation task.

In the latter, the algorithm is allowed to output an item j provided that the total number of items

with value at most j is in the range [m/2− εm,m/2 + εm].

Cormode and Muthukrishnan [49] presented an elegant streaming algorithm for this problem

using a space of Õ(1/ε) bits. The algorithm is based on the Count-Min sketch data structure,

combined with a dyadic decomposition technique that is used in a number of other streaming

algorithms. One of our key technical algorithmic contributions is in providing an efficient neural

implementation of this algorithm.

Theorem 9 (Neural Computation of Approximate Median). For every n,m ∈ N and ε, δ ∈
(0, 1), there exists a neural network Nn,m solving the (1 + ε)-approximate median problem

using O(1/ε · poly(logm, log n, log 1/δ)) auxiliary neurons and persistence time Õ(1) with

probability at least 1− δ.

3.1.1.2 Streaming Lower Bounds Yield SNN Lower Bounds

Our second contribution focuses on Question 2, showing that space-efficient SNNs can be trans-

lated into space-efficient streaming algorithms, and thus that lower bounds in the streaming

model imply lower bounds in the neural setting. The underlying intuition for this transforma-

tion is based on the following observation.

Observation 1. A spiking neural network with deterministic edge weights, n input neurons, and

S non-input neurons can be simulated by a streaming algorithm using S bits of space.

In the SNN model, the spiking behavior of neurons in a given round depends only on the

firing states of their incoming neighbors in the previous round. Thus, to simulate the behavior

of the network as one pass over the data-stream, it is sufficient to maintain the firing states of all

non-input neurons in the network, thus storing S bits of information. When the edge weights

of the network are randomly sampled such a small-space simulation becomes more involved.

The explicit storage of all the edge weights might be too costly since there can be Ω(nS + S2)

edges in a network with n input neurons and S non-inputs. Nevertheless, we show that a small-

space simulation is still possible using a pseudorandom number generator, if we pay an additive

logarithmic overhead in the length of the stream and universe size.

Theorem 10. Any SNN N with n input neurons, S non-input neurons for S = poly(n), and

poly(n) persistence time can be simulated over a data-stream of length m using a total space

of O(S + log(nm)). The success guarantee of the simulation is 1− 1/poly(n,m).

Theorem 10 is a powerful tool, since it lets us apply any streaming space lower bound (of

which there are many) to give an SNN lower bound, with a loss of an O(log(nm)) factor.
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In some cases, we can avoid this loss by more directly considering the lower bound technique.

This is obtained when the streaming lower bounds are derived via a reduction to communication

complexity with shared randomness that can be applied in the SNN setting with no loss. For

example, using this tighter approach we show that our neural network for the distinct elements

problem is nearly space-optimal (see Section 3.3).

3.1.2 Basic Tools

Our constructions are based on several neural network modules. We start by describing existing

tools we will be using, and then describe additional new tools.

Neural timers and counters. For a given time parameter t, a neural timer NT t is an SNN

network that consists of an input neuron x, an output neuron y, and additional auxiliary neurons.

The network satisfies that in every round τ , y fires in round τ iff there exists τ ′ ∈ [τ − t, τ ] such

that x fired in round τ ′. It is fairly easy to design a neural timer network with O(t) auxiliary

neurons. [86] presented a construction of a more succinct network NT t with only O(log t)

neurons. In the related setting of neural counting, the network is required to encode the number

of firing events of its input neuron within a given time window. Specifically, given a time

parameter t, a neural counter network NCt has a single input neuron x, and dlog te output

neurons that encode the number of firing events of x within a span of t rounds.

Fact 1 ([120, 86]). For every integer parameter t, there exist (i) a neural timer network NT t
with O(log t) neurons, and (ii) a neural counter network NCt with O(log t) auxiliary neurons,

such that for every round i, the output neurons encode fi by round i + O(log t) where fi is the

number of firing events up to round i. Both networks NT t and NCt are deterministic.

Maximum computation. Given a neural representation of m elements x1, . . . , xm in [n], it is

required to design a neural network that computes the maximum value x∗ = maxi xi. The net-

work has an input layer of m · log n neurons that represent the elements x1, . . . , xm, and an out-

put layer of log n neurons that should encode the value of the maximum value x∗. Maass [131]

presented a network construction with O(m2 + m · log n) auxiliary neurons. In the high level,

in this network for every pair of elements xi, xj , there is a designated comparison neuron ci,j
which fires if and only if xi ≥ xj . The output is then computed using additional m neurons

g1, . . . gm where gi fires if and only if all the comparison neurons ci,1, . . . , ci,m fired. We have:

Fact 2 ([131]). Given m vectors of neurons x1, . . . , xm each of size log n, there exists a deter-

ministic neural network with log n output neurons y and O(m2 + m log n) auxiliary neurons,

such that if the input neurons encode the values x1, . . . , xm in round t, the output neurons y

represents the value maxi xi by round t+O(1).

Upon very small modifications, the same network solution can be adapted to compute the

minimum and the median elements. We next describe new tools introduced in this work which

will be heavily used in our constructions.
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Potential encoding. Our SNN constructions are based on a module that encodes the potential

p of a given neuron x by its binary representation using O(log p) neurons. We will use this

modules in the constructions of Theorem 6 and Lemma 6.

Lemma 5. Let x be a deterministic neuron such that pot(x, t′) ≤ 2` for every t′ ∈ [t, t+O(`)]

for some integer ` ∈ N>0. There exists a deterministic network POT`(x) which uses ` identical

copies of x (with the same input and bias), 2` auxiliary neurons, and ` output neurons y0 . . . y`−1

that encodes pot(x, t) in a binary form within O(`) rounds.

Proof. We begin with describing the network.

• The input to the network are ` excitatory copies of x denoted as x0, . . . , x`−1. Each xi has

all the incoming edges and bias as the neuron x.

• There are ` inhibitory neurons r0, . . . r`−1 each with bias −1 and no incoming edges.

Hence, these inhibitory neurons keep on firing on every round. Every neuron ri is con-

nected to xi with weight w(ri, xi) = −(2i − 1/2).

• There are additional `− 1 inhibitory neurons v1, . . . , v`−1. Each vi has an incoming edge

from xi with weight w(xi, vi) = 1 and bias b(vi) = 1. Additionally, every vi has i − 1

outgoing edges to x0, . . . xi−1 with weight w(vi, xj) = −2i.

• Let y0, . . . , y`−1 be the output neurons of the network. Each yi has an incoming edge from

xi with weight w(xi, yi) = 1 and bias b(yi) = 1. Hence, yi fires in some round t iff xi
fired in the previous round.

See Fig. 3.1 for an illustration of the network.

−𝟐𝟐

−𝟐𝟐

−𝟐𝟏

𝒙𝟐 𝒙𝟏 𝒙𝟎

𝒚𝟐 𝒚𝟏 𝒚𝟎

𝒗𝟐 𝒗𝟏 𝒓𝟐 𝒓𝟏 𝒓𝟎

Figure 3.1: An illustration of the potential encoding module.

Correctness analysis: Let bpot(x, t)c =
∑`−1

i=0 ai · 2i be the potential of x in some round t0.

We assume the input is persistent for at least 2` rounds. This implies that the potential of x

does not change for at least 2` rounds. We will show by induction on i that starting round

t0 + 2 · i the output neuron y`−i−1 fires iff a`−i−1 = 1. Base case: for neuron x`−1, the only
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inhibitor inhibiting x`−1 is r`−1 with weight −(2`−1 − 1/2). Hence, if a`−1 = 1 then starting

round t0 + 1 the potential of x`−1 is at least
∑`−1

i=0 ai · 2i − 2`−1 + 1/2 ≥ 1/2 > 0. Thus, x`−1

fires starting round t0 + 1 and therefore y`−1 fires starting round t0 + 2. On the other hand, if

a`−1 = 0 then starting round t0 + 1 the potential of x`−1 is given by
∑`−2

i=0 ai · 2i− 2`−1 + 1/2 ≤
(2`−1− 1)− 2`−1 + 1/2 < 0 and therefore starting round t0 + 1 the neuron x`−1 is idle and y`−1

does not fire starting round t0 + 2. Assume the claim is correct for neurons y`−1, . . . , y`−i and

consider neuron y`−i−1.

By the induction assumption by round t0+2·i the neurons y`−1, . . . y`−i encode a`−1, . . . a`−i.

By the definition of the network, we conclude that for the inhibitors v`−1, . . . v`−i, each vj fires

starting round t0 + 2i iff aj = 1. Hence, the potential of xi−1 in round t0 + 2i + 1 is equal to∑`−i−1
i=0 aj · 2j − 2`−i−1 + 1/2. Therefore x`−i−1 fires starting round t0 + 2i + 1 iff a`−i−1 = 1

and y`−i−1 encodes ai−1 starting round t0 + 2(i+ 1).

Neural networks for data-stream problems. A data-stream problem is defined by a relation

Pn ⊂ Zn × Z. The length of the stream is upper bounded by some integer m. Each data-item

is represented by a binary vector of length n. A value i ∈ [1, n] is represented by having the

i-th input neuron fire while all other input neurons are idle. Each input is presented for some

persistence time, at the end of which the output neurons of the network encode (in binary) the

evaluation of a given relation over the current stream. To avoid cumbersome notation, we may

assume that m and n are powers of 2.

Implementing pairwise independent hash functions. Many streaming algorithms in the in-

sertion only model are based on the notion of pairwise independent hash functions.

Definition 7 (Pairwise Independence Hash Functions). A family of functions H : [a] → [b] is

pairwise independent if for every x1 6= x2 ∈ [a] and y1, y2 ∈ [b], we have:

Pr[h(x1) = y1 and h(x2) = y2] = 1/b2.

For ease of notation, assume that a, b are powers of 2.

Definition 8 (Pairwise Independence Hash SNN). Given two integers a, b, a pairwise indepen-

dent hash network Na,b is an SNN with an input layer of log a neurons, an output layer of log b

neurons, and a set of s auxiliary spiking neurons. For every input value x presented at round t,

letN (x) be the value of the output layer after τa,b rounds. Then, for every x 6= x′ ∈ [a], it holds

that Pr[N (x) = N (x′)] = 1/b.

We show a neural network implementation of a pairwise independent hash function using

the construction of pairwise hash function by [36].

Lemma 6 (Neural Implementation of Pairwise Indep. Hash Function). For every integers a, b,

there exists a pairwise independent hash network Na,b with s = O(log b · log log a) auxiliary

neurons and O(log log a) persistence time.
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Proof of Lemma 6. Our neural network implements the well-known construction of a pairwise

independent hash function of [36]. In this construction, the input is a binary vector of length

c = log a, and the output is a binary vector of length d = log b. Letting H be a binary c × d
matrix sampled uniformly at random, define h(x) = H · x, where the addition operations are

defined over the field F2. [36] showed that for every x 6= y, Pr[h(x) = h(y)] = 1/2d = 1/b.

For each i ∈ [log b], the network connects all input neurons to one intermediate neuron

ri with random weights in {0, 1} and bias b(ri) = 0. Hence, the potential of ri is equal to

the multiplicity of x with a binary random vector. Next, the network extracts the potential

of ri using the sub-network POT(ri) defined in Lemma 5. For that purpose, it introduces

O(log log a) copies of the neuron ri. Next, in order to compute the addition in F2, the network

computes the parity of the potential of ri by connecting the least significant bit of the output

of the sub-network POT(ri) to the i-th output neuron yi. The correctness of the constructed

network follows from Lemma 5.

3.2 Linear Sketching

A linear sketching algorithm is a streaming algorithm in which the state of the algorithm at time

t is a linear function of the updates seen up to time t. We start with a formal definition.

Definition 9 (Linear Sketching Algorithm, [99]). A linear sketching algorithmL gives a method

for processing a vector x ∈ Rn. The algorithm is characterized by a (typically randomized)

sketch matrix A ∈ Rr×n, and by a possibly randomized decoding function f : Rr → O whereO

is some output domain. Alg. L is executed by first computing A ·x and then outputting f(A ·x).

Note that f only takes A · x as input, f cannot depend on A in any other way, e.g. it cannot

share randomness with A.

Linear sketching algorithms provide the state-of-the-art space bounds for a large collection

of problems in the turnstile model.

The challenge and our approach. Throughout we assume the sketching matrix is integral, i.e.,

A ∈ Zr×n, which captures most of the classic implementations in the turnstile model. We start

by describing a straw man approach for computing the value Ax in the neural setting: Take a

single-layer neural network with an input layer of length n + 1 and an output layer of length

r. Specifically, the input layer contains n neurons x1, . . . , xn that represent the absolute value

of the update, and an additional sign neuron that indicates the sign of the update. For example,

an update vector [0, 0,−1, 0] is represented by letting x3 = 1, s = 1 and x1, x2, x4 = 0. The

output layer is defined by r output neurons y1, . . . , yr. The edge weights are specified by the

matrix A where w(xj, yi) = Ai,j . It is then easy to verify that the weighted sum of the incoming

neighbors of each neuron yj (i.e., its potential) is the value of the j-th entry in the vector Ax.
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This naive description fails for various reasons. First, from a biological perspective, each

input neuron can be either inhibitory or excitatory. This implies that the sign of the outgoing

edge weights of a given neuron must be either a plus (excitatory) or a minus (inhibitory). Math-

ematically, this requires the sketch matrix A to be sign-consistent (i.e., the sign of all entries in

a given raw are either a plus or a minus). However, in general, the given sketch matrix might

not be sign-consistent. The second technicality is that the neurons y1, . . . , yn have a binary

output (either firing or not) rather then an integer value. The third aspect to take into account

is concerned with the update mechanism. Specifically, given a stream of data items, one should

make sure that each data item would be processed exactly once by the network. This requires a

more delicate update mechanism.

In the high-level, we handle the sign-consistency challenge by dividing the sketch matrix A

into a non-negative matrix A+ and a non-positive matrix A− where A = A+−A−. Then, given

a new update (x, s), the network computes Ax and −Ax using A+x and A−x. The final output

Ax is computed by using these values combined with the sign neuron s. To handle the second

challenge, we use the module of Lemma 5 to translate the potential of each output neuron yj
(corresponding to the j’th bit in the sketch) into its binary representation. The output layer

consists of O(r log n) output neurons that encode the value of the current r-length sketch.

Network description. Let (x = (x1, . . . , xn), s), be the input neurons of the linear sketch

network N , where x represents the current update and s represents the update sign, firing if

the update is negative. Let A ∈ Zr×n be the sketch matrix of the sketching algorithm to be

implemented. We denote the multiplication of the input vector x′ represented by (x, s) and A

by A ◦ (x, s). This notation is needed since x represents only the absolute value of the update.

The output layer of the network consists of r vectors y1, . . . , yr and r sign-neurons s1, . . . sr.

Each vector yj contains O(log n) neurons that are used to encode in binary the absolute value

of the j-th entry in the output sketch. The sign of this entry is specified by the sign neuron sj .

In order for the output neurons to continue presenting the correct value throughout the exe-

cution, all output neurons y1, . . . , yr, s1, . . . sr have self-loops with large positive weights. For

each output vector yi with sign neuron si the algorithm introduces an equivalent vector of in-

hibitory neurons y′i where each neuron y′i,j serves as an AND gate between yi,j and si. In

addition, for each of the vectors yi, y′i, an inhibitor and excitatory copies are introduced, in

which each neuron has the same incoming edges and biases as its corresponding neuron. These

copies will assist us in case the new value after the current update will be negative. In our

network description, all neurons, unless specified otherwise, are excitatory by default.

(1) Matrix multiplication. LetA+ (resp.,A−) be the matrix containing the non-negative (resp.,

non-positive) entries of A, where

(A+)i,j =

Ai,j, if Ai,j ≥ 0

0, Otherwise .
and (A−)i,j =

−Ai,j, if Ai,j < 0

0, Otherwise .
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Hence, both A+ and A− are non-negative matrices and Ax = A+x − A−x. The network

contains two vectors of neurons a+ and a− of length r that are connected to the input neurons

with weights w(xi, a
+
j ) = A+

i,j , w(xi, a
−
j ) = A−i,j for every i ∈ {1, . . . , n} and j ∈ {1, . . . , r}.

For each neuron a+
j and each neuron a−j , there are dlog `e copies, in order to describe their

potential by a binary vector denoted as z+
j , z−j . This can be done using the potential-encoding

module of Lemma 5. In addition, each vector z+
j , z−j has an inhibitory vector copy z′+j , z′−j .

(2) Computing Ax and −Ax. In order to calculate Ax (and (−Ax)), for each i ∈ [r] the algo-

rithm introduces two additional neurons ap,i, an,i such that the potential of ap,i equals Ax, and

the potential of an,i equals (−Ax). Neuron ap,i has incoming edges from z+
i and the inhibitor

vector z′−i with weights w(z+
i )j, ap,i) = 2j−1 and w((z′−i )j), ap,i) = −2j−1. Similarly, neuron

an,i has incoming edges from z−i and the inhibitors z′+i with weights w((z−i )j, an,i) = 2j−1

and w((z′+i )j, an,i) = −2j−1. We then introduce log ` copies for each ap,i and an,i, and extract

their potential into binary vectors using Lemma 5. The output neurons of the sub-networks

POT(ap,i) and POT(an,i) together with the sign neuron s, are connected to four neural vectors

dp,i, d′p,i, dn,i, d
′
n,i as follows.

The vector POT(ap,i) is connected to dp,i and d′p,i, where for every j ∈ [log `], the j-th

neuron in dp,i fires only if the j-th neuron in POT(ap,i) fire. In addition, the j-th neuron of

d′p,i is an AND gate of s and the j-th neuron of POT(ap,i). In a similar manner, the vector

POT(an,i) is connected to the inhibitory neurons d′n,i where for every j ∈ [log `], the j-th

neuron in d′n,i fires only if the j-th neuron in POT(ap,i) fire. The j-th neuron of the excitatory

neurons dn,i is an AND gate of s and the j-th neuron of POT(an,i).

Note that because (Ax)i > 0 or maybe (−Ax)i > 0 but not both, for every coordinate i

either dp,i, d′p,i contain firing neurons or dn,i, d′n,i contain firing neurons but not both.

(3) Computing A ◦ (x, s). For every coordinate i, there is an intermediate neuron qi whose

potential corresponds to the value of the i-th coordinate in the updated vector. The neuron qi
has positive incoming edges from the neurons in yi, y′i with weights w(yi,j, qi) = 2j−1 and

w(y′i,j, qi) = −2 ·2j−1 respectively. Hence, in case the sign neuron si is idle, the output neurons

contribute dec(yi) to the potential of qi. In case the sign neuron si fires, the output neurons

contribute −dec(yi) to the potential of qi.

The next step is to add the valueAx to the potential value of every qi. To do that, the network

connects the vectors dp,i, d′p,i, dn,i, d
′
p,i to qi in the following manner. The vectors dp,i, d′p,i are

connected to qi with weights w((dp,i)j, qi) = 2j−1, and w((d′p,i)j, qi) = −2 · 2j−1. Hence, in

case where the sign neuron s is idle ,these neurons contribute dec(dp,i) to the potential of qi. In

case where the sign neuron s fires, these neurons contribute −dec(dp,i). Recall that the neural

vectors dp,i, d′p,i have firing neurons only if (A · x)i > 0, and in this case dec(dp,i) = (A · x)i.

In the same manner, the vectors dn,i and d′n,i are connected to qi with weightsw((dn,i)j, qi) =

2 · 2j−1, and w((d′n,i)j, qi) = −2j−1. Recall that the vectors dn,i, d′n,i have firing neurons only if

(A · x)i < 0 and in this case dec(dp,i) = −(A · x)i.
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Thus, by the above description the potential of qi encodes the i-th coordinate of the updated

output vector. To support the case where the potential of qi is negative, there is an equivalent

neuron q′i whose potential is the additive inverse of the potential of qi. This can be obtained by

using the relevant excitatory and inhibitory copies of the vectors yi, y′i, dp,i, d′p,i, dn,i, d
′
p,i that

are connected to q′i with the corresponding weights (as used in qi up to a flip in the sign).

(4) Updating the output sketch (exactly once). The network updates the output vectors

y1, . . . , yr, s1, . . . sr in the following manner. Using Lemma 5 and log ` identical copies of

qi and q′i, it extracts their potential into vectors of neurons denoted as Qi, Q′i. The algorithm

connects each neuron q′i to the sign neuron si and the vectors Qi, Q′i to the output vector yi
via a delay chains of size O(1), where yi,j has an incoming large positive weight from the j-th

neurons of Qi and Q′i. The reason we use a delay chain is that we wish to add the update Ax to

the output y after the previous value is deleted, and only once. For that purpose, the following

reset mechanism is added.

The algorithm connects the input neurons x to an intermediate excitatory neuron r0 which

serves as a simple OR gate. Let τ be an upper bound on the number of rounds between the first

round the input x is presented and the round in which the neurons in Q1, . . . Qr and Q′1 . . . Q
′
r

output the desired outcome as specified in Lemma 5. The neuron r0 is connected to a chain C

of size τ + 1 where each neuron cj in C has an incoming edge from cj−1 with weight 1 and

bias 1. The neuron cτ is then connected to the first neurons in the delay chains connected to

qi, Qi, Q
′
i for every coordinate i, where these neurons serve as AND gates of the input from cτ

and the corresponding neuron in qi, Qi, Q
′
i. The last neuron in C, (i.e. cτ+1) is an inhibitory

neuron with outgoing edges to all neurons in the network besides the delay chains with large

negative weights (including the output neurons). Hence, once the network is reset the algorithm

will update the output neurons once, and all neurons will be idle until the next update. Fig. 3.2

illustrates the constructed network.

Correctness. Let x, s be an update presented in round τ0.

Observation 2. For every coordinate i ∈ [r], the firing neurons in z+
i encode the binary repre-

sentation of (A+x)i, and the firing neurons in z−i encode (A−x)i by round τ1 = τ0 +O(log `).

Proof. Starting round τ0 +1 due to the edge weights between x and a+ (a−), the potential value

of (a+)i is equal to (A+x)i and the potential value of (a−)i is equal to (A−x)i. Since all entrees

in A+ and A− are non-negative, these potential values are non-negative. Hence, by Lemma 5

the neurons z+
i and z−i holds a binary representation of these potential within O(log `) rounds.

We now show that the potential of qi is equal to the updated value within O(log `) rounds.

Let ŷ be the values encoded in the output neurons in round τ0.
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Figure 3.2: An illustration of the linear sketching network. The red circles represent inhibitor neurons,

and the green circles represent excitatory neurons. In the first layer, the potential values of the vector a+

(a−) represent A+x (A−x). For simplicity from that point, we focus on updating the i-th coordinate of

the output neurons. In the third layer the potential value of (A+x)i ((A−x)i) are extracted into a binary

vector z+
i (z−i ). These neurons are then used to compute Ax and −Ax which are represented in dp,i

and dn,i and their inhibitory copies. The inhibitory neurons d′p,i and the excitatory neurons dn,i fire only

if s = 1. In the next layer, these neurons and the output neurons yi are connected to qi such that the

potential of qi is equal to the updated value. The potential of qi is extracted into a binary vector Qi that is

connected to the output neurons. The chain C is responsible to schedule the update so that it will occur

only once, and only after the reset of y.

Claim 14. For every coordinate i ∈ [r], the potential of qi is equal to the updated value (ŷ +

(1− 2s)Ax)i by round τ2 = τ0 +O(log `).

Proof. By Obs. 2, the neurons z+
i , z−i encodes (A+x)i and (A−x)i respectively by round τ1 =

τ0 + O(log `). Since A = A+ − A−, the potential value of ap,i equals (Ax)i and the potential

value of an,i is equal to −Ax)i by round τ1 + 1. Hence, by Lemma 5 for some round τ ′ =

τ1 +O(log `), if (Ax)i ≥ 0, the output neurons of POT(ap,i) encodes (Ax)i by round τ ′ and if

(Ax)i < 0 the output neurons of POT(ap,i) are idle. Similarly, if (Ax)i ≤ 0, the output neurons

of POT(an,i) encodes (−(Ax)i) by round τ ′ and if (Ax)i > 0 the output neurons of POT(an,i)

are idle.

Next, we calculate the contribution of the vectors dn,i, d′n,i , dp,i, d′p,i to the potential of

qi. Starting at round τ ′ + 1, if (Ax)i ≥ 0 then dec(dp,i) = dec(POT(ap,i)) = (Ax)i and

dec(dn,i) = dec(d′n,i) = 0. In case s = 0, then dec(d′p,i) = 0 and therefore the neurons
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dn,i, d
′
n,i , dp,i, d′p,i contribute (Ax)i to the potential of qi. In case (Ax)i ≥ 0 and s = 1 then

dec(d′p,i) = (Ax)i and by the definition of the weights from d′p,i to qi, the neurons d′p,i contribute

−2(Ax)i to the potential of qi. Hence, if (Ax)i ≥ 0 and s = 1 the neurons dn,i, d′n,i , dp,i, d′p,i
contribute (Ax)i − 2(Ax)i = −(Ax)i to the potential.

On the other hand, in case (Ax)i ≤ 0 then dec(dp,i) = dec(d′p,i) = 0 and dec(d′n,i) =

dec(POT(an,i)) = −(Ax)i. If s = 0 then dec(dn,i) = 0 and the neurons dn,i, d′n,i , dp,i, d′p,i
contribute −(−(Ax)i) = (Ax)i to the potential of qi. If s = 1 then dec(dn,i) = −(Ax)i and

these neurons contribute (Ax)i − 2(Ax)i = −(Ax)i to the potential of qi.

Similarly, as for the output neurons yi, y′i, if si = 0, these neurons contribute dec(ŷi) to the

potential of qi, and if si = 1, these neurons contribute −dec(ŷi). By choosing τ2 = τ ′ + 2, the

claim follows.

Claim 15. The output neurons encode the values ŷ + (1− 2s)Ax by round τ ′ = τ0 +O(log `).

Moreover, the output neurons continue to present the updated value until the next update pre-

sented in the input neurons.

Proof. By Claim 14 for every coordinate i, the potential value of qi is equal to the updated value

(ŷ+ (1− 2s)Ax)i by round τ2 = τ0 +O(log `). Therefore, it also holds that the potential value

of q′i is equal to −(ŷ + (1− 2s)Ax)i by round τ2. Thus, by Lemma 5 if (ŷ + (1− 2s)Ax)i ≥ 0

then the neurons Qi encode (ŷ + (1 − 2s)Ax)i by some round τ3 = τ2 + O(log `) and are idle

otherwise. Similarly, if −(ŷ + (1 − 2s)Ax)i ≥ 0 then Q′i encodes −(ŷ + (1 − 2s)Ax)i by

round τ3. Note that either Qi or Q′i holds firing neurons but not both. In case Q′i contains firing

neurons, −(ŷ+ (1− 2s)Ax)i > 0, and q′i fires as well (in such a case the sign neuron of the i-th

coordinate si should be updated to 1).

We set the chain C to be of size τ = O(log `) > τ2 − τ0 + 2. Since the first neurons in

the delay chains that correspond to q′i, Q
′
i, Qi serve as AND gates of cτ and the corresponding

neurons in q′i, Q
′
i, Qi, they begin to fire only after the neurons q′i, Q

′
i, Qi hold the correct values

in round τ0 + τ + 1. Additionally, due to the inhibition of cτ+1, starting round τ0 + τ + 2

all neurons in the network (including yi, si) are idle except the delay chains which holds the

updated values. We set all the delay chains connected to the output neurons to be of size 3 and

therefore in round τ0 +τ +3 the neurons yi, si will be updated once with the correct value (after

these neurons are already reset). Moreover, due to the self loops of the output neurons they will

continue to present the updated value until the next update is presented.

3.3 The Distinct Elements Problem

In the distinct elements problem, given is a stream of integers S = {x1, . . . , xm} where each

xi ∈ [n]. It is then required to maintain an estimate for the number of distinct elements in the

stream. We start by stating the state-of-the-art bounds for this problem in the streaming model.

66



Fact 3 (Streaming Space Bounds, [29],[115]). For any ε, δ ∈ (0, 1), there is an (1 + ε) approxi-

mation algorithm for distinct elements with success probability of 1−δ usingO(1/ε2 · log 1/δ+

log n) space. Moreover, the space bound is optimal.

In this section, we provide a neural implementation for the well-known LogLog streaming

algorithm by [60, 71]. This algorithm obtains sub-optimal space, but its simplicity makes it

much more applicable in the neural setting.

Lemma 7 ([60, 71]). Given a data-stream of elements in [n], there exists an (1 + ε) approxi-

mation algorithm for the distinct elements problem using O((1/ε2 log log n + log n) log(1/δ))

space, with probability of 1− δ.

Proof Sketch. We describe the high-level idea of the randomized LogLog algorithm under a

constant success guarantee. To provide a success guarantee of 1 − δ, the same algorithm is

repeated for O(log(1/δ)) times, thus inuring an overhead of O(log(1/δ)) factor in the space

complexity.

The algorithm uses a pairwise independent hash function h : [n]→ [2(2 log 1/ε+3 logn)] to map

each input value xi ∈ [n] into a random string h(xi). The first k = 2 log 1/ε bits of h(xi) are

used in order to map xi into 2k = 1/ε2 buckets b1, . . . , b2k . Let ρ(xi) be the number of leading

zeros in the remaining 3 log n bits of h(xi). In each bucket b`, the algorithm maintains the

maximum value of ρ(xi) for every stream element xi that maps into the bucket b`. Denote this

maximum value by N`. The estimate on the number of distinct elements is given by α · 2k · 2N̄

where N̄ is the average of theN` values over the 2k buckets b1, . . . , b`, . . . , b2k for some constant

α.

A neural network for the distinct element problem. We next turn to describe a neural imple-

mentation of the classical LogLog algorithm and prove Theorem 7.

Definition 10 (SNN for Distinct Elements). Given parameters n and ε, δ ∈ (0, 1), an SNN

network N for the distinct elements problem has n input neurons x, and log n output neurons

y. For every round t, let f1(t) be1 the number of distinct elements arrived by round t. For every

fixed round t, it holds that by round τ(t), the output neurons y encode the binary representation

of an (1 + ε) approximation of f1(t) with probability 1− δ.

We describe the network construction based on the sequence of operations applied on the

input layer. See Fig. 3.3 for an illustration.

(1) Encoding the input in a binary Form. The network contains log n neurons x′1, . . . x
′
logn

that represent the binary encoding of the presented element. The algorithm connects the input

neurons x to the neurons x′ = x′1, . . . , x
′
logn such that for every i ∈ [n], j ∈ [log n] the edge

1We call it f1 since the distinct elements problem computes the F1 norm of the stream.
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weight w(xi, x
′
j) = 1 if the j-th bit in the binary representation of i is equal to 1 and w(xi, x

′
j) =

0 otherwise. The bias values of these neurons are set to b(x′j) = 1 for every j ∈ {1, . . . log n}.

(2) Hashing. The network contains a sub-networkH which implements a pairwise independent

hash function h : {0, 1}logn → {0, 1}2 log(1/ε)+3 logn using Lemma 6. The input to the sub-

networkH are the neurons x′. Let t = O(log log n) be an upper bound on the number of rounds

required for the computation of the sub-network H. In order to maintain the persistence of the

input x′ for Θ(t) rounds, the network contains a neural timer NT using Fact 1.

The output of H is denoted by hb, hs, where hb is of length 2 log(1/ε), and hs is of length

3 log n. The output neurons hb will encode the bucket number the input is mapped to, and the

vector hs holds a binary string of size 3 log n. The neurons hb, hs also have inhibitory copies

denoted by h′b, h
′
s.

(3) Computing the number of leading zeros. In the next step the network computes the

number of leading zeros in the hashed string hs. For that purpose, we first connect the inhibitory

neurons h′s to hs such that hs will contain a single firing neuron corresponding to the leading

one entry in the binary string hs. This is done by connecting each inhibitory neuron h′s,i to the

neurons hs,1, . . . , hs,i−1 with large negative weight. As a result, hs contains one firing neuron

such that the neuron hs,i fires iff the number of leading zeros in the hashed string hs is (3 log n−
i). Next, the number of leading zeros in hs is encoded into a binary form using a collection of

O(log log n) neurons denoted as z, which have incoming edges from hs.

(4) Representing the B = 1/ε2 buckets. The buckets used in the LogLog algorithm are

represented using B sets of neurons b1 . . . bB, each of cardinality log log n. To maintain the

value stored in each bucket, the neurons b1 . . . bB have self-loops with large positives weights.

Additionally, each set of neurons bi is connected to an inhibitor copy b′i. The invariant is that

for all inputs seen so far that were mapped to bucket i, the firing state of bi will encode the

maximum number of leading zeros among all the observed strings hs.

In order to extract the index of the current bucket, the algorithm introduces B excitatory

neurons a1, . . . aB, with incoming edges from the neurons hb, h′b such that ai fires only if

dec(hb) = i.

(5) Comparing the number of leading zeros with the value stored in the buckets. Let

j = dec(hb) be the decimal value encoded is the neurons hb at round t. In the next step,

our goal is to compare the number of leading zeros encoded in the neurons z with the value

stored in the j-th bucket, encoded using the neurons bj . In order to control the precise timing

of the comparison, the network introduces a delay chain of size τ = O(log log n) denoted as

C = σ1, . . . στ . The first neuron in the chain σ1 serves as an OR gate of the input neurons x,

and for i = 2, . . . , τ the neuron σi has an incoming edge from σi−1 with weight 1 and bias 1.

The network then compares the value stored in the buckets b1, . . . bB with the current value

stored in z usingB comparison neurons c1, . . . cB. Each comparison neuron ci will fire only if (i)

στ fired, ensuring the comparison occurs when z holds the correct value, (ii) ai fired, indicating
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the input is mapped to bucket i, and (iii) dec(z) > dec(bi), indicating the current number of

leading zeros is larger than the value stored in the bucket bi. This is done by setting ci to have

incoming edges from ai and στ with weight w(ai, ci) = w(στ , ci) = 10 log n, incoming edges

from z with weight dec(z), negative incoming edges from b′i with weight −dec(bi), and bias

b(ci) = 20 log n+ 1.

(6) Updating the relevant bucket. Once the comparison neuron cj fires, the goal is to copy the

new value encoded in z to the bucket bj . First, the current value stored in the bucket is deleted

as follows. For every i ∈ [B] the neuron ci is connected to an inhibitory neuron ri, and ri is

connected to bi with a large negative edge weight. In order to update the value stored in the

bucket after the deletion, the neuron ci is connected to a chain of two neurons c1
i and c2

i , such

that c1
i has an incoming edge from ci, and c2

i has an incoming edge from c1
i . Next, for every k

and i, the k-th neuron in bi serves as an AND gate of c2
i and the k-th neuron zk,

To avoid additional false updates, the neuron c1
i is connected to an inhibitory neuron ri,2

that has negative outgoing edge weights to the chain C, the neurons z, and the input neurons x.

We note that in a setting where there is a signaling neuron that fires upon the arrival of a new

element, the inhibition of the input neurons can be avoided.

(7) Averaging. All neurons b1, . . . bB are connected to an intermediate neuron p such that the

potential of p is set to be logm · α ·
∑B

i=1 dec(bi), where α is a constant chosen according to

the LogLog algorithm. The potential of p is encoded by the output neurons y using the POT(p)

sub-network of Lemma 5.

(8) Amplification of the success guarantee. To amplify the success probability to 1 − δ, the

final network consists of k = O(log 1/δ) copies of the basic sub-network described above.

The final estimation is obtained by computing the median of the k outputs of the sub-networks

denoted as y1, . . . , yk. This is done using a variation of the network for computing the maximum

value by Maass [131] as described in Fact 2.

We are now ready to analyze the correctness of the construction, and by that complete the

proof of Theorem 7.

Proof of Theorem 7. We show that the proposed network implements the LogLog algorithm

of [60]. Given an input x representing an element i ∈ [n] introduced in round τ0, in round τ0 +1

the neurons x′ hold the binary encoding of i. Moreover, due to the neural timer NT connected

to x′, we can assume that x′ keeps presenting the value i for O(log log n) rounds.

By Lemma 6, the neurons hs encode the output of a pairwise independent hash functions

h1 : [n]→ [n3], and hb encodes the output of a pairwise independent hash functions h2 : [n]→
[1/ε2] by round τ1 = τ0 +O(log log n). We next observe that the neurons z encode the number

of leading zeros in h1(x) starting round τ1 + 2.

Observation 3. Starting round τ1 + 2 it holds that dec(z) encode the number leading zeros in

hs(x).
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Figure 3.3: The distinct elements network. The red circles represent inhibitory neurons and the green

circles represent excitatory neurons. First, the input element x is encoded into the log n neurons x′

representing the value of x in binary. Then x′ is hashed into two strings: (i) hb that encodes the bucket

to which x is mapped, and (ii) hs which is the 3 log n-bit suffix of the hash value of x. The network then

encodes the number of leading zeros in the hash string hs into a binary vector z, and extracts the bucket

index into a unit vector a. The current maximum leading zeros in each bucket is stored in the counters

on the left (b1, . . . bB). Next, the network compares between the number of leading zeros in the current

string and the value stored in the relevant bucket using the comparison neurons c1, . . . cB . The chain C

is responsible for scheduling the comparison to occur only after the updated value has been computed. If

needed, the corresponding bucket bi is updated with the value encoded in z using the neurons connected

to ci.

Proof. By Lemma 6, the neurons hs encode h1(x) by round τ1. Due to the inhibition of h′s
in Step 3, starting round τ1 + 1 the only neuron firing in hs is the leading one in the binary

representation of h1(x). Hence, if h′s,i fires in round τ + 1, then the number of leading zeros in

h1(x) is |hs| − i = 3 log n− i. Due to the edges from hs to z, starting round τ1 + 2 the neurons

z holds the binary encoding of the number of leading zeros in h1(x).

Let j = h2(x) = dec(hb) be the bucket to which the input x is mapped to in round τ1.

We first claim that for every bucket j′ 6= j, the neurons bj′ do not change their values (from

round τ0 and as long as the input has not changed). Starting at round τ1 + 1, the neuron aj
– corresponding to bucket j – fires, where for every j′ 6= j, the neuron aj′ is idle. Thus, the

comparison neuron cj′ does not fire and therefore for every index j′ 6= j the value stored in

bucket bj does not change.

As for bj , let vj(τ) be the value stored in bucket bj in round τ . We claim that if the number

of leading zeros in h2(x), denoted as v0, is larger than vj(τ0), then for τ2 = τ0 + O(log log n)

it holds that vj(τ2) = vs. We note that if v0 ≤ vj(τ0) by Obs. 3 starting round τ1 + 2 also

dec(z) ≤ vj(τ0). Setting τ > τ1 + 2− τ0, the comparison neuron cj will not fire and therefore
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the value stored in bj does not change.

Claim 16. If v0 > vj(τ0), then for round τ2 = τ0 + O(log log n) it holds that vj(τ2) = v0.

Moreover, the value stored in bj will not change until the next update is presented.

Proof. The index neuron aj starts firing by round τ1 +1 due to the incoming edges from hb. We

set the parameter τ such that τ > τ1−τ0 +3. Thus, in round τ ′ = τ0 +τ+1 both στ and aj fires.

Since τ ′ > τ1 + 2, by Obs. 3 in round τ ′ it also holds that dec(z) = v0 and dec(z) > vj(τ0). We

conclude that the comparison neuron cj fires in round τ ′+ 1. Due to the inhibitor ri all neurons

in bj are idle starting at round τ ′ + 3, and due to the edges from the neuron c2
i , in round τ ′ + 4

the neurons bj will obtain the value v0 encoded using the neurons z.

Additionally, due to the inhibitor ri,2, starting round τ ′ + 4, the neurons z, C and x are

idle. Therefore, the comparison neuron cj will not fire until the next input is presented and no

additional update will be performed. The claim follows for τ2 = τ ′ + 4.

The upper bound of Theorem 7 follows by combining Lemma 7, Claim 16 and Steps (7,8).

Lower bound. Finally, we show that the space-bound of Theorem 7 is nearly optimal by using

a reduction from communication complexity.

Lemma 8 (Neural Lower Bound). Any SNN for maintaining a (1 + ε) approximation for the

number of distinct elements with constant probability requires Ω(1/ε2 + log n) neurons.

Proof. The lower bound is based on a reduction from communication complexity in the same

manner as was shown for the streaming setting. Specifically, for the streaming setting Woodruff

[194] showed a lower bound of Ω(1/ε2) space for the (1 + ε) distinct elements problem with

δ = O(1). This was shown via a reduction from the Gap-Hamming problem in the public-coin

two-party model. In our context, we use a similar reduction in order to show a lower bound of

Ω(1/ε2) on the number of neurons in an SNN network. Let N be a network for maintaining

an (1 + ε) estimate for the number of distinct elements with constant probability using s non-

input neurons. We use this network to provide a one-way communication complexity protocol

between Alice and Bob. Since the random coins are public, both Alice and Bob can compute

the network N (i.e., with the random edge weights). Alice simulates her input items over the

network N by feeding them as input to the network (for a fixed number of rounds). She then

sends to Bob the firing states of the non-input neurons in N . This allows Bob to continue with

the network simulation by feeding it its input items. The correctness follows by the correctness

of the SNN network N and the communication complexity lower bound.

To show a lower bound of Ω(log n) we will use the reduction to the Disjointedness problem

in the communication-complexity setting by Alon at el. [9]. This reduction as well works in the

two-party model with public-coins, which allows Alice and Bob to compute the same network

N and simulate its operation over their input items in the same manner as above.
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3.4 Median Approximation

Before presenting the neural computation of the approximate median, we describe the neural

implementation of the Count-Min Sketch and prove Theorem 8.

3.4.1 A Neural Implementation of Count-Min Sketch

We follow the streaming implementation of Count-Min by [49] described as follows. The algo-

rithm maintains a data structure that consists of ` = O(log 1/δ) hash tables T1, . . . T`, each with

b = O(1/ε) bins, and each table Ti is indexed using a different pairwise independent hash func-

tion hi (i.e., the output domain of hi is {0, 1}log b). The operation inc(x) increases the value in

each bin Ti[hi(x)] for every i ∈ [`]. The count(x) operation returns the value mini∈[`] Ti[hi(x)].

Fact 4 ([49]). Pr[count(x) /∈ (f(x), f(x)+O(m/b))] ≤ 1/2Ω(`) where f(x) is actual frequency

of x in the stream of length m.

Definition 11 (Neural Count-Min Sketch). Given parameters ε, δ ∈ (0, 1), a neural Count-

Min sketch network Nε,δ has an input layer of log n + 1 neurons denoted as a, x1, . . . xlogn,

an output layer of logm neurons y1, . . . ylogm, and a set of s auxiliary neurons. The neurons

x = (x1, . . . xlogn) encode the binary representation of an element x ∈ [n] and the neuron a

indicates whether this is an inc or count operation, where a = 1 indicates an inc operation. For

every fixed input value x presented at round t and a = 0 (i.e., a count operation), let Nε,δ(x)

be the value encoded in binary by the output layer y1, . . . ylogm in round t + τn,m. It holds that

Pr[Nε,δ(x) /∈ (f(x), f(x) + O(εm′))] ≤ δ, where m′ ≤ m is the stream length by round t and

f(x) is the current frequency of x.

We first describe the network construction to support the inc(x) operation. Then we explain

the remaining network details for implementing a count(x) operation.

Supporting inc(x) operations. The network contains ` = O(log 1/δ) sub-networksH1
n,b, . . . ,H`

n,b

each implements a pairwise independent hash function hi : {0, 1}logn → {0, 1}log b using

Lemma 6. The output vector of each network Hi
n,b is denoted by hi for every i ∈ {1, . . . , `}.

Every hi has an inhibitory copy h′i.

For each sub-networks Hi
n,b, and for every value j ∈ {1, . . . , b}, the network contains a

counter sub-network that counts the number of items x in the stream that satisfies hi(x) = j.

Every counter network is implemented by a neural counter network from Fact 1 with time

parameter t = m. Let Ci,1, . . . , Ci,b be the neural counter networks corresponding to the i-th

hash network Hi
n,b. The counter Ci,j is updated based on the values of the output neurons hi as

follows. For every counter Ci,j the network contains an index neuron ci,j with input from hi and

h′i which fires only if1 dec(hi) = j. The input to the counter Ci,j denoted as ei,j is an AND gate

1For implementation reasons, verifying that dec(hi) = j requires input from both hi and h′i.
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of the input neuron a and the index neuron ci,j , firing in inc(x) operations where hi(x) = j.

To make sure the counter is incremented once per inc(x) operation, the network contains an

inhibitory neuron denoted as e′i,j which has the same incoming edges and weights as ei,j , that

inhibits the neurons ei,j , ci,j and a. This guarantees that ei,j would be active for exactly one

round per inc(x) operation.

Supporting count(x) operations. To support a count(x) operations, for each counter Ci,j ,
the network includes logm neurons si,j = s1

i,j, . . . s
logm
i,j which hold the value stored in the

counter Ci,j such that hi(x) = j. Each neuron ski,j is an AND gate of the index neuron ci,j
and the j-th output neuron of Ci,j . In addition, for every i ∈ {1, . . . , `} there are logm neurons

gi = gi,1, . . . gi,logm where the j-th neuron gi,j is an OR gate of all the j-th neurons of the vectors

si,1, . . . , si,b. As a result, gi encodes the value stored in hi(x). Finally, the output value is set

to be the minimum value of dec(g1), . . . , dec(g`) using the minimum computation network of

[131].

Correctness. Our goal is to show the proposed network simulates the Count-Min sketch data

structure of [49]. Let (x, a) be an input introduced in round τ0. We start by showing the

correctness of an inc(x) operation (i.e., when a = 1). Specifically, we show that the counters

Ci,hi(x) are incremented by one, and the remaining counters Ci,j for j 6= hi(x) are unmodified.

Claim 17. For every i ∈ {1, . . . , `}, the value encoded in the output neurons of the counter

Ci,hi(x) is increased by one by round τ2 = τ0 + O(logm + log log n), and for every j 6= hi(x)

the output of the counter Ci,j is not incremented. The increment to the Ci,hi(x) counters occur

only once.

Proof. By Lemma 6, the neurons h1, . . . h` encodes the values h1(x), . . . h`(x) by round τ1 =

τ0 + O(log log n). Thus, for every i ∈ {1, . . . , `} starting round τ1 + 1, the index neuron ci,j
fires iff j = hi(x). Since a = 1, starting round τ0, the AND gate ei,hi(x) fires in round τ1 + 2

(and ei,j are idle for j 6= hi(x)). Due to the inhibitor copy of ei,j , in round τ1 + 3 the neuron

ei,j does not fire. Moreover, since the inhibitor also inhibits a nd ci,j , the neuron ei,j is idle until

a new inc operation is presented. Hence, the input neuron ei,j of the counter network Ci,j fires

exactly once, and therefore the counter is incremented once, as desired. By Fact 1, it holds that

the output neurons of Ci,j hold the correct count by round τ2 = τ1 +O(logm).

We proceed with showing the correctness for the count(x) operation (i.e., when a = 1).

For every i ∈ {1, . . . , `} and j ∈ {1, . . . , b}, let xi,j(τ) be the (decimal) value encoded

by the output neurons of the counter Ci,j in round τ . We next show that by round τ0 +

O(logm+ log log n), the output neurons y of the Count-Min sketch encode the minimum value

in x1,h1(x)(τ0), . . . , x`,h`(x)(τ0).

Claim 18. The output neurons y encode the value mini∈{1,...,`} xi,hi(x)(τ0) by round τ2 = τ0 +

O(logm+ log log n).
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Proof. By Lemma 6, the neurons h1, . . . h` encodes the values h1(x), . . . h`(x) by round τ1 =

τ0 +O(log log n). In addition, for every i ∈ {1, . . . , `}, the neuron ci,j fires starting round τ1 +1

iff j = hi(x). Since a = 0, starting round τ0 the counter Ci,j is not incremented and ci,j is not

inhibited by the inhibitor copy of ei,j . Thus combined with the persistence assumption of every

input, we conclude that the vector si,hi(x) encodes xi,hi(x)(τ0) starting round τ1 + 2. In addition,

for every j 6= hi(x) all the neurons of si,j are idle. Therefore, the neurons gi encode xi,hi(x)(τ0)

starting round τ1 + 3. The claim follows from fact 2.

The Theorem follows by combining Claim 17, Claim 18 and Fact 4.

3.4.2 Neural Computation of the Approximate Median

In this section, we present our main technically involved algorithmic result for computing an

estimate for the median of the data-stream.

Definition 12 (Approximate Median). Given ε, δ ∈ (0, 1) and a stream S = {x1, x2, . . . xm}
with each xi ∈ [n], in the approximate median problem, it is required to output an element

xj ∈ S whose rank is m/2± εm with probability at least 1− δ.

For ease of notation, assume that n is power of 2. Our neural solution is based on the

streaming algorithm of [49], that uses Õ(1/ε) space. Up to the logarithmic terms, this space-

bound is known to be optimal [101].

Fact 5 (Theorem 5 [49]). For every ε, δ ∈ (0, 1), there exists a randomized streaming algorithm

for computing the ε-approximate median with probability 1− δ and Õ(1/ε) space.

We start by providing a high-level exposition of this streaming algorithm, and then explain

its implementation in the neural setting. The latter turns out to be quite involved, yet demon-

strating the expressive power of SNN networks.

A high-level description of the streaming algorithm. The algorithm is based on applying

a binary search over range queries which, roughly speaking, compute the frequency of the

elements in a given range.

Definition 13 (Range Queries). Given a data-stream of numbers S = {x1, . . . , xm} with each

xi ∈ [n], a range query receives a range of number [a, b] ⊆ [1, n] and returns the frequency of

the items {a, a+ 1, . . . , b} in the stream S.

To support range queries with small space, the algorithm maintains log n data structures of

Count-Min sketch, for each of the log n dyadic intervals of [n].

Definition 14 (Dyadic Intervals). The dyadic intervals of the set [n] are a collection of log n

partitions of n, I1 . . . , Ilogn such that

I0 = {{1}, {2}, {3}, . . . , {n}}
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I1 = {{1, 2}, {3, 4}, {5, 6}, . . . , {n− 1, n}}

I2 = {{1, 2, 3, 4}, {5, 6, 7, 8}, . . . , {n− 3, n− 2, n− 1, n}}

. . .

Ilogn = {{1, 2 . . . n}}

Note that every range [i, j] ⊆ [n] can be written as a union of at most log n sets from

the dyadic intervals. Hence, by introducing log n Count-Min data structures with parameters

δ′ = log(log n/δ) and ε′ = ε/ log n for dyadic-intervals of [n], we can answer range queries

within an additive error of m · ε with probability 1 − δ. The approximated median is obtained

by employing a Binary search over the range queries 1.

Definition 15 (SNN for the Approximate Median Problem). Given two integers n,m and ad-

ditional parameters ε, δ ∈ (0, 1), an approximate-median network Nn,m has an input layer of

n + 1 neurons, an output layer of log n neurons and a set of s auxiliary neurons. The input

neurons are denoted as (a, x1, . . . , xn) where the neuron a indicates whether this is a median

query or an insertion operation. When the input layer represents a median query, the neuron

a fires and the neurons x1, . . . xn are idle. For every round t, let St = {a1, a2, . . . at} be the

data-stream presented as input to the network by round t. For any median-query presented in

round t, by round t + τn,m the output layer encodes an element y ∈ St whose rank in St is

t/2± εt with probability at least 1− δ.

The challenge: The crux of the streaming algorithm is based on a binary search over range

queries. A-priori, it is unclear how to implement such a search using a poly-logarithmic number

of neurons. Specifically, the (implicit) decision tree that governs the binary search has a linear

size. Since the neural network (unlike the streaming algorithm) has to hard-wire the algorithm

description, the explicit encoding of the search tree leads to a linear space solution. Our key

contribution is in showing a succinct network construction that simulates the binary search of

the streaming algorithm using a nearly matching space bound.

Network description. We next provide a description of the network. Recall that the type of

the operation is represented by the input neuron a, where a = 1 represents a median query. To

avoid cumbersome notation, we assume that n is a power of 2.

Supporting insertion operations. In the high level, the network contains 3 parts (1) a set

of log n neurons that encode the inserted element in its binary form, (2) a neural counter that

counts the length of the current stream, and (3) log n Count-Min sketch sub-networks that main-

tain the frequencies of the log n dyadic intervals of [n].

1. The n-length input vector x is connected to log n neurons x′ = (x′1, . . . , x
′
logn) such that

1The same algorithm can be applied for any quantile estimation.
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Figure 3.4: A high-level illustration of the approximate median network. The green circles represent

excitatory neurons and the red circles represent inhibitory neurons. The input is connected to log n

Count-Min networks, that count the frequencies of the dyadic intervals of [n]. On the left, the neural

counter module NC counts the total number stream elements. The neurons gi, si, ei guide the binary

search implemented by the network. Once a median is detected, its value is copied to the output neurons

using the additional neurons y′i.

x′ encodes the binary representation1 of the element presented in the input neurons x. For

every i ∈ [n], j ∈ [log n] if the j-th bit in the binary representation of i is equal to 1 then

w(xi, x
′
j) = 1, and w(xi, x

′
j) = 0 otherwise. The bias of every x′i is set to b(x′j) = 1.

2. The network contains a counter sub-network NCm that counts the number of data-items

inserted so far. The counter network is implemented by a neural counter network from

Fact 1 with time parameter t = m. The input neuron to the NCm sub-network denoted

as a′ is an OR gate of the input neurons x. The output neurons of NCm are denoted as

o = (o1, . . . , ologm). Additionally, the network also contain inhibitory copies of the vector

o denoted by o′.

To make sure the counter is incremented once per insertion operation, the network con-

tains an inhibitory copy of a′ denoted as r′, which inhibits a′ and the neurons x using large

negative weights. As a result, the input neuron a′ will be active for exactly one round per

insertion operation.

3. The network contains log n sub-networks C1, . . . Clogn each implements a Count-Min

sketch with parameters n,m and ε′ = O(ε/ log n), δ′ = O(δ/ log n) using Theorem 8.

For each Count-Min sketch sub-network Ci, let zi = (zi,1, . . . zi,logn) and bi be its input

1As discussed in the introduction our solution supports both types of input formats: log n-bits of the binary
representation or an n-length vector with one active entry.
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layer, where the neuron bi indicates whether the operation is inc(x) or count(x). The

neuron bi is an OR gate of the neurons in x.

For i ∈ {1, . . . , log n}, the input neurons zi are connected to the binary representation

of the input x′ in the following manner. For every j ≥ i, the neuron x′j is connected

to the neuron zi,j with large positive weight. For every j < i the neuron zi,j serves as

an OR gate of the neurons of x′. In addition, the neurons bi, zi are equipped with self-

loops. The Count-Min sketch sub-networks are then modified such that these neurons

will be inhibited once the computation is complete (by the inhibitory neurons e′i,j of each

sub-network respectively).

Supporting median queries. Given a median query, the network computes the approximate

median by employing at most log n steps of binary search. In every step1 i ∈ {log n, . . . , 1},
the network obtains a current candidate for the median denoted by χi. Initially, χlogn = n/2.

Each χi would be provided as input for the i-th Count-Min sketch Ci. The output neurons of

Ci would then define the next candidate χi−1. Specifically, depending on the rank estimation of

χi, the network defines the new search range. The width of the search range would be cut by a

factor 2 in every step i. Consequently, the algorithm will be using the Count-Min sketch Ci−1

which is defined over a partitioning Ii−1 where each set is smaller by factor 2 compared to Ii.

1. For every i ∈ {1, . . . , log n} the network contains an additional Count-Min sub-network

C ′i which counts the frequencies of the data-elements (similar to C1). These additional

Count-Min sub-networks will be useful in a scenario where for the median item j∗, the

frequency of the range [1, j∗] is larger than half, and the frequency of [1, j∗ − 1] is too

small. This special case would be handled using the C ′i sub-networks.

For every sub-network C ′i with input z′i, b
′
i, the neuron b′i serves as an OR gate of the

neurons in x. As for z′i, each neuron z′i,j serves as an OR gate of the j-th neuron of x′ and

the j-th neuron of zi. Hence, for insertion operations, the sub-network C ′i is equivalent

to C1. Additionally, the neurons z′i, b
′
i are equipped with self-loops. The Count-Min

sketch sub-networks are then modified such that these neurons will be inhibited once the

computation is complete.

2. For every i ∈ {1, . . . , log n} the network contains three comparison neurons si, gi, ei
(corresponding to smaller, greater or equal). These neurons receive their input from the

output neurons of the counters Clogn, . . . , Ci, C ′logn, . . . , C ′i, and the output of the neural

counter o, o′. Let χi = dec(zi) be the median candidate at phase i of the binary-search.

The firing states of the comparison neurons are determined as follows. The neuron gi
would fire if frequency estimation of [1, χi] is greater than m′/2 + ε/2m′. The neuron

1It is convenient to count the steps in a backward manner, as in the i-th step the network will access the i-th
Min-Sketch module Ci.
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si would fire if frequency estimation of [1, χi] is smaller than m′/2 − ε/2m′. Finally, ei
would fire if the frequency estimation of [1, χi] is in the range (m′/2−ε/2m′,m′/2+ε/2).

Denote the output neurons of Ci by f i and the output neurons of C ′i by f ′i. As we will see,

the frequency of the range [1, χi] will be decoded by the output neurons of Clogn, . . . , Ci as∑logn
j=(i−1) dec(f j). Since the output neurons fi and f ′i are excitatory (i.e. may only have

non-negative outgoing edges), in order for the comparison neurons to fire as desired, for

every i ∈ [log n] the network introduces inhibitory copies of f i and f ′i denoted as φi and

φ′i respectively with outgoing edges to the comparison neurons gi, si.

We set the incoming edges of the neuron gi such that gi fires if
∑logn

j=i dec(f j)−dec(f ′i) >
bdec(o)/2c+ε/2·dec(o). Similarly, the neuron si fires if

∑logn
j=i dec(f j)−1 < bdec(o)/2c−

ε/2 · dec(o). Regarding the equality neuron ei, it serves as an AND gate of two interme-

diate neurons ei,1, ei,2 such that ei,1 fires if
∑logn

j=i dec(f j) ≥ bdec(o)/2c − ε/2 · dec(o)
and ei,2 fires if

∑logn
j=i dec(f j)− dec(f ′i) + 1 ≤ bdec(o)/2c+ ε/2 · dec(o).

The neuron gi is also connected to an inhibitor g′i which inhibits f i and f ′i with large nega-

tive weight. The inhibition of f i, f ′i allows us to maintain the invariant that
∑logn

j=(i−1) dec(f j)

will hold the frequency estimation of [1, χi−1] in the next phase when considering χi−1.

3. The network is augmented with a timing chain T which schedules the updates of the

neurons zi with the median candidate χi. This update should be carefully coordinated to

occur only after the neurons gi+1, si+1 and ei+1 obtain their values.

The timing chain T consists of τ = log n · τ ′ neurons σ1, . . . στ , where τ ′ = Θ(logm +

log log n) is an upper bound on the computation time of the Count-Min sub-networks.

The first neuron σ1 has an incoming edge from the input neuron a with weight 1 and

bias 1. For i = 2, . . . , τ , the neuron σi has an incoming edge from σi−1 with weight

1 and bias 1. The last neuron στ is an inhibitory neuron, with outgoing edges to the

neurons z1, . . . , zlogn and z′1, . . . , z
′
logn with large negative weights. The inhibition of

these neurons inhibits their self loops in preparation for the next input.

4. In the high level, for i ∈ {log n, . . . , 1}, every two consecutive sub-networks Ci+1 and Ci
are connected in a way that guarantees the following. Let χi+1 be median candidate at

phase i + 1 of the binary search (i.e., that was fed as input to Ci+1). Let freq([x, y]) be

the estimated frequency of the range [x, y] obtained by the Count-Min sketch networks

Clogn, . . . , Ci+1. Then candidate χi is defined as:

χi =

χi+1 − 2i−1, if freq([1, χi+1]) > m′/2 + ε/2m′

χi+1 + 2i−1, if freq([1, χi+1]) < m′/2− ε/2m′ .

In the remaining case where freq([1, χi+1]) ∈ [m′/2± ε/2m′], the candidate χi+1 will be

returned as the output result.
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In every step i, the candidate χi will be encoded using the input neurons of Ci, C ′i denoted

as zi, z′i. For i = log n, the neurons zlogn, z′logn have incoming edges from the neuron

a such that dec(zlogn) = 2logn−1 − 11. Hence, the first median candidate χlogn will be

represented in zlogn as the binary vector (0, 0, 1, . . . , 1). For index i ∈ [1, log n − 1],

toward updating the input neurons zi with the candidate χi, the network contains log n

intermediate neurons ti = ti,1, . . . , ti,logn with the following connectivity: (i) For j =

1, . . . , i − 1, the neuron ti,j has incoming edges from gi+1 and si+1 and serves as an OR

gate. (ii) For j = i+ 2, . . . log n, the neuron ti,j has incoming edges from gi+1, si+1 with

weight 1, an incoming edge from zi+1,j with weight 2 and bias 3. Hence, if either gi+1

or si+1 fired in round τ , the firing state of the j-th neuron ti,j in round τ + 1, is equal to

the firing state of zi+1,j in round τ . (iii) The neuron si+1 is connected to the neuron ti,i+1

with large positive weight.

Next, the incoming edges of the neurons zi are set as follows. Every neuron zi,j has

incoming edges from ti, and σ(logn−i)·τ ′ , where we set the weights and bias such that

zi,j fires either due to the signal from x′ (in case of insertion) or both neurons ti,j and

σ(logn−i)τ ′ fired. The incoming edge from the timing chain T guarantees that when we

update zi, the computation of the previous candidates χi+1 has been completed.

5. Once a median estimation is found, the output neurons y are updated in the following

manner. For every i ∈ {1, . . . , log n} the network contains a vector of log n intermediate

neurons y′i. The neurons y′i are responsible for updating the output neurons y when the

candidate χi is returned as the median estimation. Every neuron y′i,j serves as an AND

gate of the equality neuron ei and zi,j . We then connect the neurons y′1, . . . y
′
logn−1 to

the output neurons y, where the j-th output neuron yi,j serves as an OR gate of the j-th

neurons y′1,j, . . . y
′
logn,j .

Ensuring the output is a stream element. We modify the neuron si to fire also if
∑logn

j=i dec(f j) ≤
dec(o)/2 − ε/2dec(o) and the inhibitory output neurons of C ′i are idle. This is done using two

intermediate neurons (one for each case). In addition, we set the equality neuron ei to fire only

if both ei,1, ei,2 fire and at least one of the excitatory output neurons of the sub-network C ′i fires.

Space and time complexity. The update of the Neural CounterNCm requiresO(logm) rounds.

Each one of the 2 log n Count-Min sketch network requiresO(log log n+logm) rounds. Hence

a median query is computed withinO(log n(log log n+logm)) rounds, and an element insertion

is complete within O(log log n+ logm) rounds.

Regarding the networks size, the network contains O(log n) Count-Min sketch networks,

with parameters n,m and ε′ = O(ε/ log n) , δ′ = O(δ/ log n). Hence, each of the Count-Min

sketch networks requiresO(log n/ε·log log n·logm·log(log n/δ)+log2(log n/δ)) neurons. The

neural counter requiresO(logm) neurons, and the timing chain consists ofO(log(log n(log log n+

1or 2blognc−1 − 1 if n is not a power of 2
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logm))) neurons. Additionally, we introduce O(log2 n) intermediate auxiliary neurons. Thus,

the approximate median network contains Õ(1/ε) auxiliary neurons.

Correctness. We show the proposed network implements the algorithm of [49]. Let x, a be an

input presented at round τ0. We begin with considering insertion operations, where x represents

a stream element i ∈ [1, n] and a = 0. In round τ0 + 1, the input to the neural counter a′ fires,

as well as the inhibitor r′. Since r′ inhibits x, and a′, the counter NCm is incremented exactly

once.

Due to the incoming edges from the input neurons x, at round τ0 +1 the neurons x′ fire, rep-

resenting the binary encoding of i. Additionally the neuron b1, . . . , blogn, b′1, . . . , b
′
logn which are

the input neurons to the networks C1, . . . , Clogn, C ′1, . . . , C ′logn, representing an inc(x) operation,

fire starting round τ0 + 1. In round τ0 + 2 the input neurons z1, . . . zlogn, z
′
1, . . . zlogn receives

the signals from x′ and begin to fire. Due to the self-loops which enable persistence, and the

modification to the Count Min networks which inhibits these neurons once the computation is

complete, by Theorem 8 each sub-network Ci performs the operation count(dec(zi)) by round

τ1 = τ0 +O(logm+ log log n).

We now show that every sub-network Ci maintains an estimation of the frequencies of the

dyadic intervals Ii. For a stream element k ∈ [n], due to the incoming edges from x′, the

neurons zj encodes the value bk/2jc in round τ0 + 2. Thus, for every two stream elements

k1, k2 in the interval [c · 2i, c · 2i+1 − 1] for c ∈ N, the input to the network Ci is identical and

equals c · 2i. On the other hand, if k1/2
i 6= k2/2

i, the input presented to the sub-network Ci
when inserting k1 is different than the input presented when inserting k2. We conclude that

the sub-networks C1, . . . , Clogn implement the neural Count-Min data structure for the dyadic

intervals of [n].

We next turn to consider a median query presented at round τ0. Hence, in round τ0 the input

neurons x are idle and the neuron a fires. We first note that because NCm is incremented once

per stream element, and the persistence of each element is Ω(logm), in round τ0 the outputs of

the neural counter o and o′ encodes the size of the stream in round τ0 denoted as m′.

For every i = log n, . . . , 1, let χi be the value encoded in the neurons zi in round τ0 + i ·
τ ′ + 1, where τ ′ is a parameter which upper bounds the computation time of the Count-Min

sub-networks. Note that the assignment of the candidates χlogn, χlogn−1 . . . is performed in a

sequential manner with time intervals of τ ′ rounds due to the incoming edges from the timing

chain T . We consider the candidate χi encoded in the firing state of zi at round τ0 + (log n −
i+ 1) · τ ′ + 1 as an iteration of a binary search.

Due to the incoming edges from zi+1 described in Step (4), candidate χi (i.e dec(zlogn−i))

defers from χi+1 in the following manner.

Observation 4. If χi 6= 0, χi+1 6= 0, in case gi fires in round τ0 + (log n− i + 1) · τ ′ + 1 then

χi = χi+1 − 2i−1 and in case si fires χi = χi+1 + 2i−1.

Proof. Let blogn, . . . , b1 be the binary representation of the candidate χi+1, represented in the
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firing state of zi+1. By the definition of Step (4), the neuron ti+1,i+1 is idle in every round, and

therefore bi+1 = 0. Additionally, since χi+1 6= 0, for every j < i + 1 the neuron tj,i+1 fires

starting round τ0 + (log n− i) · τ ′, and therefore bi+1 = 1.

If gi+1 fired, according to step (4) the firing state of the neurons ti in round τ0+i·τ ′+1 encode

the binary representation (blogn, . . . , bi+2, 0, 0, 1, . . . , 1) = (blogn, . . . , bi+2, bi+1, 0, bi−1, . . . , b1).

Since bi = 1, it follows that χi = χi+1 − 2i−1.

If si+1 fired, the firing state of the neurons ti in round τ0 + i · τ ′ + 1 encodes the binary

representation (blogn, . . . , bi+2, 1, 0, 1, . . . , 1) = (blogn, . . . , bi+2, 1, 0, bi−1, . . . , b1). Since bi =

1 and bi+1 = 0 we can conclude that χi = χi+1 + 2i − 2i−1 = χi+1 + 2i−1.

We next note that due to the definition of the insertion operation to the networks C1, . . . , Clogn

when considering the candidate χi the output neurons of Ci encode an estimation of the fre-

quency of the interval [χi − 2i−1 + 1, χi].

Observation 5. For every Ci, if χi 6= 0 is presented at round t, by round t+τ ′ the output neuron

f i encode an (1 + ε′)-approximation of the frequencies of the interval [χi − 2i−1 + 1, χi] with

probability 1− δ′.

Proof. By the definition of the step (4) for every coordinate j < i when the i-th candidate χi is

considered, the neuron zi,j fires (equals one). Hence the i− 1 least significant bits in the binary

representation of χi are equal to one.

In addition, when considering insertion operations, by the definition of the incoming edges

of zi, for all elements between bχi/2i−1c and χi the input to the network Ci is identical and

equals to χi. Hence, by Theorem 8 and the choice of τ ′, if χi is presented at round t, by round

t + τ ′ the output neuron f i encode an (1 + ε′)-approximation of the frequencies of the interval

[bχi/2i−1c, χi] = [χi − 2i−1 + 1, χi] with probability 1− δ′

Toward proving our search method implements the algorithm of [49], we show that as

long as a median estimation has not been found, for every candidate χi the output neurons

f logn, . . . , f i encode the frequency of the range [1, χi].

Claim 19. If the output neurons of the network y did not fire by round τ0+(log n−i+1)·τ ′+4, in

round τ0+(log n−i+1)·τ ′ it holds that dec(f logn)+· · ·+dec(f i) encodes a (1+(log n−i+1)·ε′)
approximation for the frequency of [1, χi] with probability 1− (log n− i+ 1) · δ′.

Proof. By induction on i starting i = log n towards i = 1. For i = log n in round τ0 + 1 the

neurons zlogn encode the element χlogn = 2logn−1 − 1, and by Obs. 5, the output neurons f logn

encodes an 1+ε′ approximation of the frequency of the dyadic interval [1, 2logn−1−1] by round

τ0 + τ ′. Assume the claim holds for the (i+ 1)-th candidate, and consider phase i.
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For every j let τ(j) = τ0 + (log n− j) · τ ′. Since the output neurons y did not fire by round

τ(i− 1) + 4, no equality neuron ej has fired previously. Thus, χi 6= 0 in round τ(i). Moreover,

due to the timing chain T starting round τ(i+ 1) + 1 it holds that χi+1 = dec(zi+1) 6= 0.

Hence, by the induction assumption it holds that f1 = dec(f logn−1) + · · · + dec(f i+1)

encodes an (1 + (log n− i) · ε′) approximation of the frequency of [1, χi+1] by round τ(i) with

probability 1− (log n− i) · δ′. Since χi 6= 0 it holds that in round τ(i) + 1 either gi+1 fired, or

si+1 fired.

• If si+1 fired, then by Obs. 4 it holds that χi = χi+1 + 2i−1. When we query Ci by Claim 5

in round τ0 +(log n− i+1)τ ′ it holds that dec(f i) holds an (1+ ε′) approximation for the

frequency of [χi−2i−1 +1, χi] = [χi−1 +1, χi] with probability 1−δ′. Thus, we conclude

that dec(f logn) + · · · + dec(f logn−i) = f1 + dec(f logn−i) is a (1 + (log n − i + 1)ε′)-

approximation of the frequency [1, χi] with probability 1− (log n− i+ 1) · δ′.

• If glogn−i+1 fired, by Obs. 4 it holds that χi = χi+1 − 2i−1. Recall that by step (2), g′i+1

inhibits the neurons f i+1 starting round τ0 +(log n− i+1)τ ′−1 1. By Obs. 5 the neurons

f i+1 holds an approximation of the frequency of of the interval [χi+1−2i+1, χi+1. Thus,

in round τ0 +(log n−i+1)τ ′ it holds that dec(f logn−1)+· · ·+dec(f i) = f1−dec(fi+1)+

dec(f i) is an (1 + i · ε′)-approximation of the frequency of

[1, χi+1 − 2i] + [χi − 2i−1 + 1, χi] = [1, (χi + 2i−1)− 2i] + [χi − 2i−1 + 1, χi] = [1, χi]

with probability 1− (log n− i+ 1)δ.

Combining Claim 19 with Steps (2) and (4) of the network description we conclude that

in every iteration i, either we find a median estimation due to the equality neuron ei, or our

candidate χi is too small and we increase the next candidate by n/2i, or our candidate is too

large and we decrease it by n/2i. The proof of Theorem 9 then follows from the choice of ε′, δ′

and Fact 5.

3.5 Streaming Lower Bounds Yield SNN Lower Bounds

We conclude by addressing Question 2, giving a generic reduction that lets us simulate a space-

efficient SNN with a space-efficient neural network. This establishes a tight connection between

the two models – any streaming space lower bound yields a near-matching neural-space lower

bound.

Complexity classes in the SNN model. For integer parameters n,m, S, let SNN det(n,m, S)

be the set of all data-stream problems Pn,m defined over universe [n] and stream length at most

m that are solvable by a deterministic SNN with (i) at most O(S) non-input neurons (i.e.,

1The parameter τ ′ is chosen to be large enough for that purpose
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auxiliary and output neurons) and (ii) polynomially bounded edge weights (by n and m). Let

SNN poly
det (n,m, S) be the class of all data-stream problems Pn,m in SNN det(n,m, S) whose

network solution also have in addition a polynomial persistence time (in n and m). That is, the

problems in SNN poly
det (n,m, S) are solvable in polynomial-time by a deterministic SNN that

has properties (i,ii).

We also consider the class of data-stream problems that are solvable by a randomized SNN.

Let SNN rand(n,m, S, δ) be the set of all data-stream problems Pn,m that are solvable by a

randomized SNN with: (i) at most O(S) non-input neurons, (ii) polynomially bounded edge

weights, and (iii) ≤ δ failure probability on any input. The class SNN poly
rand(n,m, S, δ) is a

sub-class of SNN rand(n,m, S, δ) that requires also a polynomial persistence time.

Complexity classes in the streaming model. Let ST det(n,m, S) be the class of all data-

stream problems for which there exists a single-pass deterministic streaming algorithm for

the problem using space O(S) (potentially with exponentially large update time). Also, let

ST rand(n,m, S, δ) be the class of all data-stream problems for which there exists a single-pass

randomized streaming algorithm that solves the problem with failure probability ≤ δ using

space O(S). One can also define the classes ST poly
det (n,m, S) and ST poly

rand(n,m, S, δ) which

require polynomial update time.

We start by showing that any deterministic SNN with space S for a given data-stream prob-

lem Pn,m yields an S-space deterministic streaming algorithm for the problem.

Lemma 9. For every n,m, S, we have:

SNN det(n,m, S) ⊆ ST det(n,m, S) and SNN poly
det (n,m, S) ⊆ ST poly

det (n,m, S).

Proof. Fix the parameters n,m, S, and consider a problem Π ∈ SNN det(n,m, S). Let N be

the SNN for the problem Π. Thus N has S auxiliary and output neurons. We now describe

a streaming algorithm for Π that uses space S. The algorithm traverses the stream and feeds

each item as an input to the network N (with sufficient large persistence time). Importantly,

when considering the subsequent input item, the streaming algorithm only keeps the current

firing states of the S auxiliary and output neurons. The correctness follows immediately by

the correctness of the network N . The space complexity is S bits corresponding to the firing

states of the (non-input) neurons in N . The proof that SNN poly
det (n,m, S) ⊆ ST poly

det (n,m, S)

is analogous since the update time of the streaming algorithm is polynomial in the network size

and the persistence time of the network.

Pseudorandomness for neural networks. Our next goal is to simulate space-efficient ran-

domized SNNs for data-stream problems with small-efficient streaming algorithms. The main

barrier arises in the case where the edge weights of the networkN are chosen randomly accord-

ing to some distribution. Since an S-space network with n input neurons might have Ω(Sn+S2)

edges, the explicit specification of the edge weights is too costly for our purposes.

To overcome this barrier, we will use pseudorandom generators [188].
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Definition 16 (PRG). A deterministic function G : {0, 1}d → {0, 1}n for d < n is a (t, ε) pseu-

dorandom generator (PRG) if any circuit C of size at most t distinguishes a uniform random

string U ← {0, 1}n from G(R), where R ← {0, 1}d, with advantage at most ε. The parameter

d is called the seed length.

Proposition 1 (Prop. 7.8 in [188]). For all n ∈ N and ε > 0, there exists a (non-explicit) (n, ε)

pseudorandom generator (PRG)G : {0, 1}d → {0, 1}n with seed length d = O(log n+log 1/ε).

The existence of the PRG from Prop. 1 is shown via the probabilistic method. Such a

PRG can be found in a brute-force manner, by iterating over all n-size circuits and all functions

G : {0, 1}d → {0, 1}n in some fixed order. The desired function G∗ is the first function that

fools the family of all n-size circuits.

Since an SNN with n input neurons, S non-input neurons for S = poly(n), and polynomial

persistence time can be computed in polynomial time (and thus also by a circuit of polynomial

size), we have the following:

Lemma 10. Any SNN N with n input neurons, S non-input neurons for S = poly(n), and

persistence time poly(n) in an m-length stream can be simulated using a total space of O(S +

log(nm)). The success guarantee of the simulation is 1− 1/poly(n,m).

Proof. Consider a (centralized, offline) algorithm that given an ordered stream of length m′ ≤
m of elements in [1, n] evaluates the output of the networkN on that stream. This algorithm can

be implemented in time poly(n,m) and thus there exists a circuit of size M = poly(n,m) that

implements this algorithm. Our goal is to simulate this circuit using a random seed of length

d = O(log(nm)) while reducing the success guarantee by an additive term of 1/poly(n,m). To

do that, we will use the PRG construction of Prop. 1 that given a random seed of size d fools

the family of all circuits of size at most M with probability 1− 1/poly(M).

We assume that the PRG function G is hard-coded in the streaming algorithm in the follow-

ing sense. There is a PRG oracle that given a d length seed R and an index i outputs the i’th bit

of G(R). We can think of the code of G as simply comprising a look up table, but note that this

code is not part of the space complexity of the streaming algorithm, which only includes data

written by the algorithm while processing the stream. The seed R must be chosen randomly at

the beginning of the stream and then stored, and thus is included in the space complexity. We

also note that the evaluation time G (i.e., outputting each bit) might be exponential.

We now describe how to simulateN usingO(log(nm)+S) space using this oracle. We store

the seed of O(log(nm)) random bits R and the current firing states of all non-input neurons in

N . Then, as we traverse the stream, for every data-item in the stream, the algorithm evaluates

the networkN on that data-item using the PRG oracle in the following manner. The simulation

works in a round by round and a neuron by neuron fashion which only stores O(log nm) bits

from G(R) at any given time. To evaluate the firing state of neuron u in layer i ≥ 0, the total

incoming edge weight of u is computed as follows. Let v1, . . . , vk be the incoming neighbors
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of u. The firing states in round i − 1 are stored explicitly (this is indeed within the space

bound S). For each vj that fired in round i − 1 we look up O(log nm) entries in G(R) which

describe the edge weight w(vi, u). We note that, without loss of generality we can assume that

the edge weights have precision 1/poly(n,m) and thus can be described with O(log nm) bits.

Rounding any edge weights to have this precision will not affect the success probability of the

network by more than a 1/poly(n,m) factor. We accumulate the edge weights into a value P ,

the total incoming potential of u, which again requires O(log nm) bits to store. Finally, using

P we evaluate the probability that u fires in round i. We again can round this probability to

1/poly(n,m) precision, and thus by looking up O(log nm) entries in G(R) evaluate if u fires in

round i. We proceed in this way, iterating over all S non-input neurons and storing their states

in round i, before proceeding to the next round. Overall, our space complexity remains bounded

by O(log(nm) + S).

The success probability of the algorithm overall is decreased by an additive 1/poly(n,m)

term, due to the rounding of edge weights and probabilities and the use of pseudorandom rather

than truly random bits.

Lemma 10 implies that any randomized SNN with space S that solves a streaming problem

Pn,m with probability 1−δ in polynomial time translates into a randomized streaming algorithm

for Pn,m using space of S +O(log(nm)). We therefore have:

Theorem 11. SNN poly
rand(n,m, S, δ) ⊆ ST rand(n,m, S +O(log(nm)), δ + 1/poly(n,m)) .

A useful implication of Theorem 11 is that any space lower bound in the streaming model

immediately translates into space lower bound for networks that have a polynomial persistence

time on the input stream.

Corollary 2. Let Pn,m be a data-stream problem for which any randomized streaming algorithm

that solves the problem with probability 1− δ requires space Ω(S(n,m, δ)). Then, any SNN for

solving Pn,m within polynomial number of rounds with probability at least 1−δ+1/poly(n,m)

requires space of Ω(S(n,m, δ)− log(nm)).

Proof. Assume towards contradiction that there is an SNN for solving Pn,m with probability at

least 1−δ−poly(1/m) within polynomial number of rounds, and using space of o(S(n)+logm).

Thus, Pn,m ∈ SNN poly
rand(n,m, o(S(n, δ)− logm), 1− δ+ poly(1/m)). The exact specification

of the poly(·) terms are given by Theorem 11. By Theorem 11, it then holds that Pn,m ∈
ST rand(n,m, o(S(n, δ)), 1 − δ). Contradiction for the fact that solving Pn,m with probability

1− δ requires streaming space of Ω(S(n, δ)). The corollary follows.
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PART II

RESILIENT DISTRIBUTED
ALGORITHMS
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4
Background and Preliminaries

As networks expand in complexity and scale, they become more vulnerable to various faults,

ranging from hardware failures to adversarial attacks. As part of this thesis, we study resilient

distributed algorithms designed to maintain their correctness even when some of the edges

within the network are corrupted. We focus on an adversary with unbounded computational

power, also known as byzantine, who can deviate from the protocol and act arbitrarily. We

consider the full-information model, where the adversary is allowed to see the entire graph, the

messages sent throughout the algorithm, and the internal randomness of the vertices.

Among the most fundamental problems studied in resilient computation are byzantine agree-

ment and byzantine broadcast [159, 109, 57]. These problems are central to a wide range of

resilient algorithms and cryptographic multiparty computation protocols e.g, [21, 79, 41]. In the

byzantine broadcast problem, the goal is for a designated source vertex to send some message

m to all the vertices in the network. The objective is for all reliable vertices to output the same

message, and if the source is reliable then the output message should be m. For the byzantine

agreement problem, each vertex holds an input value, and the goal is for all reliable vertices to

agree on one of these inputs. We note that in terms of feasibility, both problems are equivalent

and can be reduced from each other.

Most previous work concentrate on solving these problems in complete networks with ad-

versarial vertices e.g [75, 58, 92, 46, 69, 150, 184, 63, 103]. In terms of feasibility, Fischer,

Lynch, and Merritt [67], showed that solving the byzantine agreement and byzantine broadcast

problems is impossible if the adversary controls f > n/3 of the vertices in the graph, where n
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is the total number of vertices. Fischer and Lynch [66] also gave a lower bound of (f+1) on the

number of rounds of any deterministic agreement or broadcast algorithm. On the positive side,

the classic protocol of Pease, Shostak and Lamport [159] has optimal resilience of f = n/3

and optimal worst case of (f + 1) rounds. However, the message complexity of their protocol

is exponentially large. Garay and Moses [75] improved the exponential message complexity,

presenting a byzantine agreement protocol with optimal resilience, optimal worst case (f + 1)

rounds, and polynomial message size.

Turning to general graphs topologies, the approaches used for complete networks that are

applicable in arbitrary networks either require large messages or polynomial number of rounds

even for a single fault. In its seminal work, Dolev [57] showed that any given graph can tolerate

up to f adversarial vertices iff the graph is (2f + 1) vertex-connected. The broadcast protocol

introduced by Dolev assumes the topology of the graph is known to the vertices, and uses

communication over (2f + 1) vertex disjoint paths. We note that computing such disjoint

paths efficiently when the topology is unknown is a challenging task independently. In recent

years, Chlebus, Kowalski, and Olkowski [43] extends the algorithm of Garay and Moses [75] to

general (2f + 1) vertex-connected graphs with minimum degree 3f , using exponentially large

messages.

As for adversarial edge faults, Pelc [160] studied adversarial edges in general graph topolo-

gies, stating that the byzantine agreement and broadcast problems with f adversarial edges can

be solved iff the graph is (2f + 1) edge-connected. The algorithm of [160] uses exponentially

large messages, which can be reduced to polynomial messages if the graph’s topology is known.

Barak at el. [18] considered complete graphs in which the adversary controls all the edges in

the network. Given several cryptographic assumptions, [18] presented a protocol that limits the

adversary’s power to simulate subsets of the vertices in a consistent manner.

Other studies consider mobile edge faults, in which the adversary can control a different set

of edges in every round. In this model, the studies on agreement and broadcast mainly focus on

complete graphs, and both possibility and impossibility results have been established [169, 170].

For general graphs, Santoro and Widmayer [171] bounded the number of faults and stated the

necessary topological requirements for solving any non-trivial form of agreement. They also

showed that these bounds are tight provided that the graph’s topology is known. Another model

considering edge faults is the hybrid model, in which the network contains both vertex and

mobile edge faults. This model was mainly studied in complete graphs, with the assumption

that the number of edge faults touching each vertex is limited [173, 174, 179, 27, 26].

Our approach. A common theme in this literature concerns the feasibility of the computa-

tion, e.g., characterizing the requirements a network should satisfy for eventually reaching an

agreement in the presence of byzantine faults. The efficiency aspects, in terms of the number of

rounds in bandwidth restricted models, have received less attention. We therefore ask, what is

the cost in terms of number of rounds of resilient computation in arbitrary graph topologies with
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bandwidth limitations. We consider the classical CONGEST model [164], in which execution

proceeds in synchronous rounds and in each round, every vertex can send a message of size

O(log n) to each of its neighbors. This constraint realistically captures scenarios where band-

width is limited, making it relevant for various real-world applications such as sensor networks,

peer-to-peer systems, and routing in the Internet. Additionally, we assume that each vertex only

holds a local view of the network. That is, initially every vertex only knows the identifiers of its

neighbors, and a polynomial estimal on the number of vertices n.

The study of resilient algorithms in the CONGEST model was initiated by Parter and Yogev

[155, 156, 158]. Motivated by various applications for resilient distributed computing, Parter

and Yogev introduced the notion of low-congestion cycle covers as a basic communication

backbone for reliable communication [155]. At the high level, a low-congestion cycle cover

is a collection of cycles covering all the edges in the graph, where all cycles are both short

and nearly edge-disjoint. [155] proved the existence of cycle covers in bridgeless graphs, and

demonstrate their usefulness in resilient computation. Given low-congestion cycle covers, they

obtain a simulation methodology, that can take any distributed algorithm and compile it into

an equivalent algorithm that is resilient against a single adversarial edge1. Their compilation

protocol assumes a fault free preprocessing phase, in which the cycle covers are computed.

Alternatively, if the topology of the graph is known as assumed in many previous works, then

there is no need for the preprocessing phase.

In this thesis we cover work originally published in [87, 88]. In Chapter 5 [87] we present

broadcast algorithms in the CONGEST model that are resilient against adversarial edges. In

Chapter 6 we extend the work of [155, 156] and show a general simulation methodology

that coverts any (fault-free) CONGEST algorithm into an equivalent algorithm that is resilient

against adversarial edges. Our compilation methodology does not require preprocessing in a

fault-free setting, and also handles multiple adversarial edges. A very recent work by Fischer

and Parter [68] extended our simulation methodology (and that of [155]) to handle mobile edge

faults. Their resilient algorithms require a fault-free reprocessing phase, and obtain round com-

plexity that nearly matches the round complexity obtained for static adversaries, presented in

Chapter 6.

In the remainder of this chapter we define the computational model known as the adversarial

CONGEST model and give some basic tools used in the following chapters.

Preliminaries and Basic Tools

We start with formally defining the computational model we consider in this work.

The Adversarial CONGEST model: The network is abstracted as an n-vertex graph G =

1The algorithm of [155] also handles mobile edge faults, in which the adversary can control a different edge
in every round.
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(V,E), with one processor on each vertex. Each vertex has a unique identifier of O(log n)

bits. Initially, the processors only know the identifiers of their incident edges1, as well as a

polynomial estimate on the number of vertices n.

There is a computationally unbounded adversary that controls a fixed set of edges F ∗ in the

graph. The set of F ∗ edges are denoted as adversarial, and the remaining edges E \ F ∗ are

denoted as reliable. The vertices do not know the identity of the adversarial edges in F ∗, but

they do know the bound f on the cardinality of F ∗. We consider the full information model

where the adversary knows the graph, the messages sent through the graph edges in each round,

and the internal randomness and the input of the vertices. On each round, the adversary can

send O(log n) bits along each of the edges in F ∗. The adversary is adaptive as it can determine

its behavior in round r based on the overall communication up to round r.

The primary complexity measure of this model is the round complexity. In contrast to many

prior works in the adversarial setting, in our model, the vertices are not assumed to know the

graph’s topology, and not even its diameter.

Basic tool: Covering families. Our distributed algorithms in the adversarial CONGEST model

are based on communication over a collection ofG-subgraphs that we denote as covering family.

These families are used extensively in the context of fault-tolerant network design [10, 193, 56,

81, 152, 158, 38, 31, 102].

Definition 17 ((L, k) covering family). For a given graph G, a family of G-subgraphs G =

{G1, . . . , G`} is an (L, k) covering family if for every 〈u, v, E ′〉 ∈ V × V × E≤k and any u-v

path P ⊆ G \ E ′ of length at most L, there exists a subgraph Gi such that (P1) P ⊆ Gi and

(P2) E ′ ∩Gi = ∅.

As the graph topology is unknown, one cannot hope to compute a family of subgraphs

that are completely known to the vertices. Instead, we require the vertices to locally know the

covering family in the following manner.

Definition 18 (Local Knowledge of a Subgraph Family). A family of ordered subgraphs G =

{G1, . . . , G`} where each Gi ⊆ G, is locally known if given the identifier of an edge e = (u, v)

and an index i, the vertices u, v can locally determine if e ∈ Gi.

By Karthik and Parter [102], we have the following:

Fact 6 ([102]). Given a graph G and integer parameters L and k, there exists a 0-round algo-

rithm that allows all vertices to locally know an (L, k) covering family G = {G1, . . . , G`} such

that ` = ((Lk log n)k+1).

Proof. The proof follows by using the construction of (L, k) Replacement Path Cover (RPC) G
by [102]. Assuming that vertex IDs are in [1, poly(n)], each vertex can employ this construction

1This is known as the standard KT1 model [14].
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locally and compute a collection of subgraphs G ′ = {G′1, . . . , G′k} where each G′i is a subgraph

of the complete graph G∗ on all vertices with IDs in [1, poly(n)]. The set G = {G1, . . . , Gk} is

defined by Gi = E(G′i) ∩ E(G). We next claim that since G ′ is an (L, k) RPC for G∗ it also

holds that G is an (L, k) RPC for G. To see this, consider any L-length u-v path P in G \ {F}
for some set F ⊆ E of size at most k. Clearly both F and P are in G∗. Therefore there exists

a subgraph G′i containing P and avoiding F . It then holds that Gi = G ∩ G′i contains P and

avoids F as well.

The family of graphs G is locally known since in the construction of [102], each subgraph is

identified with a hash function h : [m]→ [q], in some family of hash functionsH, and an index

i ∈ [q]. The subgraphs to which an edge e belongs depend only on the value of h(ID(e)). Since

the family of hash functions H can be locally computed by each vertex, we have that given an

edge identifier, every vertex can locally compute the indices of the subgraphs in G to which e

belongs. Note that since the vertices do not know G, they also do not know the graph Gi but

rather the corresponding graph G′i, and thus we only require them to know the index i of the

subgraph.

In the context of (2f + 1) edge-connected graphs with f adversarial edges, we set L =

O(fD) and k = O(f). We will use the following observation.

Observation 6. Consider an n-vertex D-diameter graph G = (V,E) and let u, v be a pair

of vertices that are connected in G \ F for some F ⊆ E. It then holds that distG\F (u, v) ≤
2(|F |+ 1) ·D + |F |.

Proof. Let T be a BFS tree in G rooted at some source s. The forest T \ F contains at most

|F |+ 1 trees of diameter 2D. Then, the u-v shortest path P in G \ F can be transformed into a

path P ′ containing at most |F | edges of P , as well as, |F |+ 1 tree subpaths of the forest T \F .

Therefore, |P ′| ≤ 2(|F |+ 1) ·D + |F | as desired.

Our algorithm makes use of the following definition for a minimum s-v cut defined over a

collection of s-v paths.

Definition 19 (Minimum (Edge) Cut of a Path Collection). Given a collection of s-v paths

P , the minimum s-v cut in P , denoted as MinCut(s, v,P), is the minimal number of edges

appearing on all the paths in P . I.e., letting MinCut(s, v,P) = x implies that there exists a

collection of x edges E ′ such that for every path P ∈ P , it holds that E ′ ∩ P 6= ∅.

Notations. Throughout, the diameter of the given graph G is denoted by D, and the number

of vertices by n. For a graph G = (V,E), a subgraph G′ ⊆ G, and vertices u, v ∈ V (G′), let

π(u, v,G′) be the unique u-v shortest path in G′ where shortest-path ties are decided arbitrarily

in a consistent manner. Let N(u,G) be the neighbors of vertex u in the graph G. When the
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graph G is clear from the context we may omit it and write N(u). For a path P = [u1, . . . , uk]

and an edge e = (uk, v), let P ◦ e denote the path obtained by concatenating e to P . Sim-

ilarly, for two paths P1 = [u1, . . . , uk], P2 = [uk, uk+1, . . . , u`] denote the concatenated path

[u1, . . . , uk, uk+1, . . . , u`] by P1 ◦ P2. Given a path P = [u1, . . . , uk] denote the sub-path

from ui to u` by P [ui, u`]. The term Õ(·) hides poly(log n) factors, and the term Ô(·) hides

2O(
√

logn)factors1.

1The latter factors arise by the (fault-free) distributed computation of cycle covers by [156].
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5
Broadcast CONGEST Algorithms against

Adversarial Edges

5.1 Introduction

Guaranteeing the uninterrupted operation of communication networks is a significant objec-

tive in network algorithms. The area of resilient distributed computation has been receiving

a growing attention over the last years as computer networks grow in size and become more

vulnerable to byzantine failures. Since the introduction of this setting by Pease Shostak and

Lamport [159, 109], distributed broadcast algorithms against various adversarial models have

been studied in theory and practice for over more than four decades. Resilient distributed algo-

rithms have been provided for broadcast and consensus [57, 58, 65, 34, 184, 169, 25, 170, 24,

63, 75, 69, 107, 162, 103, 59, 137, 92, 47, 105], as well as for the related fundamental problems

of gossiping [30, 16, 37], and agreement [58, 159, 33, 46, 75]. See [161] for a survey on this

topic. A key limitation of many of these algorithms is that they assume that the communication

graph is the complete graph.

In this work, we concentrate with communication graphs of arbitrary topologies. In par-

ticular, we addresses the following basic question, which is still fairly open, especially in the

CONGEST model of distributed computing [164]:

Question 3. What is the cost (in terms of the number of rounds) for providing resilience against
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adversarial edges in distributed networks with arbitrary topologies?

An important milestone in this regard was made by Dolev [57] who showed that the (2f+1)

vertex-connectivity of the graph is a necessary condition for guaranteeing the correctness of

the computation in the presence of f adversarial vertices. Pelc [160] provided the analogous

argument for f adversarial edges, requiring edge-connectivity of (2f + 1). The broadcast pro-

tocol presented therein requires a linear number of rounds (linear in the number of vertices)

and exponentially large messages. Byzantine broadcast algorithms for general graph topologies

have been addressed mostly under simplified settings [162], e.g., probabilistic faulty models

[163, 160], cryptographic assumptions [73, 2, 1, 145], or under bandwidth-free settings (e.g.,

allowing neighbors to exchange exponentially large messages) [57, 137, 105, 107, 59, 105, 43].

We consider the adversarial CONGEST model which extends the standard CONGEST model,

described in Chapter 4. To address Question 3, we provide a comprehensive study of the adver-

sarial broadcast problem, which is formally defined as follows:

The adversarial broadcast task: Given is a (2f + 1) edge-connected graph G = (V,E)

and a set F ⊂ E of |F | ≤ f edges controlled by the adversary. There is a designated source

vertex s ∈ V that holds a message m0. It is then required for all the vertices to output m0,

while ignoring all other messages.

To this date, all existing broadcast algorithms in the adversarial CONGEST model require a

polynomial number of rounds, even when handling a single adversarial edge! Recently, Chle-

bus, Kowalski, and Olkowski [43] extended the result of Garay and Moses [75] to general

(2f + 1) vertex-connected graphs with minimum degree 3f . Their algorithms, however, use

exponentially large communication. Their message size can be improved to polynomial only

when using authentication schemes (which we totally avoid in this work). It is also noteworthy

that the existing protocols for vertex failures might still require polynomially many rounds for

general graphs, even for a single adversarial edge and for small diameter graphs.

A natural approach for broadcasting a message m0 in the presence of f adversarial edges

is to route the message along (2f + 1) edge-disjoint paths between the source vertex s, and

each target vertex v. This allows each vertex to deduce m0 by taking the majority message.

This approach has been applied in previous broadcast algorithms (e.g., [57, 160]) under the

assumption that the vertices know the entire graph, and therefore can compute these edge-

disjoint paths. In Chapter 6 we demonstrated that there areD-diameter (2f+1) edge-connected

graphs, for which the maximal length of any collection of (2f + 1) edge-disjoint paths between

a given pair of vertices might be as large as (D/f)Θ(f). For f = 1, the length lower bound

becomes Ω(D3). Providing round efficient algorithms in the adversarial CONGEST model calls

for a new approach.

Our approach in a nutshell. Our approach is based on combining the perspectives of fault-

tolerant (FT) network design, and distributed graph algorithms. The combined power of these
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points of view allows us to characterize the round complexity of the adversarial broadcast task

as a function of the graph diameterD, and the number of adversarial edges f . This is in contrast

to prior algorithms that obtain a polynomial round complexity (in the number of vertices). On a

high level, our distributed algorithms are based on propagating messages over a covering family

of G-subgraphs G, as defined in Chapter 4 (Definition 17).

One can show that for L = O(fD) and k = O(f), by the properties of the covering fam-

ily, exchanging the message m0 over all subgraphs in G (in the adversarial CONGEST model)

guarantees that all vertices successfully receive m0. This holds since for every v ∈ V and a

fixed set of adversarial edges F , the family G contains a subgraph Gi which contains a short s-v

path (of length L) and does not contain any of the adversarial edges. Given this observation,

our challenge is two folds:

1. provide a round-efficient algorithm for exchanging m0 over all G-subgraphs simultane-

ously,

2. guarantee that each vertex outputs the message m0 while ignoring the remaining mes-

sages.

To address the first challenge, we show that the family of subgraphs obtained by this tech-

nique has an additional key property of bounded width. Informally, a family G of G-subgraphs

has a bounded width if each G-edge appears in all but a bounded number of subgraphs in G.

The bounded width of G allows us to exchange messages in all these subgraphs simultaneously,

in a nearly optimal number of rounds. Intuitively, if we propagate messages from the source s

over all the subgraphs in a pipeline manner, if we look at an edge (s, v) that participates in a

subgraph Gi ∈ G, the number of messages that might cause a delay in sending the Gi-message

that v received from s, is bounded by the number of messages that v received over different

edges - i.e., the number of subgraphs in which the edge (s, v) does not participate in. The round

complexity of this scheme is based on a very careful analysis which constitutes the key techni-

cal contribution in this work. To the best of our knowledge, the bounded width property of the

FT sampling technique has been used before only in the context of data structures [193, 81]. It

is therefore interesting to see that it finds new applications in the context of reliable distributed

communication. The second challenge is addressed by performing an additional communica-

tion phase which filters out the corrupted messages. As we will see, the round complexities of

our broadcast algorithms for general graphs will be dominated by the cardinality of covering

families (which are nearly tight in a wide range of parameters, as shown in [102]).

We also consider the family of expander graphs, which received a lot of attention in the

context of distributed resilient computation [61, 187, 106, 12]. For these graphs, we are able to

show covering families1 of considerably smaller cardinality that scales linearly with the number

of the adversarial edges. This covering family is obtained by using Karger’s edge sampling

technique [100], and its conductance-based analysis by Wulff-Nilsen [195]. We hope this result
1Using a somewhat more relaxed definition of these families.
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will also be useful in the context of FT network design. We next describe our key contribution

in more detail.

Our Results

We adopt the gradual approach of fault tolerant graph algorithms, and start by studying broad-

cast algorithms against a single adversarial edge. Perhaps surprisingly, already this case has

been fairly open. We show:

Theorem 12 (Broadcast against a Single Adversarial Edge). Given a D–diameter, 3 edge-

connected graph G, there exists a deterministic algorithm for broadcast against a single ad-

versarial edge that runs in Õ(D2) adversarial-CONGEST rounds. In addition, at the end of the

algorithm, all vertices also compute a linear estimate for the diameter of the graph.

This improves considerably upon the (implicit) state-of-the-art nO(D) bound obtained by

previous algorithms (e.g., by [137, 43]). In addition, in contrast to many previous works (in-

cluding [137, 43]), our algorithm does not assume global knowledge of the graph or any estimate

on the graph’s diameter. In fact, at the end of the broadcast algorithm, the vertices also obtain a

linear estimate of the graph diameter.

Using the covering family obtained by the standard FT-sampling technique, it is fairly pain-

less to provide a broadcast algorithm with a round complexity of Õ(D3). Our main efforts are

devoted to improving the complexity to Õ(D2) rounds. Note that the round complexity of D3

appears to be a natural barrier for this problem for the following reason. There exists a 3 edge-

connected D-diameter graph G = (V,E) and a pair of vertices s, v such that in any collection

of 3 edge-disjoint s-v paths P1, P2, P3, the length of the longest path is Ω(D3) (Cor. 11, Chap-

ter 6). The improved bound of Õ(D2) rounds is obtained by exploiting another useful property

of the covering families of [102]. One can show that, in our context, each G-edge appears on all

but O(log n) many subgraphs in the covering family. This plays a critical role in showing that

the simultaneous message exchange on all these subgraphs can be done in Õ(D2) rounds (i.e.,

linear in the number of subgraphs in this family).

Multiple adversarial edges. We consider the generalization of our algorithms to support f

adversarial edges. For f = O(1), we provide broadcast algorithms with poly(D) rounds.

Theorem 13 (Broadcast against f -Adversarial Edges). There exists a deterministic broadcast

algorithm against f adversarial edges, for every D–diameter (2f + 1) edge-connected graph,

with round complexity of (fD log n)O(f). Moreover, this algorithm can be implemented in

O(fD log n) LOCAL rounds (which is nearly optimal).

We note that we did not attempt to optimize for the constants in the exponent in our results

for multiple adversarial edges. The round complexity of the algorithm is mainly dominated by

the number of subgraphs in the covering family.
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Improved broadcast algorithms for expander graphs. We then turn to consider the family of

expander graphs, which has been shown to have various applications in the context of resilient

distributed computation [61, 187, 106, 12]. Since the diameter of expander graphs is logarith-

mic, the algorithm of Theorem 13 yields a round complexity of (f log n)O(f). We provide a

considerably improved solution using a combination of tools. The improved broadcast algo-

rithm is designed for φ-expander graphs with minimum degree Θ(f 2 log n/φ). One can show

that these graphs also have a sufficiently large edge-connectivity.

Theorem 14. Given an n-vertex φ-expander graph with minimum degree Θ(f 2 log n/φ), there

exists a randomized broadcast algorithm against f = O(
√

n·φ
logn

) adversarial edges with round

complexity of O(f · log2 n/φ) rounds.

To obtain this result, we employ the edge sampling technique by Karger [100]. The correct-

ness arguments are based on Wulff-Nilsen [195], who provided an analysis of this technique

for expander graphs with large minimum degree. Due to the challenges arose by the adversar-

ial setting, the implementation of the sampling technique requires a somewhat larger minimum

degree than that required by the original analysis of [195].

Improved broadcast algorithms with a small shared seed. Finally, we show (nearly) optimal

broadcast algorithms given that all the vertices have a shared seed of Õ(1) bits.

Theorem 15 (Nearly Optimal Broadcast with Shared Randomness). There exists a randomized

broadcast algorithm against a single adversarial edge that runs in Õ(D) rounds, provided that

all vertices are given poly(log n) bits of shared randomness.

This result is obtained by presenting a derandomization for the well-known fault-tolerant

(FT) sampling technique [193]. The FT-sampling technique is quite common in the area of

fault-tolerant network design [56], and attracted even more attention recently [152, 38, 31, 102].

While it is relatively easy to show that one can implement the sampling using Õ(D) random bits,

we show that Õ(1) bits are sufficient. This is obtained by using the pseudorandom generator

(PRG) of Gopalan [80] and its recent incarnation in distributed settings [153]. We note that

for a large number of faults f , the complexity is unlikely to improve from DO(f) to Õ(D)

even when assuming shared randomness, i.e., the complexity can be improved only by a factor

of D. Using the framework of pseudorandom generator [146, 188], we provide an improved

broadcast algorithm for expander graphs with minimum degree Ω(f · log n/φ) that can tolerate

f adversarial edges.

Lemma 11. Given an n-vertex φ-expander graph with minimum degree Ω(f · log n/φ), there

exists a randomized broadcast algorithm against f adversarial edges, with a round complexity

of O(f log2 n/φ), provided that all vertices have a shared seed of O(log n) bits.

Road Map. The broadcast algorithm against a single adversarial edge and the proof of The-

orem 12 are given in Section 5.2. In Section 5.3 we consider multiple adversarial edges and
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prove Theorem 13. In Section 5.4, we show nearly optimal algorithms for expander graphs,

providing Theorem 14. Finally, in Section 5.5 we show nearly optimal algorithms assuming

shared randomness of Õ(1) bits, and prove Theorem 15 and Lemma 11.

5.2 Broadcast Algorithms against a Single Adversarial Edge
In this section, we prove Theorem 12. We first assume, in Section 5.2.1 that the vertices have a

linear estimate c·D on the diameter of the graphD, for some constant c ≥ 1. A-priori, obtaining

the diameter estimation seems to be just as hard as the broadcast task itself. In Section 5.2.2,

we then show how this assumption can be removed. Throughout, we assume that the message

m0 consists of a single bit. In order to send a O(log n) bit message, the presented algorithm is

repeated for each of these bits (increasing the round complexity by a O(log n) factor).

5.2.1 Broadcast with a Known Diameter

We first describe the adversarial broadcast algorithm assuming that the vertices share a com-

mon1 linear estimate D′ on the diameter D, where D′ ∈ [D, cD] for some constant c ≥ 1. In

Section 5.2.2, we omit this assumption. The underlying objective of our broadcast algorithm

is to exchange messages over reliable communication channels that avoid the adversarial edge

e′. There are two types of challenges: making sure that all the vertices first receive the mes-

sage m0, and making sure that all vertices correctly distinguish between the true bit and the

false one. Alg. BroadcastKnownDiam(D′) has two phases, a flooding phase and an acceptance

phase, which at the high level, handles each of these challenges respectively.

The first phase propagates the messages over an ordered collection of G-subgraphs G =

{G1, . . . , G`} where each Gi ⊆ G has several desired properties. Specifically, G is an (L, k)

covering family forL = O(D′) = O(D) and k = 1 (see Definition 17). An important parameter

of G which determines the complexity of the algorithm is denoted as the width.

Definition 20 (Width of Covering Family). The width of a collection of subgraphs G = {G1, . . . , G`},
denoted by ω(G), is the maximal number of subgraphs avoiding a fixed edge in G. That is,

ω(G) = max
e∈G
|{Gi ∈ G | e /∈ Gi}| .

By [102] the covering family of Fact 6 has bounded width.

Observation 7 ([102]). The width of the (L, k) covering family of Fact 6 has width Õ(L).

Proof. The construction of [102] builds the covering family using a hit-miss hash family H =

{h : [m] → [q]} where m is the number of edges, and |H|, q = O(Lpoly logm). Then,

for each h ∈ H and i ∈ q the subgraph Gh,i consists of all edges e′ such that h(e′) 6= i.

1That is, all vertices share the same diameter estimate D′.
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Therefore, an edge e does not appear only in the subgraphs of the form Gh,h(e) and there are

|H| = O(Lpoly logm) such subgraphs.

In the following, we present a broadcast algorithm whose time complexity depends on sev-

eral parameters of the covering family. This will establish the argument assuming that all ver-

tices know a linear bound on the diameter D′ ≥ D.

Theorem 16. Given is a 3 edge-connected graph G of diameter D, where all vertices know a

constant factor upper bound on D, denoted as D′. Assuming that the vertices locally know an

(L, 1) covering family G for L = 7D′, there exists a deterministic broadcast algorithm against

an adversarial edge with O(ω(G) · L+ |G|) rounds.

Broadcast with a known diameter (Proof of Theorem 16). Given a locally known (L, 1)

covering family G = {G1, . . . , G`} for L = 7D′, the broadcast algorithm has two phases. The

first phase consists of O(L · ω(G) + |G|) rounds, and the second phase has O(L) rounds.

Phase 1: Flooding phase. The flooding phase consists of ` = |G| sub-algorithms A1, . . . , A`,

where in each algorithmAi, the vertices propagate messages on the underlying subgraphGi ∈ G
that is defined locally by the vertices. The algorithm runs the sub-algorithms A1, . . . , A` in a

pipeline manner, where in the first round of each sub-algorithm Ai, the source vertex s sends

the message (m0, i) to all its neighbors. For every i ∈ {1, . . . , `}, a vertex u ∈ V that received

a message (m′, i) from a neighbor w, stores the message (m′, i) and sends it to all its neighbors

if the following conditions hold: (i) (w, u) ∈ Gi, and (ii) u did not receive a message (m′, i)

in a prior round1. For a vertex u and messages (m1, i1), . . . , (mk, ik) waiting to be sent in

some round τ , u sends the messages according to the order of the iterations i1, . . . , ik (note that

potentially ij = ij+1, and there might be at most two messages with index ij , namely, (0, ij)

and (1, ij)).

Phase 2: Acceptance phase. The second phase consists of O(L) rounds, in which accept

messages are sent from the source s to all the vertices in the graph, as follows. In the first

round, the source vertex s sends an accept(m0) message to all its neighbors. Then every other

vertex u ∈ V accepts a message m′ as its final output and sends an accept(m′) message to all

neighbors, provided that the following conditions hold:

(i) there exists i ∈ {1, . . . , `}, such that u stored a message (m′, i) in Phase 1;

(ii) u received an accept(m′) message in Phase 2 from a neighbor w2, such that (u,w2) /∈ Gi.

Since G is locally known, u can locally verify that (u,w2) /∈ Gi. This completes the description

of the algorithm.

Correctness. We next prove the correctness of the algorithm. Denote the adversarial edge by

e′ = (v1, v2). We begin with showing that no vertex accepts a wrong message.
1If it receives several (m′, i) messages in the same round, it will be considered as only one.
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Claim 20. No vertex u ∈ V accepts a false message m′ 6= m0.

Proof. Assume towards contradiction there exists at least one vertex which accepts a message

m′ 6= m0 during Phase 2. Let u be the first vertex that accepts m′. By first we mean that

any other vertex that accepted m′, accepted the message in a later round than u, breaking ties

arbitrarily. Hence, by Phase 2, u received an accept(m′) message from a neighbor w, and stored

a message (m′, i) in Phase 1, where (u,w) /∈ Gi. Since u is the first vertex that accepts m′,

the vertex w did not accept m′ in the previous round. We conclude that the edge (w, u) is the

adversarial edge, and all other edges are reliable. Because the adversarial edge (w, u) was not

included in the i-th graph Gi, all messages of the form (m′, i) sent by the adversarial edge in

Phase 1 are ignored. Since all other edges are reliable, all vertices ignored the false message

(m′, i) during the first phase (in case they recieved it), in contradiction to the assumption that u

stored (m′, i) in Phase 1.

From Claim 20 we can also deduce that in the case where the adversarial edge initiates a

false broadcast, it will not be accepted by any of the vertices.

Corollary 3. If e′ = (v1, v2) initiates a broadcast, no message is accepted by any vertex.

Proof. Since no vertex initiated the broadcast, in the second phase the only vertices that can

receive accept(m) messages are v1 and v2 over the adversarial edge e′. In addition, since e′

also initiates the first phase, for every vertex storing a message (m, i) in Phase 1 it must hold

that e′ ∈ Gi. Hence, we can conclude that neither v1 nor v2 accepts any of the false messages.

Consequently, no vertex in V \{v1, v2} receives an accepts(m) message for anym, as required.

So far, we have shown that if a vertex v accepts a message, it must be the correct one. It

remains to show that each vertex indeed accepts a message during the second phase. Towards

that goal, we will show that the collection of ` sub-algorithms executed in Phase 1 can be

executed in O(ω(G) · L + |G|) rounds. This argument holds regardless of the power of the

adversary.

Lemma 12. Consider an (L, 1) covering family G = {G1, . . . , G`} for G that is locally known

by all the vertices, and let e′ denote the (unknown) adversarial edge. For a fixed vertex v, an

edge e, and an L-length s-v path P ⊆ G′ = (V,E \ {e, e′}), let Gi ∈ G be the subgraph

containing P where e /∈ Gi. Then, v receives the message (m0, i) in Phase 1 within O(L ·
ω(G) + |G|) rounds.

We note that forD′ ≥ D, by Obs.6 taking L = 7D′ yields that for every vertex v and edge e,

it holds that distG\{e,e′}(s, v) ≤ L. Hence, by the properties of the covering family G (Definition

17), for every vertex v and an edge e there exists an L-length s-v path P ⊆ G \ {e, e′} and a
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subgraph Gi that contains P and avoids e. The proof of Lemma 12 is one of the most technical

parts in this work. Whereas pipeline is a very common technique, especially in the context

of broadcast algorithms, our implementation of it is quite nontrivial. Unfortunately, since our

adversary has full knowledge of the randomness of the vertices, it is unclear how to apply the

random delay approach of [78, 113] in our setting. We next show that our pipeline approach

works well due to the bounded width of the covering family.

Proof of Lemma 12. Let P = (s = v0, . . . , vη = v) be an s-v path in Gi \ {e′}, where η ≤ L

and e /∈ Gi. For simplicity, we consider the case where the only message propagated during the

phase is m0. The general case introduces a factor of 2 in the round complexity. This holds since

there could be at most two messages of the form (0, i) and (1, i). We also assume, without loss

of generality, that each vertex vj receives the message (m0, i) for the first time from vj−1. If vj
received (m0, i) for the first time from a different neighbor in an earlier round, the time it sends

the message can only decrease.

In order to show that vη = v receives the message (m0, i) within O(L · ω(G) + |G|) rounds,

it is enough to bound the total number of rounds the message (m0, i) spent in the queues of the

vertices of P , waiting to be sent. That is, for every vertex vj ∈ P , let rj be the round in which

vj received the message (m0, i) for the first time, and let sj be the round in which vj sent the

message (m0, i). In order to prove Lemma 12, our goal is to bound the quantity

T =

η−1∑
j=1

(sj − rj). (5.1)

For every k < i we denote the set of edges from P that are not included in the subgraph Gk by

Nk = {(vj−1, vj) ∈ P | (vj−1, vj) /∈ Gk},

and defineN = {(k, e) | e ∈ Nk, k ∈ {1, . . . , i− 1}}. By the definition of the width property,

it holds that:

|N | =
i−1∑
k=1

|Nk| ≤ η · ω(G) = O(ω(G) · L). (5.2)

By Eq. (5.1), (5.2) it follows that in order to prove Lemma 12 it is enough to show T ≤ |N |.
For every vertex vj ∈ P , let Qj be the set of messages (m0, k) that vj sent between rounds

rj and round sj . By definition, |Qj| = (sj − rj), and T =
∑η−1

j=1 |Qj|. We next show that∑η−1
j=1 |Qj| ≤ |N |. This is shown in two steps. First we define a set Ij consisting of certain

(m0, k) messages such that |Qj| ≤ |Ij|, for every j ∈ {1, . . . , η − 1}. Then, we show that∑η−1
j=1 |Ij| ≤ |N |.

Step one. For every vertex vj ∈ P , let Ij be the set of messages (m0, k) satisfying the following

three properties : (1) k < i, (2) vj sent the message (m0, k) before sending the message (m0, i)

in round sj , and (3) vj did not receive the message (m0, k) for the first time from vj−1 before
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round rj . In other words, the set Ij includes messages received by vj with a graph index at most

(i − 1), that are either received from vj−1 between round rj + 1 and round sj − 1, or received

by vj from another neighbor w 6= vj−1 by round sj (provided that those messages were not

received additionally from vj−1).

Note that it is not necessarily the case that Qj ⊆ Ij . For example, consider a message

(m0, k) where k < i, received by vj from vj−1 in some round r′ < ri. Hence, by the definition

of Ij it holds that (m0, k) /∈ Ij . However, it could be the case that vj sent the message (m0, k) to

vj+1 only in some round s′ > ri and (m0, k) ∈ Qj . This is because in rounds r′ to ri it was busy

sending messages with lower indices. For our purposes, it is sufficient to show the following.

Claim 21. For every 1 ≤ j ≤ η − 1 it holds that |Qj| ≤ |Ij|.

Proof. We divide the setQj into two disjoint sets, Qj,1 andQj,2. LetQj,1 be the set of messages

(m0, k) in Qj that vj received from vj−1 before round rj , and let Qj,2 = Qj \Qj,1, i.e., the set of

messages inQj that vj did not receive from vj−1 by round rj . We first note that by the definition

of the set Ij , it holds that Qj,2 ⊆ Ij . Let I ′ be the set of messages (m0, k) such that (i) k < i (ii)

(m0, k) was not received by vj from vj−1 for the first time, and (iii) vj sent the message (m0, k)

by round ri. Hence, it holds that I ′ ⊆ Ij \Qj . We will next show that |Qj,1| ≤ |I ′| by describing

an injective function f from Qj,1 to I ′.

For a message (m0, k) that was received by vj in round rj,k, let π(k) be the graph index such

that the message (m0, π(k)) was sent by vj in round rj,k+1. For every message (m0, k) ∈ Qj,1,

we define f(m0, k) = (m0, π
αk(k)) where αk is the minimal integer for which (m0, π

αk(k)) ∈
I ′. We first show that the function f is well defined. We start with observing that by the

definition of Qj,1, the message (m0, k) was received by vj before round rj , and was sent only

after round rj . Hence, the message (m0, k) was not sent by vj in round rj,k + 1, and therefore

π(k) 6= k. Moreover, if the message (m0, π(k)) was received by vj for the first time from vj−1,

it was received before round rj,k (i.e, rj,π(k) < rj,k), and therefore π2(k) 6= π(k). Using an

inductive argument we can conclude that as long as (m0, π
β(k)) was received by vj from vj−1,

it holds that πβ(k) 6= πβ+1(k). Hence, there exists an integer αk such that (m0, π
αk(k)) was not

received by vj from vj−1. Moreover, because the messages are sent according to the order of the

indices, it holds that π(λ) ≤ λ for every index λ. Therefore πα(k) < i, and (m0, π
αk(k)) ∈ I ′.

We conclude that the function f is well defined.

We are left to show that f is an injective. Assume towards contradiction that there exists

two different messages (m0, k1), (m0, k2) ∈ Qj,i such that f((m0, k1)) = f((m0, k2)). Let β be

the smallest integer such that πβ(k1) = πλ(k2), for some integer λ. By the minimality of β it

holds that πβ−1(k1) 6= πλ−1(k2). In particular, the messages (m0, π
β−1(k1)) and (m0, π

λ−1(k1))

where sent in two different rounds r1 and r2. Since πβ(k1) = πλ(k2) it then follows that this

message was sent in two different rounds: r1 + 1 and r2 + 1, in contradiction to the definition of

the algortihm. We conclude that f is an injective function and |Qj,1| ≤ |I ′|. The claim follows.
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Step two. We next show that
∑η−1

j=1 |Ij| ≤ |N | by introducing an injection function f from

I = {(vj, k) | (m0, k) ∈ Ij} to N , defined as follows. For (vj, k) ∈ I, we set f((vj, k)) =

(k, (vh−1, vh)) such that (vh−1, vh) is the closest edge to vj on P [v0, vj], where (vh−1, vh) ∈ Nk

(i.e., (vh−1, vh) /∈ Gk). Specifically,

f((vj, k)) = (k, (vh−1, vh)) | h = max
τ≤j
{τ | (vτ−1, vτ ) ∈ Nk} . (5.3)

We begin by showing that the function is well defined.

Claim 22. The function f : I → N is well defined.

Proof. For a pair (vj, k) ∈ I, we will show that there exists an edge in the path P [v0, vj] that

is not included in Gk, and therefore f((vj, k)) is defined. Assume by contradiction that all path

edges in P [v0, vj] are included in Gk. We will show by induction on h that for every 1 ≤ h ≤ j

the vertex vh receives the message (m0, k) from vh−1 before receiving the message (m0, i) from

vh−1, leading to a contradiction with property (3) in the definition of Ij , as (vj, k) ∈ Ij .
For the base case of h = 1, at the beginning of the flooding procedure the source s = v0

sends the messages (m0, 1), . . . , (m0, i) one after the other in rounds 1, . . . , i respectively. Since

the edge (v0, v1) ∈ Gk, the vertex v1 receives the message (m0, k) from v0 in round k, and in

particular before receiving the message (m0, i) (in round i). Assume the claim holds up to

vertex vh, and we will next show correctness for vh+1. By the induction assumption, vh receives

the message (m0, k) from vh−1 before it receives the message (m0, i). Hence, vh also sends

(m0, k) before sending (m0, i). Because (vh, vh+1) ∈ Gk, the message (m0, k) is not ignored,

and vh+1 receives the message (m0, k) from vh before receiving the message (m0, i). Note that

this proof heavily exploits the fact that all the edges on P are reliable.

Next, we show that the function f is an injection.

Claim 23. The function f is an injection.

Proof. First note that by the definition of the function f (see Eq. (5.3)), for every k1 6= k2, and

1 ≤ j1, j2 ≤ η − 1 such that (vj1 , k1), (vj2 , k2) ∈ I, it holds that f((vj1 , k1)) 6= f((vj2 , k2)).

Next, we show that for every k < i and 1 ≤ j1 < j2 ≤ η − 1 such that (vj1 , k), (vj2 , k) ∈ I, it

holds that f((vj1 , k)) 6= f((vj2 , k)). Denote by f((vj1 , k)) = (k, (vh1−1, vh1)) and f((vj2 , k)) =

(k, (vh2−1, vh2)). We will now show that (vh2−1, vh2) ∈ P [vj1 , vj2 ]. Since (vh1−1, vh1) ∈
P [v0, vj1 ], it will then follow that (vh1−1, vh1) 6= (vh2−1, vh2).

Assume towards contradiction that (vh2−1, vh2) ∈ P [v0, vj1 ]. By the definition of f and

the maximality of h2, it holds that P [vj1 , vj2 ] ⊆ Gk. Since (vj1 , k) ∈ I, the vertex vj1 sent

the message (m0, k) before sending (m0, i). Since we assumed every vertex vt ∈ P receives

the message (m0, i) for the first time from vt−1 (its incoming neighbor on the path P ), and all

the edges on P are reliable, it follows that vj2 received the message (m0, k) from vj2−1 before
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receiving the message (m0, i) in round rj2 . This contradicts the assumption that (vj2 , k) ∈ I, as

by property (3) in the definition of Ij2 , the vertex vj2 did not receive the message (m0, k) from

vj2−1 before round rj2 .

This completes the proof of Lemma 12. Finally, we show that when D′ ≥ D, all vertices

accept the message m0 during the second phase using Lemma 12. This will conclude the proof

of Theorem 16.

Claim 24. All vertices accept m0 within O(L) rounds from the beginning of the second phase,

provided that D′ ≥ D.

Proof. Let T be a BFS tree rooted at s in G \ {e′}. For a vertex u, let p(u) be the parent of u

in the tree T . We begin with showing that each vertex u receives and stores a message (m0, j)

such that (u, p(u)) /∈ Gj during the first phase. Because the graph is 3 edge-connected, by Obs.

6 for every vertex u there exists an s-v path P in G that does not contain both the edge (u, p(u))

and e′, of length |P | ≤ 7D ≤ 7D′ = L. By the definition of the covering family G, there

exists a subgraph Gj containing all the edges in P , and in addition, (u, p(u)) /∈ Gj . Hence, by

Lemma 12, u stores a message of the form (m0, j) during the first phase.

We next show by induction on i that all vertices in layer i of the tree T accepts m0 by round

i of Phase 2. For the base case of i = 1, given a vertex u in the first layer of T , u receives the

message accept(m0) from s after one round of Phase 2. Since u stored a message (m0, j) such

that (s, u) /∈ Gj in Phase 1, it accepts the message m0 within one round. Assume the claim

holds for all vertices up to layer (i− 1) and let u be a vertex in the i-th layer. By the induction

assumption, p(u) sent accept(m0) to u by round (i − 1). Because u stored a message (m0, j)

such that (p(u), u) /∈ Gj during the first phase, u accepts m0 by round i.

Remark. Our broadcast algorithm does not need to assume that the vertices know the identity

of the source vertex s. By Cor. 3, in case where the adversarial edge e′ initiates a false broadcast

execution, no vertex will accept any of the messages sent.

5.2.2 Broadcast without Knowing the Diameter

We next show how to remove the assumption that the vertices know an estimate of the diameter;

consequently, our broadcast algorithm also computes a linear estimate of the diameter of the

graph. This increases the round complexity by a logarithmic factor and establishes Theorem 12.

We first describe the algorithm under the simultaneous wake-up assumption and then explain

how to remove it.
Alg. Broadcast. The algorithm applies Alg. BroadcastKnownDiam of Section 5.2 for k =

O(logD) iterations in the following manner. Every iteration i ∈ {1, . . . , k} consists of the

following steps.
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Step 1: In the first step, the source vertex s initiates Alg. BroadcastKnownDiam(Di) with

diameter estimate Di = 2i, and the desired message m0. This step consists of ri,1 = Õ(D2
i )

rounds, where ri,1 be an upper bound on the round complexity of BroadcastKnownDiam(Di).

Denote all vertices that accepted the message m0 by the end of the first step by Ai and let

Ni = V \ Ai be the set of vertices that did not accept the message by the end of the step. We

note that since this step consists of a fixed number of ri,1 rounds, by the end of the first step

every vertex can deduce whether it is in Ai or Ni.

Step 2: In the second step, the vertices in Ni inform s that the computation is not yet completed

in the following manner. At the beginning of the step, every vertex in Ni broadcast the same

designated message MC by applying Alg. BroadcastKnownDiam(9Di) with diameter estimate

9Di and the message MC . This step consists of ri,2 = Õ(D2
i ) rounds, where ri,2 be an upper

bound on the round complexity of Alg. BroadcastKnownDiam(9Di).

Step 3: In the third step, the vertices decide whether to continue to the next iteration or halt.

This step consists of ri,3 rounds where ri,3 is an upper bound on the round complexity of Alg.

BroadcastKnownDiam(28Di). In case the source vertex s did not receive and accept the des-

ignated message MC during the second step, it broadcasts a termination message MT to all

vertices in V by applying Alg. BroadcastKnownDiam(28Di) with diameter estimate 28Di. In

case the source vertex s accepted the message MC during the second step, at the end of this step

(i.e, after ri,3 many rounds), s continues to the next iteration (i+ 1).

A vertex v ∈ V that accepts the termination message MT during this step completes the

execution with the output message it has accepted so far. Additionally, v considers Di as an

estimation of the graph diameter. If by the end of the step v did not accept the termination

message MT , it continues to iteration (i+ 1).

Analysis. We begin with noting that no vertex v ∈ V accepts a wrong message m′ 6= m0 as its

output. This follows by Claim 20 and the correctness of Alg. BroadcastKnownDiam.

Observation 8. No vertex v ∈ V accepts a wrong message m′ 6= m0.

Fix an iteration i. Our next goal is to show that if Ni 6= ∅, then s will accept the message

MC by the end of Step 2. Consider the second step of the algorithm, where the vertices in Ni

broadcast the messageMC towards s using Alg. BroadcastKnownDiam(9Di). Since all vertices

in Ni broadcast the same message MC , we refer to the second step as a single execution of Alg.

BroadcastKnownDiam(9Di) with multiple sources. We begin with showing that the distance

between the vertices in Ai and s is at most 14Di.

Claim 25. For every vertex v ∈ Ai it holds that distG\{e′}(s, v) ≤ 14Di.

Proof. Recall that Alg. BroadcastKnownDiam proceeds in two phases. In the first phase, the

source vertex propagates messages of the form (m, k), and in the second phase, the source

vertex propagates accept messages. For a vertex v ∈ Ai that accepts the message m0 in the first
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step of the i-th iteration, by the second phase of Alg. BroadcastKnownDiam(Di), it received an

accept(m0) message from a neighbor w in Phase 2, and stored a message (m0, k) in Phase 1,

such that (v, w) /∈ Gk. Let P1 be the path on which the message accept(m0) propagated towards

v in Phase 2 of Alg. BroadcastKnownDiam(Di). Since the second phase is executed for 7Di

rounds, it holds that |P1| ≤ 7Di. In the case where e′ /∈ P1, since s is the only vertex initiating

accept(m0) messages (except maybe e′), P1 is a path from s to v in G \ {e′} as required.

Assume that e′ ∈ P1, and denote it by e′ = (v1, v2). Without loss of generality, assume

that on the path P1, the vertex v1 is closer to v than v2. Hence, v1 received an accept(m0)

message from v2 during Phase 2, and because v1 also sent the message over P1, it accepted m0

as its output. Therefore, during the execution of Alg. BroadcastKnownDiam(Di), the vertex v1

stored a message (m0, j) during the first phase, where e′ /∈ Gj . As all edges in Gj are reliable,

we conclude that Gj contains an s-v1 path P2 of length η ≤ 7Di such that e′ /∈ P2. Thus, the

concatenated path P2 ◦ P1[v1, v] is a path of length at most 14Di from s to v in G \ {e′} as

required.

We now show that if Ni 6= ∅ then s accepts the message MC during the second step and

continues to the next iteration. The proof is very similar to the proof of Claim 24 and follows

from the following observation.

Observation 9. For every u ∈ Ai and edge e = (v, u), it holds that distG\{e′,e}(Ni, u) ≤ 7 ·9Di.

Proof. Let T be a truncated BFS tree rooted at s in G \ {e′}, such that (1) Ai ⊆ V (T ), and

(2) the leaf vertices of T are in the Ai set. Informally, T is a minimum depth tree rooted at

s in G \ {e′}, that spans the vertices in Ai. By Claim 25 the depth of T is at most 14Di. It

follows that the forest T \ {e} contains at most two trees of diameter 2 · 14Di. Since G is 3

edge-connected, there exists a path from some vertex in Ni to u in G \ {e, e′}.
Hence, the shortest path from Ni to u in G \ {e, e′} denoted as P can be transformed into a

path P ′ containing at most one edge in P , and two tree subpaths of the forest T \{e}. Therefore,

distG\{e,e′}(Ni, u) ≤ |P ′| ≤ 4 · 14Di + 1 ≤ 7 · 9Di.

Claim 26. If Ni 6= ∅, s accepts the message MC by the end of Step 2 of the i-th iteration.

Proof. Let P = (u0, u1, . . . , uη = s) be a shortest path from some vertex u0 ∈ Ni to the source

vertex s in G \ {e′}. As P is the shortest such path, for every j 6= 0 uj ∈ Ai, and by Claim 25

|P | ≤ (14Di+1). In order to prove Claim 26, we will show by induction on j that every uj ∈ P
accepts the message MC by round j of Phase 2 in Alg. BroadcastKnownDiam(9Di) (in Step 2).

For the base case of j = 0, as u0 ∈ Ni, it accepts the message MC at the beginning of the

phase. Assume the claim holds for uj and consider the vertex uj+1. By Obs. 9 there exists a path

Pj+1 from some vertex in Ni to uj+1 in G \ {e′, (uj, uj+1)} of length |Pj+1| ≤ 7 · 9Di. Hence,

by Lemma 12 combined with the covering family used in Alg. BroadcastKnownDiam(9Di),
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we conclude that uj+1 stored a message (MC , k) in Phase 1 where (uj, uj+1) /∈ Gk. By the

induction assumption, uj sends uj+1 an accept(MC) message by round j of Phase 2. Since

(uj+1, uj) /∈ Gk, it follow that uj+1 accepts the message MC by round (j + 1).

By Claim 25 it follows that when Di < (D/28) there must exist a vertex w ∈ V that did

not accept the message m0 during the execution of Alg. BroadcastKnownDiam(Di) in the first

step, and Ni 6= ∅. On the other hand, when Di ≥ D by Claim 24 all vertices accept the message

m0 during the first step of the i-th iteration, and therefore Ni = ∅. Hence, for an iteration i∗ in

which no vertex broadcasts the message MC (and therefore s decides to terminate the execution

in Step 3), it holds that Di∗ ∈ [D/28, 2D]. Since s broadcasts the termination message MT

in Step 3 by applying Alg. BroadcastKnownDiam(28Di∗) with diameter estimate 28Di∗ , we

conclude that all vertices in V will finish the execution as required.

Omitting the simultaneous wake-up assumption. The main adaptation is that in the second

step of each iteration, the messageMC is initiated by the vertices inNi with neighbors inAi (and

possibly also the endpoints of the adversarial edge), rather than all the vertices in Ni. Specifi-

cally, the modifications are as follows. At the end of the first step, every vertex u ∈ Ai informs

all its neighbors that the first step has ended. Every vertex u ∈ Ni receiving such a message, ini-

tiates the second step by broadcasting the messageMC using Alg. BroadcastKnownDiam(9Di).

In the case where some vertex u ∈ Ni receives messages indicating that the first step has ended

from two distinct neighbors w,w′ in two distinct rounds τ 6= τ ′, the vertex u broadcasts the

message MC in rounds (τ + 1) and (τ ′ + 1). We note that this case can occur when at least one

of the endpoints of the adversarial edge e′ is in Ni. A vertex u ∈ Ai that receives MC during

the first step ignores these messages.

The correctness follows by the fact that for every edge (u,w) ∈ G \ {e′} such that u ∈ Ni

and w ∈ Ai, the vertex u broadcasts the message MC at the beginning of the second step of

iteration i. For that reason, Claim 26 works in the same manner. Additionally, in an iteration

i∗ where Ni∗ = ∅, no vertex broadcasts the message MC in the second step, and therefore s

broadcasts the termination message MT .

5.3 Broadcast against f Adversarial Edges

In this section, we consider the broadcast problem against f adversarial edges and prove The-

orem 13. The adversarial edges are fixed throughout the execution but are unknown to any of

the vertices. Given a D–diameter, (2f + 1) edge-connected graph G, and at most f adversarial

edges F ⊆ E, the goal is for a source vertex s to deliver a message m0 to all vertices in the

graph. At the end of the algorithm, each vertex is required to output the message m0. Our

algorithm is again based on a locally known covering family G with several desired properties.

The algorithm floods the messages over the subgraphs of G. The messages exchanged over each
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subgraphGi ∈ G also contains the path information along which the message has been received.

As we will see, the round complexity of the algorithm is mostly dominated by the cardinality

of G. Towards proving Theorem 13, we prove the following theorem which will become useful

also for the improved algorithms for expander graphs in Section 5.4.

Theorem 17. Given is a (2f + 1) edge-connected graph G of diameter D, and a parameter

L satisfying that for every u, v ∈ V , and every set E ′ ⊆ E of size |E ′| ≤ 2f , it holds that

distG\E′(u, v) ≤ L. Assuming that the vertices locally know an (L, 2f) covering family G,

there exists a deterministic broadcast algorithm BroadcastKnownCovFamily(G, L, f) against f

adversarial edges F with round complexity O(L · |G|).

We note that by Obs. 6, every (2f + 1) edge-connected graph G with diameter D satisfies

the promise of Theorem 17 for L = (6f + 2)D. We are now ready to describe the broadcast

algorithm given that the vertices know an (L, 2f) covering family G (along with the parameters

L and f ) as specified by Theorem 17. Later, we explain the general algorithm that omits this

assumption.

Alg. BroadcastKnownCovFamily(G, L, f). Similarly to the single adversarial edge case, the

algorithm has two phases, a flooding phase, and an acceptance phase. In the first phase of the

algorithm, the vertices exchange messages over the subgraphs of G, which also contains the

path information along which the messages are received. In addition, instead of propagating the

messages of distinct Gi subgraphs in a pipeline manner, we run the entire i-th algorithm (over

the edges of the graph Gi) after finishing the application of the (i− 1)-th algorithm1.

In the first phase, the vertices flood heard bundles over all the Gi ∈ G subgraphs, defined as

follows.

Heard bundles: A bundle of heard messages sent from a vertex v to u consists of:

1. A header message heard(m, len, P ), where P is an s-v path of length len along which v

received the message m.

2. A sequence of len messages specifying the edges of P , one by one.

This bundle contains (len + 1) messages that will be sent in a pipeline manner in the fol-

lowing way. The first message is the header heard(m, len, P ). Then in the next consecu-

tive len rounds, v sends the edges of P in reverse order (from the edge incident to v to s).

Phase 1: Flooding. The first phase consists of ` = |G| iterations, where each iteration is
implemented using O(L) rounds. In the first round of the i-th iteration, the source vertex s

sends the message heard(m0, 1, ∅) to all neighbors. Every vertex v, upon receiving the first

bundle message heard(m′, x, P ) over an edge in Gi from a neighbor w, stores the bundle

heard(m′, x + 1, P ∪ {w}) and sends it to all neighbors. Note that each vertex stores and

sends at most one heard bundle heard(m′, x, P ) in each iteration. That is, each vertex stores at

most one message per subgraph Gi.
1One might optimize the O(f) exponent by employing a pipeline approach in this case as well.
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Phase 2: Acceptance. The second phase consists of O(L) rounds, in which accept messages

are propagated from the source s to all vertices as follows. In the first round, s sends accept(m0)

to all neighbors. Every vertex v ∈ V \ {s} decides to accept a message m′ if the following two

conditions hold: (i) v receives accept(m′) from a neighbor w, and (ii) MinCut(s, v,P) ≥ f ,

where

P = {P | v stored a heard(m′, len, P ) message and (v, w) /∈ P} . (5.4)

Note that since the decision here is made by computing the minimum cut of a path collection,

it is indeed required (by this algorithm) to send the path information.

Correctness. We begin with showing that no vertex accepts a false message.

Claim 27. No vertex v ∈ V accepts a message m′ 6= m0 in the second phase.

Proof. Assume by contradiction there exists a vertex that accepts a false message m′, and let

v be the first such vertex. By first we mean that any other vertex that accepted m′ accepted

the message in a later round than v, breaking ties arbitrarily. Hence, v received a message

accept(m′) from some neighbor w. Because v is the first such vertex, the edge (w, v) is adver-

sarial. Let E ′ = F \ {(w, v)} be the set of the remaining (f − 1) adversarial edges, and let P
be given as in Eq. (5.4). We next claim that MinCut(s, v,P) ≤ (f − 1) and therefore v does

not accept m′.

To see this, observe that any path P such that v received a message heard(m′, len, P ) must

contain at least one edge in E ′. This holds even if the content of the path P is corrupted by

the adversarial edges. Since there are at most (f − 1) edges in E ′, and each of the paths in P
intersects these edges, it holds that MinCut(s, v,P) ≤ (f − 1) as required.

Finally, we show that all vertices in V accept the message m0 during the second phase. This

completes the proof of Theorem 17.

Claim 28. All vertices accept m0 within O(L) rounds from the beginning of the second phase.

Proof. We will show that all vertices accept the message m0 by induction on the distance from

the source s in the graph G \F . The base case holds vacuously, as s accepts the message m0 in

round 0. Assume all vertices at distance at most i from s in G \ F accepts the message m0 by

round i. Consider a vertex v at distance (i + 1) from s in G \ F . By the induction assumption

on i, v receives the message accept(m0) from a neighbor w in round j ≤ (i+ 1) over a reliable

edge (w, v). We are left to show that MinCut(s, v,P) ≥ f , where P is as given by Eq. (5.4).

Alternatively, we show that for every edge set E ′ ⊆ E \ {(w, v)} of size (f − 1), the vertex v

stores a heard bundle containing m0 and a path Pk such that Pk ∩ (E ′ ∪ {(v, w)}) = ∅ during

the first phase. This necessary implies that the minimum cut is at least f .

For a subset E ′ ⊆ E of size (f − 1), as |F ∪ E ′ ∪ {w, v}| ≤ 2f by the promise on

L in Theorem 17, distG\(F∪E′∪{w,v})(s, v) ≤ L. By the properties of the covering family G
(Definition 17), it follows that there exists a subgraphGk such thatGk∩(F∪E ′∪{(v, w)}) = ∅,
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and distGk(s, v) ≤ L. Hence, all edges in Gk are reliable, and the only message that passed

through the heard bundles during the k-th iteration is the correct messagem0. As distGk(s, v) ≤
L, the vertex v stores a heard bundle heard(m0, x, Pk) during the k-th iteration for some s-v

path Pk of length x = O(L). Moreover, as Pk ⊆ Gk it also holds that Pk ∩ (E ′∪{(v, w)}) = ∅.
We conclude that MinCut(s, v,P) ≥ f , and by the definition of Phase 2, v accepts m0 by round

(i+ 1). The claim follows as the diameter of G \ F is O(L) due to the promise on L.

Alg. Broadcast (Proof of Theorem 13) We now describe the general broadcast algorithm. Our

goal is to apply Alg. BroadcastKnownCovFamily(G, L, f) over the (L, 2f) covering family G
for L = O(fD), constructed using Fact 6. Since the vertices do not know the diameter D (or a

linear estimate of it), we make O(logD) applications of Alg.

BroadcastKnownCovFamily(Gi, Li, f) using the (Li, 2f) covering family Gi for Li = O(fDi),

where Di = 2i is the diameter guess for the i-th application.

Specifically, at the beginning of the i-th application, the source s initiates the execution

of Alg. BroadcastKnownCovFamily(Gi, Li, f) with the desired message m0 over an (Li, 2f)

covering family Gi constructed using Fact 6 with Li = O(fDi) and Di = 2i. Denote all

vertices that accepted the message m0 at the end of Alg. BroadcastKnownCovFamily(Gi, Li, f)

by Ai, and let Ni = V \ Ai be the vertices that did not accept the message.

The algorithm now applies an additional step where the vertices in Ni inform s that they did

not accept any message in the following manner. All vertices in Ni broadcast the same desig-

nated message M by applying Alg. BroadcastKnownCovFamily(G ′i, ctLi, f) over a (ctLi, 2f)

covering family G ′i, for some fixed constant c > 0 (known to all vertices). This can be viewed

as performing a single broadcast execution (i.e., with the same source message) but from |Ni|
multiple sources. We next set τi = O(f · Di log n)O(f) as a bound on the waiting time for a

vertex to receive any acknowledgment.

If the source vertex s accepts the message M at the end of this broadcast execution, it waits

for τi rounds, and then continues to the next application1 (i + 1) (with diameter guess 2i+1).

In the case where s did not accept the message M within τi rounds from the beginning of that

broadcast execution, it broadcasts a termination message MT to all vertices in V . This is done

by applying Alg. BroadcastKnownCovFamily(G ′i, ctLi, f) over the (ctLi, 2f) covering family

G ′i. Once a vertex v ∈ V accepts the termination message MT , it completes the execution with

the last message it has accepted so far (in the analysis part, we show that it indeed accepts the

right message). A vertex v that did not receive a termination message MT within τi rounds,

continues to the next application of Alg. BroadcastKnownCovFamily.

The correctness argument exploits the fact that for an application i such that Ni 6= ∅, the

1We make the source vertex s wait since in the case where it actually sends a termination message, all vertices
accept it within τi rounds. Therefore, we need to make sure that all vertices start the next (i+ 1) application at the
same time.
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graphG′ obtained by contracting 1 all vertices inNi into a single vertex a, satisfies the following:

(i) it is (2f + 1) edge-connected, (ii) it contains s, and (iii) it has diameter O(Li) = O(f ·Di).

Property (i) holds since G is (2f + 1) edge-connected, and property (ii) holds by the definition

of Ai. We next show property (iii) holds as well.

Claim 29. For every application i of Alg. BroadcastKnownCovFamily(Gi, Li, f) and every

vertex v ∈ Ai, it holds that distG\F (s, v) = O(Li).

Proof. Recall that Alg. BroadcastKnownCovFamily proceeds in two phases. In the first phase,

the source vertex propagates heard bundles, and in the second phase, the source vertex propa-

gates accept messages. Let v be a vertex that accepts the message m0 in the i-th application of

Alg. BroadcastKnownCovFamily(Gi, Li, f). By Phase 2 of Alg. BroadcastKnownCovFamily, v

received an accept(m0) message from a neighbor w in the second phase, and in the first phase

it received heard bundles regarding m0 over a path collection P such that MinCut(s, v,P) ≥ t,

and (v, w) /∈ P for every P ∈ P . Let P1 be the path on which the message accept(m0) propa-

gated towards v in the second phase of Alg. BroadcastKnownCovFamily(Gi, Li, f), executed by

s with the desired message m0. Since the second phase is executed for O(Li) rounds, it holds

that |P1| = O(Li). If P1 ∩ F = ∅, P1 starts at s and the claim follows.

Next, assume P1 ∩ F 6= ∅. Let (v1, v2) be the closest edge to v on P1 such that (v1, v2) ∈ F
(i.e., P1[v2, v] ∩ F = ∅). Hence, v2 sent an accept(m0) message to v during the second phase

over the path P1. Therefore, v2 received heard bundles regarding m0 over a path collection P
such that MinCut(s, v,P) ≥ f , and (v1, v2) /∈ P for every P ∈ P . As |F \{(v1, v2)}| ≤ (f−1),

there must be a path P2 ∈ P such that P2 ∩ F = ∅. Hence, P2 is an s-v2 path of length

|P2| = O(Li) in G \ F . Thus, the concatenated path P2 ◦ P1[v2, v] is a path of length O(Li)

from s to v in G \ F .

Using similar arguments to Obs. 6, from Claim 29 it follows that for every set E ′ ⊆ E of

size |E ′| ≤ t, and every vertex v ∈ Ai it holds that distG\F∪E′(Ni, v) = O(f · Li).

Observation 10. For every vertex v ∈ Ai and an edge set E′ ⊆ E of size |E ′| ≤ f , it holds that

distG\(F∪E′)(Ni, v) = O(f · Li).

Proof. Let T be a truncated BFS tree rooted at s in G \ F , such that (1) Ai ⊆ V (T ), and (2) all

the leaf vertices of T are included in Ai. By Claim 29 the depth of T is O(Li). It then follows

that the forest T \ E ′ consists of |E ′| + 1 ≤ (f + 1) trees, each of diameter O(Li). Since G

is (2f + 1) edge-connected, there exists a path from some vertex in Ni to v in G \ (F ∪ E ′).

Hence, the shortest path from Ni to v in G \ (F ∪ E ′) denoted as P can be transformed into a

path P ′ containing at most f edges in P , as well as, (f + 1) tree subpaths of the forest T \ E ′.
Therefore, distG\(F∪E′)(Ni, v) = O(f · Li).

1I.e., we contract all edges with both endpoints in Ni.
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We are now ready to complete the proof of Theorem 13.

Proof of Theorem 13. Fix an application i of Alg. BroadcastKnownCovFamily(Gi, Li, f). We

first claim that if Ni 6= ∅, the source vertex s accepts the message M , and continues to the

next application (i + 1). In the second step of the i-th application, the Ni vertices broadcast

the message M by executing Alg. BroadcastKnownCovFamily(G ′i, cfLi, f) over a (cfLi, 2f)

covering family G ′i. By Obs. 10, for a large enough constant c it hold that for every v ∈ Ai

and E′ ⊆ E of size |E ′| ≤ f , it holds that distG\F∪E′(Ni, v) ≤ ctLi. Hence, using the same

arguments as in Claim 28 we can conclude that all vertices in Ai accept the message M in the

second phase of Alg. BroadcastKnownCovFamily(G ′i, cfLi, f). Specifically, the source vertex

s ∈ Ai accepts the message and proceeds to application (i+ 1).

Next, consider the first application i∗ for whichNi∗ = ∅, and all vertices accept the broadcast

message m0. Since the diameter of the graph is D, the algorithm must have run at least D/2

rounds. This implies that Di∗ = Ω(D/f) and Li∗ = Ω(D). Hence, for a large enough constant

c, when s broadcasts the termination message MT using Alg.

BroadcastKnownCovFamily(G ′i∗ , cfLi∗ , f) over the (cfLi∗ , 2f) covering family G ′i∗ , all vertices

accept MT and finish the execution.

We next consider the round complexity. Clearly, when taking Di ≥ D, by Theorem 17

the set Ni = ∅, and we are done. Therefore, we can conclude that i∗ ≤ logD + 1. The

algorithm performs O(logD) applications of Alg. BroadcastKnownCovFamily, each with pa-

rameters Li = O(fD) and cfLi = O(f 2D) (used in the construction of G ′i). Thus, the total

round complexity is bounded by (fD log n)O(f).

Finally, we observe that our broadcast algorithm can be implemented in the LOCAL model

using O(fD log n) many rounds.

Corollary 4. For every (2f + 1) edge-connected graph, and a source vertex s, there is a de-

terministic broadcast algorithm against f adversarial edges that runs in O(fD log n) local

rounds.

Proof. The algorithm is the same as in the CONGEST model. However, since in the local

model there are no bandwidth restrictions, the message propagation over the |G| subgraphs of

the (L, f) covering family can be implemented simultaneously within L = O(fD) rounds.

5.4 Broadcast Algorithms for Expander Graphs

In this section, we show improved constructions of covering families for expander graphs, which

consequently lead to considerably faster broadcast algorithms. Specifically, we show that the

family of expander graphs with a sufficiently large minimum degree admits covering families
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of a considerably smaller size (than that obtained for general graphs). We start by providing the

precise definition of expander graphs used in this section.

Expander graphs. For a vertex subset S ⊆ V , denote by δG(S) = |E ∩ (S × (V \ S))| the

number of edges crossing the (S, V \ S) cut . The volume volG(S) of S in G is the number

of edges of G incident to S. Assuming both S and V \ S have positive volume in G, the

conductance φG(S) of S is defined as φG(S) = δG(S)/min{volG(S), volG(V \ S)}. In case

volG(S) = 0 or volG(V \ S) = 0, the conductance of S is set to be φG(S) = 0. The edge

expansion of a graph G is given by φ(G) = minS⊂V φG(S). We say a graph G is a φ-expander

if φ(G) ≥ φ.

The structure of this section is as follows. We first provide a combinatorial randomized

construction of (L, 2f) covering families for n-vertex φ-expander graphs1 with minimum de-

gree Θ(f log n/φ). Then, we show a randomized construction of (L, 2f) covering families in

the adversarial CONGEST model. Finally, we provide an improved broadcast algorithm that

uses these families and is resilient against f adversarial edges, given a φ-expander graph with

minimum degree Θ(f 2 log n/φ).

Covering families with improved bounds. The computation of the improved covering family

is based on showing that a sampled subgraph of G obtained by sampling each edge indepen-

dently with probability p = Θ(1/f) satisfies some desired expansion and connectivity proper-

ties.

We use the following result from [195] which provides conductance guarantees for the sub-

graphs obtained by Karger’s edge sampling technique. This result also implies that expander

graphs with large minimum degree have large edge-connectivity.

Theorem 18 (Lemma 20 from [195]). Given c > 0, κ ≥ 1 and ρ ≤ 1, let G = (V,E) be an

n-vertex graph with degree at least κρ. Let G′ = (V,E ′) be the multigraph obtained from G by

sampling each edge independently with probability

p = min{1, (12c+ 24) lnn/(ρ2κ)} .

Then, with probability 1−O(1/nc), for every cut (S, V \ S) in G, it holds that:

• if φG(S) ≥ ρ then φG′(S) deviates from φG(S) by a factor of at most 4, and

• if φG(S) < ρ then φG′(S) < 6ρ.

We will use the following fact that appeared in [181] that provides an upper bound for the

diameter of φ-expander graphs. For completeness we provide here the proof.

Fact 7 (Section 19.1 from [181]). The diameter of an n-vertex φ-expander graph G is bounded

by O(log n/φ).
1with slightly weaker properties, which are sufficient for our purposes.
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Proof. For an integer k ≥ 0 and a vertex w, let Bk(w) = {v ∈ V | distG(w, v) ≤ k} be the

set of vertices at distance at most k from w. We show by induction on k ≥ 0 that for every

vertex w satisfying that volG(Bk(w)) ≤ |E|/2, it holds that volG(Bk(w)) ≥ (1 + φ)k. For the

base case of k = 0, B0(w) = {w}. Since φ > 0, the vertex w has at least one neighbor in

G, and thus volG(B0(w)) ≥ 1. Assume that the claim holds for k and consider Bk+1(w) such

that volG(Bk+1(w)) ≤ |E|/2. By the assumption, it holds that volG(Bk+1(w))) ≤ volG(V \
Bk+1(w)), and therefore:

δG(Bk+1(w)) ≥ φ · volG(Bk+1(w)) . (5.5)

By definition of volG(S), we have:

volG(Bk+1(w)) ≥ volG(Bk(w)) + δG(Bk+1(w)) . (5.6)

Combining Eq. (5.5) and Eq. (5.6), we conclude that

volG(Bk+1(w)) ≥ volG(Bk(w)) + δG(Bk+1(w))

≥ volG(Bk(w)) + φ · volG(Bk+1(w))

≥ (1 + φ) · volG(Bk(w))

≥ (1 + φ)k+1,

where the last inequality follows by the induction assumption. Let k be the minimal integer

satisfying that (1 + φ)k ≥ |E|/2, and consider a fixed pair of vertices u and v. By the above,

we have that |volG(Bk(u))|, |volG(Bk(v))| ≥ |E|/2. Thus, there is an edge (w1, w2) where

w1 ∈ Bk(u) and w2 ∈ Bk(v), and therefore distG(u, v) ≤ 2k + 1 = O(log n/φ).

By combining Theorem 18 with Fact 7 we get:

Corollary 5. LetG = (V,E) be an n-vertex φ-expander graph with minimum degree Θ(f log n/φ).

Let G′ be a subgraph of G obtained by sampling each G-edge independently into G′ with prob-

ability of p = Θ(1/f). Then G′ has diameter of O(log n/φ), w.h.p.

Proof. Since the minimum degree of G is ∆ = Θ(f log n/φ), it holds that ∆ ≥ κ · φ for κ =

t log n/φ2, and p = Θ(log n/(κ · φ2)). Therefore, by Theorem 18 it holds that φ(G′) = Θ(φ),

w.h.p. By Fact 7, we have that the diameter of G′ is O(log n/φ).

We next show that for φ-expander graphs with minimum degree Θ(f log n/φ), there exist

covering graph families with a considerable smaller cardinality than those obtained for general

graphs. Note that the definition of the covering family in Lemma 13 is more relaxed than that

of Definition 17 w.r.t property (P1).
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Lemma 13. LetG be an n-vertex φ-expander graph with minimum degree Θ(f log n/φ). There

is a randomized algorithm that computes an (L, 2f) covering family G of O(f · log n) sub-

graphs for L = O(log n/φ), satisfying the following properties with high probability. For every

u, v, E ′ ∈ V × V ×E≤2f , there exists a subgraph Gi such that (P1’) distGi(u, v) ≤ L and (P2)

E ′ ∩Gi = ∅.

Proof. The covering family G is obtained by sampling a collection of O(f · log n) subgraphs.

Specifically, each subgraph Gi ∈ G is obtained by sampling each G-edge into Gi independently

with probability of p = Θ(1/f). By Cor. 5, it holds that w.h.p. Gi is a connected graph

with diameter O(log n/φ). We now show that w.h.p. G is an (L, 2f) covering family for L =

O(log n/φ).

Fix a pair of vertices u, v ∈ V and a subset of at most 2f edges E ′ ⊆ G. We claim that with

probability of at least 1 − 1/nΩ(f), there exists a subgraph Gi satisfying (P2). The probability

that E ′∩Gi = ∅ is at least q = (1−p)2f ≥ 1/e3. Therefore, the probability that no subgraph in

G satisfies (P2) is at most (1− q)c·t logn ≤ 1/nc
′t. By applying the union bound over all O(n4t)

possible subsets of 2f edges, we get that w.h.p. property (P2) holds for every subset E ′. In

addition, by Cor. 5 w.h.p. it holds that every Gi is connected and has diameter L = O(log n/φ).

Therefore, w.h.p., for every pair of vertices u, v ∈ V it holds that distGi(u, v) ≤ L. By the

union bound over the subgraphs in G, we get that w.h.p. both properties (P1’) and (P2) hold for

every u, v, E ′ ∈ V × V × E≤2f .

Unfortunately, it is unclear how to compute the covering family of Lemma 13 in the adver-

sarial CONGEST model. The reason is that the endpoints of an adversarial edge e = (u, v) ∈ F
cannot faithfully sample e with probability p. For example, letting the endpoint of larger ID u

perform the sampling, the other endpoint v might not be correctly informed with the outcome

of this sampling1. To resolve this, we let each endpoint sample a directed edge (u, v) with a

probability of p. Consequently, the graph family that we get consists of directed graphs, and the

graph is required to have minimum degree Θ(f 2 log n/φ).

Lemma 14 (Directed Covering Families for Expanders). For any n-vertex φ-expander graph

G = (V,E) with minimum degree Θ(f 2 log n/φ), there is a randomized distributed algorithm

that in the presence of at most f adversarial edges F , locally computes a directed (L, 2f)

covering family of O(f log n) directed subgraphs G for L = O(log n/φ), satisfying the follow-

ing w.h.p. For every u, v, E ′ ∈ V × V × E≤2f , there exists a subgraph Gi such that (P1’)

distGi(u, v) ≤ L and (P2) E ′ ∩ Gi = ∅ (i.e., Gi does not contain any edge in E ′ in neither

direction).

Proof. The covering family G is obtained by sampling a collection of O(f log n) directed sub-

graphs. Specifically, each subgraph Gi ∈ G is obtained by sampling a directed edge (u, v) with
1We note that in the previous constructions, the covering family is constructed locally by all the vertices using

Fact 6 (i.e., without any communication). Therefore the above problem is avoided.
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probability of p = Θ(1/f). The sampling of a directed edge (u, v) is done locally by v. We

now show that w.h.p. G is a (directed) (L, 2f) covering family for L = O(log n/φ).

Fix a pair of vertices u, v ∈ V and a subset of at most 2f edges E ′ ⊆ G. We claim that with

a probability of at least 1− 1/nΩ(f), there exists a subgraph Gi satisfying (P2). The probability

that E ′ ∩Gi = ∅ is at least q = (1− p)4t ≥ 1/e5. Therefore, the probability that no subgraph in

G satisfies (P2) is at most (1− q)c·t logn = 1/nc
′t. By applying the union bound over all O(n4t)

possible sets of 2f edges, we get that w.h.p. property (P2) holds for every subset E ′.

As each directed edge is sampled with probability p, each edge is sampled in both directions

with probability p2 = Θ(1/f 2). SinceG has minimum degree Θ(f 2 log n/φ), by Cor. 5 it holds

that w.h.p. Gi contains a bidirected subgraph which (when viewed as an undirected subgraph)

has diameter O(log n/φ). As a result, w.h.p. it holds that every Gi has a round-trip diameter

O(log n/φ). Therefore, for L = Θ(log n/φ) w.h.p. for every pair of vertices u, v ∈ V it holds

that distGi(u, v) ≤ L. By the union bound over the subgraphs in G, we get that w.h.p. both

properties (P1’) and (P2) hold for every u, v, E ′ ∈ V × V × E≤2f .

Broadcast algorithm using a directed covering family (Proof of Theorem 14). Let G be

an n-vertex φ-expander graph, with minimum degree Θ(f 2 log n/φ), and a fix set of f un-

known adversarial edges F . Throughout the algorithm, we assume that the vertices hold a

linear estimate on the expansion parameter φ. (This assumption can also be avoided by adding

a logarithmic overhead in the graph diameter to the final round complexity.)

The algorithm begins with locally computing an (L, 2f) directed covering family G = {G1, . . . , G`}
for G of size ` = O(f log n) using Lemma 14, where L = O(log n/φ). Next, the vertices exe-

cute the broadcast algorithm BroadcastKnownCovFamily(L, f) of Theorem 17 over G.

Recall that the algorithm of Theorem 17 consists of two phases, a flooding phase where

heard bundles are propagated over the subgraphs in the covering family, and an acceptance

phase. The flooding phase proceeds in ` iterations, where each iteration is implemented inO(L)

rounds. In every iteration i, the vertices propagate heard bundles over the directed subgraph

Gi ∈ G. Specifically, a vertex v ∈ V stores and sends only heard bundles that are received over

its directed incoming edges, which are sampled (locally by v) into Gi. Every message received

by v from a neighbor u ∈ N(v), such that (u, v) /∈ Gi is ignored. The acceptance phase is

executed in O(L) rounds, as described in Section 5.3.

Correctness. We now show that the correctness of the algorithm still holds. Let s be the

designated source vertex, and let m0 be the message s sends using the broadcast algorithm. We

first note that due to Claim 27, no vertex v ∈ V accepts a wrong message m′ 6= m0. We are left

to show all vertices in V accept the message m0 during the second phase.

Claim 30. All vertices accept m0 within O(L) rounds from the beginning of the second phase.

Proof. We show that all vertices accept the message m0 by induction on the distance from the

source s in the graph G \ F . The base case holds since s accepts the message m0 in round
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0. Assume all vertices at distance at most i from s in G \ F accepts the message by round i.

Consider a vertex v at distance (i + 1) from s in G \ F . By the induction assumption on i,

the vertex v receives the message accept(m0) from a neighbor w, in round j ≤ (i + 1) over a

reliable edge (w, v). We are left to show MinCut(s, v,P) ≥ t, where P is as given by Eq. (5.4):

P = {P | v stored a heard(m′, len, P ) message and (v, w), (w, v) /∈ P} .

Alternatively, we show that for every edge set E ′ ⊆ E \ {(w, v)} of size (f − 1), the vertex v

stores a heard bundle containing m0 and a path Pk such that Pk ∩ (E ′ ∪ {(w, v)}) = ∅ during

the first phase. This necessary implies that the minimum-cut is at least f .

By Lemma 14 there exists a subgraph Gk ∈ G satisfying: (P1’) distGk(s, v) ≤ L, and

(P2) Gk ∩ (F ∪ E ′ ∪ {(v, w)}) = ∅. Hence, all directed edges in Gk are reliable, and the

only message passed through the heard bundles during the k-th iteration is the correct message

m0. Additionally, as Gk contains a directed s-v path of length O(L), the vertex v stores a

heard bundle heard(m0, x, Pk) during the k-th iteration, for some s-v path Pk of length x. As

Pk ⊆ Gk, it also holds that Pk ∩ (E ′ ∪ {(v, w)}) = ∅. We conclude that MinCut(s, v,P) ≥ t,

and by the definition of Phase 2, v accepts m0 by round (i + 1). Since |F | ≤ t, Lemma 14

implies that the diameter of G \ F is O(L), and the claim follows.

Round complexity. The first phase consists of ` = O(f log n) iterations, each implemented

using O(L) = O(log n/φ) rounds. The second phase takes O(f log n/φ) rounds. Hence the

total round complexity is bounded by O(f · log2 n/φ).

5.5 Improved Broadcast with Shared Randomness

In this section we provide broadcast algorithms with improved bounds provided that the ver-

tices know a shared seed of Õ(1) random coins. The structure of this section is as follows.

In Section 5.5.1, we present a nearly optimal broadcast algorithm against a single adversar-

ial edge. This algorithm is based on a partial derandomization of the fault-tolerant sampling

technique. Then, in Section 5.5.2 we show an improved broadcast algorithm that is resilient

against t adversarial edges for Ω(t log n) edge-connected expander graphs. This improves upon

the broadcast algorithm of Theorem 14 for expander graphs with edge connectivity Ω(t2 log n).

Both results are based on providing partial derandomization results for computing covering

families. Since these families have many applications in fault-tolerant network design as well

dynamic algorithms we believe this contribution to be of independent interest.

5.5.1 Improved Broadcast Algorithm against an Adversarial Edge

Our main technical contribution is in proving the following theorem:
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Theorem 19. Given a graph G where all vertices know a shared seed of Õ(1) random bits,

there exists a 0-round algorithm for computing an (L, 1) covering family G = {G1, . . . , G`} for

L = O(D), such that ` = O(D log n), and the width of G is O(log n) satisfying the following

properties with high probability. For every v, e, e′ ∈ V × V × E × E, there exists a subgraph

Gi such that (P1’) distGi\{e,e′}(s, v) ≤ L and (P2) e /∈ Gi = ∅.

Theorem 15 follows by combining Theorem 19 with Theorem 16. We start with describing

a standard randomized construction of G using the fault-tolerant sampling technique. We then

turn to prove Theorem 19, by providing a partial derandomization of the randomized construc-

tion.

Covering families with fault tolerant sampling. We start by considering a standard random-

ized construction of G using the fault-tolerant sampling technique: each subgraph Gi is defined

by sampling each edge e ∈ G into Gi independently with probability of p = 1 − 1/D. This is

done for i ∈ {1, . . . , ` = O(D log n)}. We next analyze this construction.

For a fixed adversarial edge e′, the subgraphGj ∈ G is defined to be good for the pair v ∈ V
and e ∈ E if

π(s, v,G \ {e, e′}) ⊆ Gj and e /∈ Gj . (5.7)

Note that since the graph G is 3 edge-connected, by Obs. 6 π(s, v,G \ {e, e′}) has at most 7D

edges for every v ∈ V and e ∈ E. Thus, the probability that Gj is good for (v, e) is at least

p7D · (1 − p) = Ω(1/D). Using Chernoff bound, we get that with w.h.p. every pair (v, e), has

at least one good subgraph Gj in G, then G has the covering property w.h.p. In addition, w.h.p.

the width is logarithmic.

Our starting observation is that the covering family G can be generated using a seed of length

O(D2 log n). To see this, observe that the event of Eq. (5.7) is defined only on O(D) edges, and

thus it is sufficient to sample the edges into the Gi subgraphs using D-wise independent hash

function. As the sampling is repeated r = O(D log n) times, this requires a total random seed

of length O(D2 log n) bits.

(Partial) Derandomization of the FT-Sampling Technique

In this section, we considerably improve this bound and prove Theorem 19 by showing that

one can compute G using a random seed of Õ(1) bits. The structure of our argument is as

follows. We first show that a single iteration of the sampling procedure can be implemented

using r = O(log n(log log n)3) random bits. That is, we show that if all vertices share a seed

of r random bits, then for every fixed pair e, e′ the sampled graph obtained using this seed

satisfies the event of Eq. (5.7) with probability Ω(1/D). This immediately implies that the

entire algorithm, which consists of O(D log n) sampling steps, can be implemented with Õ(D)

bits. In the next step, we derandomize the algorithm even further and show that using O(log n)-

wise independent hash functions, one can simulate the entire construction of G with a seed of

length poly(log n).

119



Single subgraph with a seed length O(log n(log log n)3). Our key observation is that for any

pair 〈A, e′〉 where A ⊆ E, the event that all edges A are sampled into Gi and e′ /∈ Gi can be

expressed by a read-once CNF formula1. Thus, in order to get a short seed, it suffices to have

a pseudorandom generator (PRG) that can “fool” read-once CNFs. A PRG is a function that

gets a short random seed and expands it to a long one which is indistinguishable from a random

seed of the same length for such a formula. Gopalan et al. [80] showed such a PRG that have a

seed length O(log n · (log log n)3). Our application of their PRGs follows a similar line to that

of [153].

We begin by setting up some notation. For a function PRG and an index i, let PRG(s)i be

the i-th bit of PRG(s).

Definition 21 (Pseudorandom Generators for Boolean Functions). A generator PRG : {0, 1}r →
{0, 1}n is an ε-pseudorandom generator (PRG) for a class C of Boolean functions if for every

f ∈ C:

| E
x∼{0,1}n

[f(x)]− E
s∼{0,1}r

[f(PRG(s))] | ≤ ε.

We refer to r as the seed-length of the generator and say PRG is explicit if there is an efficient

algorithm to compute it that runs in time poly(n, 1/ε).

We use the construction of [80] to provide a PRG for CNFs with a short seed.

Theorem 20 ([80]). For every ε = ε(n) > 0, there exists an explicit pseudorandom generator,

PRG : {0, 1}r → {0, 1}n that fools all read-once CNFs on n-variables with error at most ε and

seed-length r = O((log(n/ε)) · (log log(n/ε))3).

Using the notation above, and Theorem 20 we formulate and prove the following Lemma:

Lemma 15. Let G be an n-vertex graph, and m be an integer where m = poly(n). For every

D ≤ n, there exists a family of hash functions H = {h : [m] → {0, 1}} such that choosing a

random function fromH takes r = O(log n · (log log n)3) random bits, such that for Zh = {e ∈
[m] : h(e) = 0} and any fixed pair of O(D) edges A and an edge e′ ∈ E it holds that:

Pr
h

[A ⊂ Zh and e′ /∈ Zh] ≥ Ω(1/D)− 1/n2 and Pr
h

[e /∈ Zh] ≤ O(1/D) + 1/n2 ∀e ∈ E.

Proof. We first describe the construction of H. Let p = 1 − c/D for some large constant c,

and let ` = blog 1/pc. Let PRG : {0, 1}r → {0, 1}m` be the PRG constructed in Theorem 20

for r = O(log n` · (log log n`)3) = O(log n · (log log n)3) and for ε = 1/n10c. For a string s of

length r we define the hash function hs(j) as follows. First, it computes y = PRG(s). Then, it

interprets y as m blocks where each block is of length ` bits, and outputs 1 if and only if all the

bits of the j-th block are 1. Formally, we define hs(j) =
∧j`
k=(j−1)`+1 PRG(s)k. We show that

the requirement holds for the set Zhs where hs ∈ H and a fixed set of O(D) edges A ⊂ E and

1A read-once formula is a Boolean formula in which each variable occurs at most once.
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e′ ∈ E \A. For j ∈ [m] let Xj = hs(j) be a random variable where s ∼ {0, 1}r. Let the IDs of

the edges in A be given by j1, . . . , jk and let j∗ be the ID of the edge e′. We need to show that

Prs∼{0,1}r [Xj1 ∧Xj2 ∧ . . . ∧Xjk ∧ ¬Xj∗ = 1] ≥ 1/D + 1/n2. Let fj : {0, 1}m` → {0, 1} be a

function that outputs 1 if the j-th block is all 1’s. That is, fj(y) =
∧j`
z=(j−1)`+1 yj. Since fj is a

read-once CNF formula we have that∣∣∣∣ E
y∼{0,1}m`

[fj(y)]− E
s∼{0,1}r

[fj(PRG(s))]

∣∣∣∣ ≤ ε.

Thus, the event where e ∈ Zh or more generally, A ⊂ Zh can be written as a read-once CNF

formula. In addition, the event where e′ /∈ Zh is obtained in case where at least one of the `

bits of the j∗-th block is zero, which can be expressed as a CNF formula as well. Over all,

we have that the good event where A ⊂ Zh and e′ /∈ Zh is a read-once CNF formula, and

Prh[A ⊂ Zh and e′ /∈ Zh] ≥ Ω(1/D)− 1/ε. The claim follows by setting ε = 1/poly(n).

We next describe the covering family algorithm when using a random seed of length r =

Õ(D). The algorithm has ` = O(D log n) iterations. In each iteration i, let si ∼ {0, 1}r be a

random seed shared by all vertices. The vertices then locally interpret the vector yi = PRG(si)

as m blocks, one per possible edge in G, where each block is of length ` bits. The vector yi
defines the subgraph Gi as follows. For every edge e = (u, v) where ID(u) < ID(v) let IDu,v

be an O(log n)-bit ID of the edge obtained by concatenating1 the IDs of u and v. Then, to

decide whether e = (u, v) ∈ Gi, the vertices u and v consider the 2IDu,v -th block of the vector

yi, and the edge e joins Gi iff all the bits of this block are set to 1. Lemma 15 then implies the

following:

Corollary 6. The probability that Eq. (5.7) holds for a given tuple 〈s, v, {e, e′}〉 based on

the above definition of Gi is Ω(1/D). In addition, the probability that e /∈ Gi is bounded by

O(1/D).

Therefore, by applying ` independent repetitions, we get that each edge pair e, e′ has a good

iteration with high probability. In addition, by Chernoff bound, each edge e does not appear on

at most Õ(1) subgraphs.

Sampling Õ(D) subgraphs with a seed length Õ(1). So-far, we showed that a sampling of a

single subgraph Gj can be implemented with a random seed of ` = log n · poly(log log n) bits.

That is, the output sampled subgraph satisfies Eq. (5.7) with probability of Ω(1/D). Our goal

now is to sample ` = O(D log n) subgraphs G = {G1, . . . , G`} that satisfy the guarantee of

Theorem 19 using a seed of Õ(1).

We next show that it is sufficient for the PRG’s seeds used in the sampling of the Gi sub-

grpahs to be only O(log n)-wise independent rather than fully independent. This would imply

that all ` = O(D log n) subgraphs can be sampled with a seed of poly-logarithm length.

1To make this ID consistent, the ID of the lower-ID endpoint appears first in this concatenation.
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Definition 22 ([188, Definition 3.31]). For N,M, d ∈ N such that d ≤ N , a family of functions

H = h : [N ]→ [M ] is d-wise independent if for all distinct x1, x2, ..., xd ∈ [N ], the random

variablesH(x1), ..., H(xd) are independent and uniformly distributed in [M ] whenH is chosen

randomly fromH.

In [188] an explicit construction ofH is presented, with the following parameters.

Lemma 16 ([188, Corollary 3.34]). For every γ, β, d ∈ N, there is a family of d-wise indepen-

dent functions Hγ,r = h : {0, 1}γ → {0, 1}r such that choosing a random function from Hγ,r

takes d ·max{γ, r} random bits, and evaluating a function fromHγ,r takes time poly(γ, r, d).

Our construction is based on the family of d-wise independent functionsHγ,β of Lemma 16

with d = O(log n), γ = O(log n) and r = O(log n · log log3 n). By Lemma 16, choosing a

random function fromHγ,r can be done with a random seed of length a = O(log2 n · log log3 n).

Let S ∼ {0, 1}a be a random seed, and let hS be the random function chosen from Hγ,r using

S.

For every i ∈ {1, . . . , `}, the vertices will be using the r-length seed hs(i) ∈ {0, 1}r to

define the subgraph Gi as follows. The r-length seed hS(i) ∈ {0, 1}r is fed into the PRG

function PRG : {0, 1}r → {0, 1}m` of Lemma 15 where ` = O(log n). The m`-length bit

output vector y = PRG(hS(i)) is interpreted by the vertices as m blocks, where each block is of

length ` bits. Every edge (u, v) has an ID of sizeO(log n) bits IDu,v (w.l.o.g., ID(u) < ID(v)).

For every edge e = (u, v), the seed s is interpreted as follows:

e ∈ Gi iff all bits of the i-th block in y = PRG(hS(i)) are 1 where i = 2IDu,v . (5.8)

Using this shared seed S, each vertex u can decide locally whether each of its incident edges

belong to Gi. Importantly, this decision is consistent between the edge endpoints without using

any communication. The algorithm will repeat this for O(D log2 n) iterations. We next show

that when the Gi’s are defined based on Eq. (5.8) every tuple 〈s, v, {e, e′}〉 has a good iteration

w.h.p. We will use the following fact.

Fact 8. [Theorem 2.3 [20]] Let X1, . . . , Xn ∈ {0, 1} be 2k-wise random variables for some

k ∈ N≥2, and let X =
∑n

i=1Xi and µ = E[X]. It holds that Pr[|X − µ| ≥ A] ≤ c · ((2k · µ+

(2k)2)/A2)k for some positive constant c ≤ 8.

Lemma 17. Using a seed of Õ(1)-bits as explained above for τ = O(D log2 n) iterations, then

for every tuple 〈s, v, {e, e′}〉, there exists a good iteration (i.e., satisfying Eq. (5.7)) with high

probability.

Proof. Fix S ∼ {0, 1}a for a = O(log2 n · log log3 n) and a single iteration i. By the definition

of the d-wise independent hash function family Hβ,r, when choosing a function h ∈ Hβ,r with

a seed S ∼ {0, 1}a, all bits of hS(i) are uniformly distributed in {0, 1}r. Thus hS(i) ∼ {0, 1}r

and by applying the argument of Lemma 15 on the graph Gi (defined based on Eq. (5.8)), we
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get that the event of Eq. (5.7) holds with probability at least 10/D. We next show that w.h.p. at

least one of the τ = 20D log2 n iterations is good for 〈s, v, {e, e′}〉.
Let Xi be the indicator random variable for the event that Eq. (5.7) holds in iteration i

when using S ∼ {0, 1}a to define the sub-graph Gi (see Eq. (5.8)). Let X =
∑`

i=1Xi and

µ = ES∼{0,1}a [X]. By the linearity of expectation, µ ≥ 2 log2 n. By definition, the random

variables hS(1), . . . , hS(t) are 10 log n-wise independent. Since each Xi is a random variable

that depends only on the bits of hS(i), we get that the Xi’s variables are 10 log n-wise indepen-

dent. By using the concentration inequality of Fact 8 with k = 5 log n, we get that

Pr
[
|X − µ| > log2 n

]
≤ c · ((20 log3 n+ 100 log2 n)/ log4 n)logn ≤ c/n10 .

The claim holds by applying the union bound over all n2 pairs. The same argument holds for

the width as well.

This completes the proof of Theorem 19.

5.5.2 Improved Broadcast Algorithm for Expander Graphs

We next show that using a shared seed of O(log n) bits, all vertices can compute locally a

covering family with improved properties. This consequently leads to an improved broadcast

algorithm that is resilient against t adversarial edges, given that G is a φ-expander graph with

edge connectivity Ω(t log n/φ). Given a seed of O(log n) random bits, the computation of the

improved covering family is performed in 0 rounds of communication, but requires an expo-

nentially large local time computation at each vertex.

Lemma 18. LetG be an n-vertex φ-expander graph with edge connectivity Ω(t log n/φ). Given

a shared seed S ofO(log n) random bits, there is a 0-round algorithm for computing an (L, 2t)-

covering family G = {G1, . . . , G`} of ` = O(t · log n) subgraphs for L = O(log n/φ) where

properties (P1’) and (P2) of Lemma 13 hold high high probability. Given the seed S, each

vertex v can (locally) determine its incident edges in each Gi ∈ G. The local computation at

each vertex is exponential.

The proof of Lemma 18 follows by using the brute-force construction of PRGs.

Definition 23 (Computational Indistinguishability, Definition 7.1 in [188]). Random vari-

ables X and Y taking values in {0, 1}m are (r, ε) indistinguishable if for every nonuniform

algorithm T running in time at most r, we have |Pr[T (X) = 1]− Pr[T (Y ) = 1]| ≤ ε.

Definition 24 (PRGs for T -Time Algorithms, Definition 7.3 in [188]). A deterministic function

G : {0, 1}d → {0, 1}m is an (r, ε) pseudorandom generator (PRG) if: (1) d ≤ m and (2)

G(Ud) and Um are (r, ε) indistinguishable, where U` is a uniform sample of ` random bits for

` ∈ {d,m}.
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Using the probabilistic method, one can show that the family of polynomial time random-

ized algorithms can be simulated with a seed ofO(log n) random bits with a polynomially small

error.

Proposition 2 (Proposition 7.8 in [188]). For all m ∈ N and ε > 0, there exists a (non-explicit)

(m, ε) PRG PR : {0, 1}d → {0, 1}m with seed length d = O(logm+ log 1/ε).

We are now ready to complete the proof of Lemma 18.

Proof of Lemma 18. Given a seed S of logarithmic length d = O(log n), the vertices can locally

compute the PRG PR : {0, 1}d → {0, 1}m for m = poly(n), that ε-fools the sampling of the

covering family G from Lemma 13 for ε = 1/ log n. The poly(n) bits PR(S) consists of

N = poly(n) chunks, each chunk i is of size |G| · O(log n) which specifies the pseudorandom

coins for simulating the sampling of the i-th edge ei into each of the G’s subgraphs, where N is

the polynomial estimate of the vertices on the number of edges in the graph.

The proof of Lemma 11 follows from combining Lemma 18 and Theorem 17.
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6
General CONGEST Compilers against

Adversarial Edges

6.1 Introduction

As communication networks grow in size, they become increasingly vulnerable to failures and

byzantine attacks. It is therefore crucial to develop fault-tolerant distributed algorithms that

work correctly despite the existence of such failures, without knowing their location. The area

of fault-tolerant distributed computation has attracted a lot of attention over the years, especially

since the introduction of the byzantine agreement problem by Pease, Shostak and Lamport

[159, 109]. The vast majority of these algorithms, however, assume that the communication

graph is the complete graph [57, 58, 65, 34, 184, 169, 25, 170, 24, 63, 75, 69, 107, 162, 103,

59, 137, 92, 47, 105]. For the latter, one can provide time efficient algorithms for various

distributed tasks that can tolerate up to a constant fraction of corrupted edges and vertices

[57, 23, 25, 59]. Very little is known on the complexity of fault-tolerant computation for general

graph topologies. In a seminal work, Dolev [57] showed that any given graph can tolerate up to

f adversarial vertices iff it is (2f + 1) vertex-connected. Unfortunately, the existing distributed

algorithms for general (2f+1) connected graphs usually require a polynomial number of rounds

in the CONGEST model of distributed computing [164].

In this work, we present a general compiler that translates any given distributed algorithm

A (in the fault-free setting) into an equivalent algorithmA′ that performs the same computation
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in the presence of f adversarial edges. Our primary objective is to minimize the compilation
overhead, namely, the ratio between1 the round complexities of the algorithms A′ and A. We

take the gradual approach of fault-tolerant network design, and consider first the case of a single

adversarial edge, and later on the case of multiple adversarial edges. We note that, in general,

such compilers might not be obtained for adversarial vertices2 and thus, we focus on edges.

6.1.1 Model Definition and the State of the Art

We consider the adversarial CONGEST model, defined in Chapter 4, where we focus on (2f+1)

edge-connected graphs, which can tolerate up to f adversarial edges. The problem of devising

general round-by-round compilers in the adversarial CONGEST model boils down into the fol-

lowing distributed task:

Single round compilation in the adversarial CONGEST model: Given is a (2f + 1)

edge-connected graph G = (V,E) with a fixed set F ∗ ⊆ G of at most f adversarial edges.

LetM = {Mu→v | (u, v) ∈ E} be a collection of O(log n)-bit messages that are required

to be sent over (potentially) all graph edges. I.e., for each (directed) edge (u, v), the vertex

u has a designated O(log n)-bit message for v.

The single round compilation algorithm is required to exchange these messages in the

adversarial CONGEST model, such that at the end of the algorithm, each vertex v holds the

correct messageMu→v for each of its neighbors u, while ignoring all remaining (corrupted)

messages.

The main complexity measure is the round complexity of the single-round compilation algo-

rithm, which corresponds to the compilation overhead of the compiler. The compilation of

CONGEST algorithms under various adversarial settings has been recently studied by [155].

We next explain their methodology and discuss our contribution with respect to the state-of-

the-art.

The simulation methodology of [155]. Motivated by various applications for resilient dis-

tributed computing, Parter and Yogev [155] introduced the notion of low-congestion cycle cov-

ers as a basic communication backbone for reliable communication. Formally, a (c, d)-cycle

cover of a two edge-connected graph G is a collection of cycles in G in which each cycle is of

length at most d, and each edge participates in at least one cycle and at most c cycles. The qual-

ity of the cycle cover is measured by c + d. Using the beautiful result of Leighton, Maggs and

Rao [113] and the follow-up by Ghaffari [78], a (c, d)-cycle cover allows one to route O(log n)

bits of information on all cycles simultaneously in Õ(c+ d) CONGEST rounds.
1Note that we use the term compilation overhead to measure the time it takes to simulate a single fault-free

round of algorithm A in the adversarial setting. This should not be confused with the time required to set up the
compiler machinery (e.g., computing the cycle cover).

2Such compilers might still be obtained under the stronger KT2 model where vertices know their two-hop
neighbors.
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Low-congestion cycle covers with parameters c, d give raise to a simulation methodology

that transforms any distributed algorithm A and compile it into a resilient one; the compilation

overhead is g(c, d), for some function g. The resilient simulation exploits the fact that a cycle

covering an edge e = (u, v) provides two-edge-disjoint paths for exchanging messages from u

to v. Parter and Yogev [155] showed that any n-vertex two edge-connected graph with diameter

D has a (c, d)-cycle covers with c = O(1) and d = Õ(D). These bounds are existentially tight.

[156, 157] also presented an r-round CONGEST algorithm for computing (c, d) cycles covers

for r, d = Ô(D) and c = Ô(1).

Our simulation methodology in the adversarial CONGEST model extends the work of [155]

in several aspects. First, the cycle covers of [155] are limited to handle at most one edge

corruption. To accommodate a large number of adversarial edges, we introduce the notion of

fault-tolerant (FT) cycle cover which extends low-congestion cycle cover to handle multiple

adversarial edges. Informally, a FT cycle cover with parameters c, d is a cycle collection C that

covers each edge e by multiple cycles (instead of one). For every sequence of at most f faults

F , there is a cycle C in C that covers1 e without visiting any of the edges in F \ {e}. All cycles

in C are required to be of length at most d, and with an overlap of at most c, to allow an efficient

information exchange over all these cycles in parallel.

A key limitation of the compilers provided by [155] is that they assume the cycle covers

themselves are computed in a (fault-free) preprocessing phase. These cycles are then used by

the compilers in the adversarial CONGEST model. Our main goal in this work is to omit this

assumption and provide efficient algorithms for computing FT cycle covers in the adversarial

CONGEST model. The computation of these cycles in the presence of the adversarial edges

is quite intricate. The key challenge is in computing cycles for covering the adversarial edges

themselves. The latter task requires some coordination between the endpoints of the adversarial

edges, which seems to be quite hard to achieve. Note that the covering of the adversarial edges

by cycles is crucial for the compilation task to reliably simulate the message exchange over these

edges in the given fault-free algorithm A. Upon computing a FT cycle cover with parameters

c, d, we then present a round-by-round compiler whose overhead depends on the c, d parameters.

To optimize the round overhead, we exploit (our modified) FT cycle cover in a somewhat more

delicate manner compared to that of [155], leading to an improvement by a factor of O(D2)

rounds for a single adversarial edge.

6.1.2 Contributions and Key Results

We consider the design of compilers that can simulate every given distributed algorithm in the

adversarial CONGEST model. The compilers are based on a new notion of FT cycle cover, an

extension of the low-congestion cycle cover [156] to the adversarial setting. We also provide

1A stricter requirement is to cover each edge by f edge-disjoint cycles. However, this definition leads to a
larger compilation overhead compared to the one obtained with our definition.
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a new method to compile an algorithm given the FT cycle cover. We start by describing our

contribution w.r.t the combinatorial characterization of FT cycle covers, and then consider the

computational aspects in the adversarial CONGEST model.

6.1.2.1 Combinatorial Properties of Fault Tolerant Cycle Covers

We provide first the standard definition of low congestion cycle covers of [155], and then intro-

duce their extension to the fault-tolerant setting. A (c, d) low-congestion cycle cover of a two

edge-connected graph G is a collection of cycles in G in which (i) each cycle is of length at

most d (dilation), and (ii) each edge participates in at least one cycle (covering), and at most c

cycles (congestion). The quality of the cycle cover is measured by c + d. In order to provide

reliable computation in the presence of f adversarial edges F ∗, it is desired to cover each edge

by multiple short cycles of small overlap. This motivates the following definition.

Definition 25 (f -FT Cycle Cover). Given an (f + 1) edge-connected graph G an f -FT cycle

cover with parameters (c, d) is a collection of cycles C such that for any set E ′ ⊆ E of size

(f − 1) and every edge e ∈ E, there exists a cycle C ∈ C such that C ∩ (E ′ ∪ {e}) = {e}. The

length of every cycle in C is at most d, and each edge participates in at most c cycles.

In other words, the f -FT cycle cover C provides for each edge e = (u, v) a subgraph G′e
(consisting of all cycles covering e), such that the minimum u-v cut in G′e is at least f + 1.

Using the FT sampling technique from [193, 56], in the full paper [88] we show the following.

Lemma 19 (Upper bound on FT Cycle-Covers). For every (f + 1) edge-connected graph G

with diameter D, there is a randomized construction for computing f -FT cycle cover C with

parameters (c, d) where c = Ô(f(5fD)f ) and d = Ô(fD).

One of our technical contributions is an almost matching lower bound for the quality of FT

cycle covers. This is done by a careful analysis of the congestion and dilation parameters of

replacement paths in faulty graphs. We believe that the following graph theoretical theorem

should be of independent interest in the context of fault-tolerant network design and distributed

minimum cut computation.

Theorem 21 (Lower Bound on the Quality of FT Cycle Covers). For every f ≥ 1, D ≥ f and

n = ω(Df ), there exists an n-vertex (f + 1) edge-connected graph G∗ = (V,E) with diameter

D, such that any f -FT cycle cover with parameters c, d must satisfy that c+ d = (D/f)Ω(f).

This theorem provides an explanation for the compilation overhead of DΩ(f) of our com-

pilers. It also provides an explanation for the natural barrier of DΩ(f) rounds for handling f

adversarial edges in the distributed setting. Specifically, the lower bound implies that there

exists at least one pair of vertices u, v in the graph G∗ such that for any selection of (f + 1)

edge-disjoint u-v paths P in G∗, the longest path in P must have a length of (D/f)Ω(f) edges.
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Theorem 21 also proves that the collection of all V × V × Ef replacement paths1 avoiding f

faults, obtained by the FT sampling technique, are optimal in terms of their congestion + dila-

tion bounds. It also shows that the analysis of the distributed minimum cut algorithm of [152]

is nearly optimal2.

A relaxed notion of FT cycle covers. In a setting where a fixed set of edges F ∗ are adversarial

for |F ∗| = f , it might not be possible to compute a (2f)-FT cycle cover as defined by Defi-

nition 25. This is despite the fact that we require the edge connectivity of the graph to be at

least (2f + 1). To see this, consider the scenario where the adversarial edges F ∗ are completely

idle throughout the distributed computation. In such a case, the communication graph becomes

G\F ∗, which is no longer guaranteed to have an edge-connectivity of (2f+1). For this reason,

we consider a more relaxed notion of FT cycle covers, that on the one hand, can be computed

in the adversarial setting, and on the other hand, is strong enough for our compilers.

Definition 26 ((f, F ∗)-FT Cycle Cover). Given an (2f + 1) edge-connected graph G, and a

fixed set of unknown adversarial edges F ∗ ⊆ E of size at most f , an (f, F ∗)-FT cycle cover

with parameters (c, d) is a collection of cycles C such that for every edge e ∈ E (possibly

e ∈ F ∗), and every set E ′ ⊆ E of size |E ′| ≤ f − 1, there exists a cycle C ∈ C such that

C ∩ (E ′ ∪ F ∗ ∪ {e}) = {e}. The length of each cycle is bounded by d, and every edge appears

on at most c cycles in C.

Note that for every F ⊆ E, |F | ≤ f , an (f, F )-FT cycle cover contains an f -FT cycle

cover, and therefore the lower bound of Theorem 21 also holds for (f, F ∗)-FT cycle covers.

When F ∗ = {e′}, we slightly abuse notation and simply write (f, e′)-FT cycle cover. Our FT

cycle covers should be useful for many other adversarial settings. Specifically, they provide an

immediate extension of the compilers of [155] to handle adversaries that corrupt multiple edges,

such as eavesdroppers [155] and semi-honest adversaries [156].

We next turn to consider the computational aspects of FT cycle covers, and their applica-

tions. In the distributed setting, we assume throughout that the vertices of the graph obtain a

linear estimate3 on the diameter of the graph D. This assumption (also applied in, e.g., [38]) is

needed as the compilation overhead is a function of D.

6.1.2.2 Handling a Single Adversarial Edge

We start by considering an adversarial setting with a single fixed unknown adversarial edge

e′. At the heart of the compiler lies an efficient construction of a (1, e′)-FT cycle cover in the

adversarial CONGEST model.
1A replacement path is a shortest path in some graph G \ F .
2This algorithm computes the minimum cut by computing for each vertex v the collection of all replacement

paths w.r.t a fixed source vertex s.
3This assumption can be omitted using the broadcast algorithms of Chapter 5, in the case where the vertices

have a designated marked leader.
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Theorem 22 ((1, e′)-FT Cycle Cover). Consider a 3 edge-connected n-vertex graph G of di-

ameter D, and a fixed adversarial edge e′.

• There is an r-round deterministic algorithm for computing a (1, e′)-FT cycle cover with

congestion and dilation c = Ô(D2), d = Ô(D), and r = Ô(D4) in the adversarial

CONGEST model.

• There is an r-round randomized algorithm for computing (1, e′)-FT cycle cover, w.h.p.,

with congestion and dilation c, d = Ô(D) and r = Ô(D2) in the adversarial CONGEST

model.

In the distributed output format of the (1, e′)-FT cycle cover computation, the endpoints of

every edge e = (u, v) hold the unique identifiers of all the cycles Ce covering e, as well as, a

full description of these cycles. The key challenge in proving Theorem 22 is in covering the

adversarial edge e′. For that purpose, we provide a delicate cycle verification procedure that

allows the endpoints of each edge e = (u, v) to correctly identify if e is currently covered by

a (legal) cycle. This verification is robust to the behavior of the adversarial edge. Using these

cycle covers, we obtain general compilers against e′.

Theorem 23. (Compiler against a Single Adversarial Edge) Given is a 3 edge-connected D–

diameter graph G with a fixed adversarial edge e′, and a (1, e′)-FT cycle cover C with param-

eters (d, c) for G (e.g., as obtained by Theorem 22). Then any distributed algorithm A can be

compiled into an equivalent algorithm A′ against e′ with an overhead of O(c · d2) rounds (in

the adversarial CONGEST model).

This improves the compilation overhead of Parter and Yogev [155] by a factor of Õ(D2)

rounds. The compilers of [155] are based on exchanging the Mu→v messages of Alg. A along 3

edge-disjoint u-v paths. In our compilation scheme, instead of insisting on edge-disjoint paths,

the messages are exchanged over a collection u-v paths of a sufficiently large flow. This leads

to improvement in the compilation overhead.

6.1.2.3 Handling Multiple Adversarial Edges

We next consider (2f + 1) edge-connected graphs of diameter D with a fixed set F ∗ ⊆ E of

adversarial edges, |F ∗| ≤ f . To handle f adversarial edges F ∗ in (2f + 1) edge-connected

graphs, we use the notion of (f, F ∗)-FT cycle covers. Our first contribution is the construction

of (f, F ∗)-FT cycle covers in the adversarial CONGEST model. Due to technicalities that arise

in this adversarial setting, our final output contains the desired cycles required by (f, F ∗)-FT

cycle cover, but might include, in addition, also truncated paths which are quite “harmless” in

the compilation process later on. Formally, our distributed construction computes a (f, F ∗)-

FT cycle cover* where the asterisk indicates the possible existence of truncated paths in the

distributed output.
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Definition 27 ((f, F ∗)-FT Cycle Cover*). Given a (2f+1) edge-connected graphG and a fixed

set of adversarial edges F ∗ ⊆ E where |F ∗| ≤ f , a (f, F ∗)-FT cycle cover* with parameters

(c, d), is a collection of cycles and paths C such that C contains a (f, F ∗)-FT cycle cover for G.

The length of each cycle and path in C is at most d and every edge e ∈ E appears in at most c

cycles and paths.

Theorem 24 ((f, F ∗)-FT Cycle Cover*). Let G be a (2f + 1) edge-connected graph G of di-

ameterD, and a fixed set of f adversarial edges F ∗. Then, there exists an r-round deterministic

algorithm, in the adversarial CONGEST model for computing a (f, F ∗)-FT cycle cover* for G,

with parameters d = Ô(f ·D) and r, c = Ô((Df log n)O(f)).

Note that by the lower bound result of Theorem 21, the quality of the FT cycle covers must

be (D/f)Ω(f).

Given a (f, F ∗)-FT cycle cover* for a graph G, we extend the general compiler of Theo-

rem 23 to handle f adversarial edges.

Theorem 25 (Compilers against f Adversarial Edges). Given a (2f + 1) edge-connected D–

diameter graphG with a fixed set of f adversarial edges F ∗, and a (f, F ∗)-FT cycle cover* with

parameters (d, c) for G. Then any distributed algorithm A can be compiled into an equivalent

algorithm A′ against F ∗, with a compilation overhead of O(c · d3) rounds.

The high level intuitive idea of our compiler is as follows. Fix a round i of Alg. A, and

consider the message Mu→v sent over the edge (u, v) in that round. Our compiler lets u send

the message Mu→v through all cycles covering e in the (f, F ∗)-FT cycle cover*. The vertex v

can then recover Mu→v by exploiting the following property. On the one hand, the (f, F ∗)-FT

cycle cover* covers e by sufficiently many cycles that avoid F ∗ \{e}. Consequently, the correct

message Mu→v is received by v over a path collection with a u-v flow1 of at least f + 1. On the

other hand, any corrupted message M ′ 6= Mu→v must be propagated along a walk that contains

at least one adversarial edge. Consequently, a corrupted message M ′ is propagated over a walk

collection with a u-v flow of at most f .

6.1.3 Basic Tools

We consider the adversarial CONGEST model, defined in Chapter 4. Our distributed algorithms

use a graph structures called neighborhood covers defined as follows.

Definition 28 (Neighborhood Covers [13]). The r-neighborhood cover of the graph G is a

collection of vertex subsets, denoted as, clustersN = {S1, . . . , S`} where Si ⊆ V such that: (i)

every vertex v has a cluster that contains its entire r-radius neighborhood inG, (ii) the diameter

of each G[Si] is O(r logc n) for some constant c, and (iii) every vertex belongs to Õ(1) clusters

in N .
1To formalize this argument, we provide a formal definition for the cut value of a u-v walk collection.
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We use the deterministic construction of neighborhood covers by Rohzon and Ghaffari [168] .

Theorem 26 (Corollary 3.5 [168]). There is a deterministic distributed algorithm that for any

radius r ≥ 1, computes an r-neighborhood cover N within Õ(r) CONGEST rounds.

Low-congestion cycle covers. The construction of FT cycle covers is based on the distributed

construction of (c, d) cycle covers in the standard CONGEST model. In particular, we use

the construction from [156, 155] that covers each edge e = (u, v) by a cycle Ce such that

|Ce| = Õ(distG\{e}(u, v)).

Fact 9 ([156, 155]). There is a randomized algorithm ComputeCycCov(G,D′) that for any n-

vertex input graph G = (V,E) and an input parameter D′, computes, w.h.p., a cycle collection

C with the following properties: (1) every edge e ∈ E that lies on a cycle of length at most D′

in G is covered by a cycle in C of length Ô(D′), and (2) each edge appears on Ô(1) cycles.

Alg. ComputeCycCov(G,D′) runs in Ô(D′) rounds. In the output format, each vertex knows

the edges of the cycles that cover each of its incident edges.

Note that for Alg. ComputeCycCov does not require the graph G to be connected. This

will be important in our context. This algorithm can also be made deterministic using the

neighborhood covers of Theorem 26, see the full paper [88] for the proof of the following.

Observation 11. The algorithm ComputeCycCov(Gi, D
′) of Fact 9 can be made deterministic

using the neighborhood covering algorithm of Theorem 26. Additionally, in the output format of

the algorithm, each vertex u knows a Ô(1)-bit unique identifier for each of the cycles it belongs

to, as well as a full description of the cycle, obtained from both directions.

Leader election. The broadcast algorithm of Theorem 12 (Chapter 5) implies a leader election

algorithm. The proof of the following claim is given in the full paper [88].

Claim 31 (Byzantine Leader Election). Given a D–diameter, 3 edge-connected graph G and

an adversarial edge e′, assuming a linear upper bound D′ = cD on the diameter (for some

constant c ≥ 1), there exists a randomized algorithm AdvBroadcast that w.h.p elects a single

leader known to all vertices in the graph within Õ(D2) rounds.

6.2 Compilers against a Single Adversarial Edge

We first describe the construction of (1, e′)-FT cycle covers where e′ is the adversarial edge in

the graph. Then, we describe how to compile a single round using these cycles.

6.2.1 (1, e′)-FT Cycle Cover

This section is mainly devoted to showing the following key lemma that computes a (1, e′)-FT

cycle cover, given a locally known covering family.
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Lemma 20. Given is a 3 edge-connected graph G, with a fixed unknown adversarial edge e′.

Let L be an integer satisfying that for every edge e = (u, v) it holds that distG\{e,e′}(u, v) ≤ L.

Assuming that all vertices locally know a (L, 1) covering family G of size `, there exists a

deterministic algorithm ComputeOneFTCycCov for computing a (1, e′) FT-cycle cover C with

parameters c = Ô(`), d = Ô(L) within Ô(L2 · `) rounds.

Since the computation of the (L, 1) covering family is straightforward using known tools,

we focus on proving Lemma 20. As a warm-up, we describe the construction assuming a

reliable setting (with no adversarial edges). Then, we handle the real challenge of the (1, e′)-FT

cycle cover computation in the presence of an adversarial edge.

Warm-up: (1, e′)-FT cycle covers in a reliable communication graph. The construction

is based on applying the cycle cover algorithm of [156] on every subgraph Gi in the cover-

ing family G. Specifically, given a locally known covering family G = {G1, . . . , G`}, the

algorithm proceeds in ` iterations. In each iteration i it applies the cycle cover algorithm

ComputeCycCov(Gi, L) from Obs. 11 on the graph Gi with a diameter estimation L, result-

ing in a cycle collection Ci. The final cycle collection is given by C =
⋃`
i=1 Ci, that is, the union

of all cycles computed in the ` iterations. We next analyze the construction.

Correctness. The round complexity, the cycle length, and the edge congestion bounds follow

immediately by the construction. It remains to show that the cycle collection C is indeed a

(1, e′)-FT cycle cover. To see this, consider a fixed pair of edges e = (u, v), e′. We will show

that C contains a cycle Ce,e′ that contains e and does not contain e′. An iteration i is defined to

be good for the edge pair e, e′ if

e′ /∈ Gi , e ∈ Gi and distGi\{e}(u, v) ≤ L .

Since, distG\{e,e′}(u, v) ≤ L, due to property (P1) of G, there exists a good iteration i∗ for every

pair e, e′. We next show that e is successfully covered in iteration i∗ by some cycle Ce.

By the properties of Alg. ComputeCycCov, in iteration i∗ the edge e is covered by a cycle

C of length Ô(L). In addition, as e′ /∈ Gi∗ this cycle does not contain e′ as required.

Alg. ComputeOneFTCycCov (Proof of Lemma 20). Given is a locally known covering family

G = {G1, . . . , G`}. The algorithm works in ` iterations, where in iteration i it performs the

computation over the subgraph Gi. Since G is locally known, every vertex knows its incident

edges in Gi, and ignores messages from other edges in that iteration. Every iteration i consists

of two steps. In the first step, the vertices apply Alg. ComputeCycCov(Gi, L) of Obs. 11

over the graph Gi with diameter estimate L. This results in a cycle collection C ′i(u) for every

vertex u. In the output format of Alg. ComputeCycCov, every cycle in C ′i(u) is presented by a

tuple (ID(C), C), where ID(C) is the unique identifier of the cycle of size Ô(1) bits, and C

is the collection of the cycle edges1. Since e′ might be in Gi, the cycles of C ′i(u) can be totally

corrupted.
1Recall that in Alg. ComputeCycCov(Gi, L), each vertex receives the cycle description C from both di-
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In the second step of iteration i, the vertices apply a verification procedure for their cycles

in C ′i(u). Only verified cycles will then be added to the set of cycles Ci(u). In the analysis

section, we show that for every reliable edge e = (u, v) 6= e′, there exists at least one cycle in

C(u) =
⋃`
i Ci(u) that covers e and does not contain e′. The third step of the algorithm handles

the remaining adversarial edge, in case needed. We next elaborate on these steps in more detail.

We focus on iteration i where the vertices communicate over the graph Gi ∈ G.

Step (1) of iteration i: Cycle cover computation. The (fault-free) cycle cover algorithm

ComputeCycCov of Obs. 11 is applied over the subgraph Gi ∈ G, with parameter L. Since the

graph Gi is locally known, each vertex can verify which of its incident edges lie on Gi and ig-

nore the messages from the remaining edges. During the execution of ComputeCycCov(Gi, L),

if a vertex u receives an illegal message, or different cycle descriptions with the same cycle ID,

these messages are ignored, as well as future messages in that iteration. At the end of the exe-

cution of ComputeCycCov(Gi, L), each vertex u performs the following verification step on its

output cycle set C ′i(u). The goal of this verification is to ensure each cycle in C ′i(u) corresponds

to a legal cycle.

Step (2) of iteration i: Cycle verification. First, each vertex u performs a local inspection of

its cycles in C ′i(u), and declares the iteration to be faulty if C ′i(u) contains at least one of the

following:
1. A cycle of length ω̂(D);

2. An edge appearing in ω̂(1) cycles in C ′i(u);

3. A partial cycle (i.e., a walk rather than a cycle);

4. Inconsistency in a cycle description (ID(C), C) ∈ C ′i(u) as obtained through the two

neighbors of u on C.

In the case where C ′i(u) is found to be faulty, u sets Ci(u) = ∅, and will remain silent throughout

this verification step. We will call such a vertex an inactive vertex. A vertex whose local

inspection is successful is called active.

We now describe the global verification procedure for an active vertex u. The verification

step is performed in super-rounds in the following manner. Each super-round consists of c =

Ô(1) rounds, which sets the upper bound on the number of cycles that an edge (u, v) participates

in. A single super-round has sufficient bandwidth to exchange a single message through an edge

(u, v) for each of the cycles on which (u, v) lies. We then explicitly enforce that in each super-

round, each vertex u sends over an edge (u, v) at most one message per cycle (ID(C), C) ∈
C ′i(u) for which (u, v) ∈ C.

For a cycle (ID(C), C) ∈ C ′i(u), let vC be the vertex with largest ID in the cycle description

C obtained by u during Alg. ComputeCycCov(Gi, L). We note that the cycle description C is

rections, i.e., from its two neighbors on C. In case a vertex u obtained distinct cycle descriptions from its two
neighbors, it omits the cycle from its cycle collection C′i(u).
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not necessarily correct, and in particular, it could be that (ID(C), C) /∈ C ′i(vC). For each cycle

(ID(C), C) ∈ C ′i(u) such that u = vC (the cycle’s leader), it initiates the following verification

steps.

(2.1) A leader vC of a cycle (ID(C), C) ∈ C ′i(vC) sends the verification message ver(C) =

(ID(C), ID(vC), ver) along its two incident edges on this cycle (i.e., in the clockwise

and counter-clockwise directions).

(2.2) The verification messages are then propagated over the cycles for R = Ô(L) super-

rounds, where Ô(L) is the upper bound on the maximal cycle length. Upon receiving a

verification message ver(C) = (ID(C), ID(vC), ver), an active vertex u sends ver(C)

to a neighbor w ∈ N(u) if the following conditions hold: (1) (ID(C), Cu) ∈ C ′i(u) for

some cycle Cu, (2) vC is the vertex with the highest ID in Cu, (3) w is a neighbor of u in

Cu, and (4) u received the message ver(C) from its second neighbor in the cycle Cu.

(2.3) A leader vC of a cycle C such that (ID(C), C) ∈ Ci(vC), which did not receive the ver-

ification message ver(C) from both its neighbors on C within R super-rounds, initiates

a cancellation message, cancel(C) = (ID(C), ID(vC), cancel), and sends it to both

its neighbors in C. This indicates to the vertices on this cycle that the cycle should be

omitted from their cycle collection.

(2.4) The cancellation messages cancel(C) are propagated over the cycleC forR super-rounds

in the following manner. Let τi be the first super-round of Step (2.3). In this super-round,

vC may start propagating the message cancel(C) (if the conditions of (2.3) hold). Note,

however, that the cancellation messages might also originate at the adversarial edge e′.

Step (2.4) handles the latter scenario by augmenting the cancellation messages cancel(C)

with distance information. For every vertex u let d1
u, d

2
u be the u-vC distance on C along

the first (second) u-vC path in C. Note that u can locally compute d1
u, d

2
u using the cycle

description of C. A vertex u upon receiving a cancel(C) message from its neighbor v on

C acts as follows. Let dju be the length of the vC-u path on C that passed through v. Then,

if the message cancel(C) is received at u from v in super-round rj = τi + dju, u accepts

the cancellation message and sends it to its other neighbor on C. All other cancellation

messages received by u in later or prior super-rounds are dropped.

(2.5) A leader vC of a cycle (ID(C), C) ∈ Ci(vC) that received the message cancel(C) which

it did not initiate from only one direction (i.e., from exactly one of its neighbors on C),

broadcasts a cancellation message cancel(i), i.e., canceling iteration i, to all the vertices

in the graph by using the broadcast algorithm of Theorem 12 (Chapter 5) over the graphG.

Since there is only one broadcast message cancel(i) to be sent on that iteration, possibly

by many cycle leaders, this can be done in the same time as a single broadcast operation

(i.e., within Õ(D2) rounds).
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(2.6) A vertex that accepts a cancellation message cancel(i) via the broadcast algorithm, omits

all cycles obtained in this iteration i.

At the end of the i-th iteration, every vertex u defines a verified cycle set Ci(u). A cycle

(ID(C), C) ∈ C ′i(u) is defined as verified by u if the following conditions hold (i) it received a

verification message ver(C) from both neighbors inC, (ii) any cancellation message cancel(C)

received by u has been dropped, and (iii) u did not accept a cancellation message cancel(i) via

the broadcast algorithm in Step (2.5). Every verified cycle (ID(C), C) ∈ C ′i(u) is added to

the set Ci(u). Thus, Ci(u) consists of all verified cycles passing through u computed in iter-

ation i. This concludes the description of the i-th iteration. The output of each vertex u is

C(u) =
⋃`
i=1 Ci(u).

Step (3): Covering the adversarial edge. For a vertex u, an incident edge (u, v) is considered

by u as handled if there exists a tuple (ID(C), C) ∈ C(u) such that (u, v) ∈ C. The goal of the

third and final step is to cover the remaining unhandled edges. Every vertex u and an unhandled

edge (u, v), broadcasts the edge (u, v) using the broadcast algorithm of Theorem 12. In the

analysis section, we show that if there is an unhandled edge, then it must be the adversarial

edge. The reason for broadcasting the edge (u, v) by its endpoints is to prevent the adversarial

edge from initiating this step (despite the fact that all edges are covered). To cover (u, v), the

endpoint with the larger identifier, say u, initiates a construction of a BFS tree T rooted at u in

G \ {(u, v)}. Within O(L) rounds, u and v learn the u-v tree path P . Then the cycle covering

(u, v) is given by C = (v, u) ◦ P . The cycle (ID(C), C) is then1 added to the cycle collection

C(w) of every w ∈ C.

Correctness. We begin with showing that the tuples {C(u)}u∈V computed in Step (2) induce

legal cycles in G. That is, for every iteration i, a vertex u ∈ V , and every tuple (ID(C), C) ∈
Ci(u), we show thatC is a cycle inG and (ID(C), C) ∈ Ci(w) for everyw ∈ C. As we will see,

the fact that the output of the algorithm induces (real) cycles will play a critical role in showing

the adversarial edge is covered by a short cycle. We start with the following observation.

Observation 12. Any maximal walk along which a message ver(C ′) = (ID(C ′), ID(vC′), ver)

is propagated towards some vertex w, either starts at vC′ or at the adversarial edge e′. In

addition, the walk must be a simple path.

Proof. Since the message ver(C ′) contains the identifier of the vertex vC′ , by Step (2.1) of the

verification step, no other vertex but vC′ initiates the verification message ver(C ′). Hence, we

can conclude that if the walk is not initiated by vC′ , it is initiated by the adversarial edge e′. Let

P be the maximal walk along a message ver(C ′) is propagated towards w. We next show P is

a simple path. Assume by contraction there exists a vertex v ∈ P with degree at least three in

1The ID of the cycleC can be obtained by appending the maximum ID vertex onC with a special tag indicating
that the cycle is added in Step (3).
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P . This contradicts Step (2.2), as for every vertex v, the number of neighbors in N(v) which

communicate the message ver(C ′) with v is at most two.

Simple cycles. Recall that the adversarial edge is denoted by e′ = (v1, v2). A path P is denoted

as reliable if it consists of only reliable edges (i.e., e′ /∈ P ). For an a ; b directed path P ,

we denote the inverse path i.e., going from b to a, by P . Fix an iteration i, and consider a

vertex u∗ ∈ V , and a tuple (ID(C), C) ∈ Ci(u∗). Since (ID(C), C) ∈ Ci(u∗), in Step (2)

the vertex u∗ received the verification message ver(C) = (ID(C), ID(vC), ver) from both

neighbors on C denoted as w1 and w2, where vC is the vertex with the highest ID in C. Let

P1 = [u′1, . . . , u
′
k′ = u∗] and P2 = [u1, . . . , uk = u∗] be the maximal directed walks on which

the message ver(C) = (ID(C), ID(vC), ver) arrived to u∗. Let Ĉ = P1 ◦ P ′2, where P ′2 = P2

if u1 6= v1, v2, and P ′2 = [u2, . . . , uk] otherwise. That is, if both P1 and P2 start with the

adversarial edge e′, then e′ in included in Ĉ only once.

Our proof structure is as follows. We first show that Ĉ is a simple cycle. Then we show that

Ĉ = C and that in addition, every vertex w ∈ C, includes (ID(C), C) in the collection of its

verified cycles Ci(w). Towards that goal, we begin with the following observation.

Observation 13. Let Q1 = [a1, a2, . . . , a` = w] and Q2 = [b1, b2, . . . , bk = w] be two walks

along which a message ver(C ′) = (ID(C ′), ID(vC′), ver) is propagated. Then if a1 = b1 and

a2 = b2, it holds that Q1 = Q2.

Proof. We show that for every i ≥ 1, ai = bi by induction on i. For i = 1, 2, the claim follows

from the assumption that a1 = b1 and a2 = b2. Assume that the claim holds for i ≥ 2 and

consider the vertices ai+1, bi+1. By the induction assumption, ai = bi. By the description of the

walks Q1 and Q2, the vertex w = ai = bi sent the message ver(C) received from ai−1 to both

ai+1 and bi+1. By Step (2.2), w sends the message ver(C) received from ai−1 to exactly one

neighbor i.e., its second neighbor on the cycle Cw, where Cw is the unique cycle satisfying that

(ID(C), Cw) ∈ C ′i(w). This implies that ai+1 = bi+1.

Claim 32. Ĉ is a simple cycle.

Proof. By the definition of P1 and P2, every vertex w ∈ Ĉ sent the message ver(C) =

(ID(C), vC , ver) towards u∗. Therefore, all vertices in P1 and P2 are active at the beginning of

the verification step, and according to Step (2.2) for every w ∈ Ĉ, there exists a unique cycle,

denoted as Cw, such that (ID(C), Cw) ∈ C ′i(w). We start with showing that Ĉ is a cycle. By

Obs. 12, we consider the following cases.

Case P1 and P2 start with vC . In this case Ĉ forms a cycle.

Case P1 and P2 start with e′. Without loss of generality, assume that P1 starts with the (di-

rected) edge (v1, v2). Assume toward contradiction that P2 starts with (v1, v2) as well. By
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Obs. 13, it then holds that P1 = P2 and w1 = w2, leading to a contradiction. Therefore P1 and

P2 use e′ in opposite directions, concluding that Ĉ is a cycle.

Case P1 starts with vC and P2 starts with the adversarial edge e′. We show that this case

cannot occur. Assume without loss of generality that the path P2 starts with the directed edge

(v1, v2). We divide the analysis to two sub-cases.

Subcase e′ /∈ P1. As P1 is a reliable path and every vertex w ∈ P1 sent the message ver(C)

towards u∗, it follows that the cycle description u∗ received from its neighbor on P1 (i.e, from

u′k′−1) during Alg. ComputeCycCov, is of the form Q1 ◦ P1. Similarly, as all vertices on

P2[v2, u
∗] are reliable, the cycle description u∗ received from its neighbor on P2 (i.e, from

uk−1), is of the form Q2 ◦ P2. Since u∗ is active at the beginning of the verification step, it

follow that C = Q1 ◦P1 = Q2 ◦P2, and therefore C = P1 ◦P3 ◦P2 for some simple vC-v1 path

P3. Moreover, since the path P1◦P3 is reliable, we can conclude that every w ∈ P1◦P3 received

the path P1 ◦ P3 as part of the cycle with identifier ID(C), obtained by Alg. ComputeCycCov.

Next, since (ID(C), C) ∈ Ci(u), the vertex u∗ did not receive a cancellation message

cancel(C) from vC over the reliable path P1. As P1 is a reliable path, all vertices on P1 holds

the correct distance from vC , and therefore we can conclude that vC did not initiate a cancel-

lation message. Hence, according to Step (2.3), vC received the message ver(C) from both its

neighbors on the cycle - its neighbor in P1 and its neighbor in P3.

Hence, according to Steps (2.1) and (2.2), the message ver(C) propagated over the path

P3 towards v1. As a result, during Step (2) the message ver(C) is received by u∗ over the

concatenated path P3 ◦ P2, in contradiction to the maximality of P2. See Fig. 6.1(a) for an

illustration.

Subcase e′ ∈ P1. First, assume that (v1, v2) ∈ P1. Since P2 starts with the same edge (v1, v2),

by Obs. 13 it holds that P1[v1, u] = P2. This contradicts the assumption that u∗ received ver(C)

from two different neighbors over P1 and P2.

Next, assume that P1 contains the directed edge (v2, v1). Let w ∈ N(v2) be the neighbor

of v2 such that w and v1 are the neighbors of v2 obtained by Alg. ComputeCycCov. As v2

communicates the message ver(C) only with its two neighbors in the cycle (i.e., v1 and w),

P2 starts with the sub-path [v1, v2, w] ⊆ P2, and P1 contains the reveres sub-path [w, v2, v1] ⊆
P1. As a result, by Obs. 13 it follows that P2 = P1[v1, u

∗]. In particular, in holds that u∗ ∈
P1[vC , v1], leading to a contradiction, as P1 is a simple vC-u∗ path. See Fig. 6.1(b) for an

illustration.

Finally, we show that Ĉ is also simple. Assume toward contradiction that Ĉ is not simple.

Let v be the closest vertex to u∗ on Ĉ such that v ∈ P1 ∩ P2 \ {vC , u∗}. Note that because

P1 and P2 are simple paths, and P1 6= P2, if Ĉ is not simple there exists such a vertex v.

Since u∗ received the message ver(C) from two different neighbors w1, w2, it follows that

P1[v, u] 6= P2[v, u]. As we choose v to be the closest vertex to u∗ such that v ∈ P1∩P2\{vC , u∗},
we conclude that v has two different neighbors in P1 and P2 denoted as a1, a2. Additionally, v
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received the message ver(C) from a different vertex a3 over the path P1. This contradicts Step

(2.2), as the number of neighbors in N(v) that send the message ver(C) to v is at most two.

(a)

𝒖

𝒗𝑪

𝒆′

𝑷𝟐

𝑷𝟏 𝒗𝟐

𝒗𝟏

𝑷𝟑

𝒂

𝒃

(b)

𝒗𝑪

𝒆′

𝑷𝟐

𝑷𝟏 𝒗𝟏

𝒖

𝒗𝟐

𝒘

Figure 6.1: Proof of Claim 32: Illustrations of the case where P1 (dotted red) starts with vC , and P2

(simple line green) starts with the adversarial edge (v1, v2). Fig. (a) illustrates the case where e′ /∈ P1.

Since u added the cycle to Ci(u), vC did not send a cancellation message cancel(C), and vC received

the message ver(C) from an additional path P3 (shown in dashed). In this case, the message ver(C)

propagated over the path P3 ◦ P2 towards u, in contradiction to the maximality of P2. Fig. (b) illustrates

the case where e′ ∈ P1. As P1 6= P2 the path P1 contains the directed edge (v2, v1). Since v2 send (or

receive) the message ver(C) only with its two neighbors v1, w on the cycle Cv2 , it holds that P1[u, v1] =

P2, in contradiction to the assumption that P1 is a simple vC-u path.

Claim 33. At the end of the first step, it holds that (ID(C), Ĉ) ∈ C ′i(w) for every w ∈ Ĉ. In

particular, it holds that Ĉ = C.

Proof. By Claim 32, Ĉ is a simple cycle. If e′ /∈ Ĉ all vertices obtain the correct cycle de-

scription, and the claim follows. Next assume e′ ∈ Ĉ, and let w ∈ Ĉ. Recall that in Alg.

ComputeCycCov the cycle description is obtained in both directions. As all vertices in Ĉ are

active at the beginning of the verification step, w received the same cycle description from both

its neighbors on Ĉ.

Denote Ĉ by Ĉ = C1 ◦ (v1, v2) ◦ C2 where C1 is a reliable w-v1 path, and C2 is a reliable

v2-w path. Hence, when obtaining the cycle description during Alg. ComputeCycCov(Gi, L),

w received Q1 ◦ (v1, v2) ◦ C1 over C1, and Q2 ◦ (v2, v1) ◦ C2 over C2, for some paths Q1, Q2.

Since w is active at the beginning of the verification step, w received the same cycle description

in both directions, concluding that Q1 = C2 and Q2 = C1. It follows that (ID(C), Ĉ) ∈ C ′i(w).

In particular, for the vertex u∗ it holds that (ID(C), Ĉ) ∈ C ′i(u∗). Since u∗ is active at the

beginning of the verification step, it obtained a single cycle with identifier ID(C), and therefore

C = Ĉ.

We now show that every vertex w ∈ C adds the tuple (ID(C), C) to its verified cycle

collection Ci(w). Towards that goal, we start with the following auxiliary claim.
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Claim 34. Any cancellation message cancel(C) received in Step (2.4) by some vertex w ∈ C
is dropped.

Proof. Assume towards contradiction a vertex w ∈ C received a cancel(C) message during

Step (2.4) that it did not drop. Consider the following cases:

• The message cancel(C) received by w was initiated by vC . In this case, we will show

that also u∗ (namely, the vertex that included (ID(C), C) in its verified cycle set) received

(and sent) the cancellation message as well, in contradiction to the assumption that the

cycle is included in the output of u∗. In this case, the paths P1 and P2 start at vC , that

is, P1 = C[vC , u
∗] and P2 = C[u∗, vC ]. Since C is simple, at least one of them, say

P2, does not contain the adversarial edge e′. According to Step (2.3), vC sent the message

cancel(C) in both directions in the super-round τi. By Claim 33, all vertices in P2 hold the

correct cycle description of C, and the correct distances from vC . As P2 does not contain

the adversarial edge, using an inductive argument it follows that every v ∈ P2 at distance

d2
v from vC on P2, receives the message cancel(C) in super-round τi + d2

v. According to

Step (2.4), v also sends the message in super-round τi+d2
v +1. It follows that u∗ received

the cancellation message cancel(C) from the second direction on C (namely, along P2),

in super-round τi + d2
u∗ , leading to a contradiction.

• The message cancel(C) received by w was initiated by the adversarial edge e′ ∈ C. We

first show that vC also received the message cancel(C) by the end of Step (2.4). W.l.o.g

assume that w received the message in direction 1 (clockwise). Since w did not drop the

message, it follows that w received the message in super-round τi + d1
w, where d1

w is the

distance between vC and w in direction 1. As all vertices in C hold the correct distances

from vC (Claim 33), using an inductive argument on the reliable w-vC path C[w, vC ], we

conclude that vC received the message cancel(C) in super-round τi + |C| ≤ τi +R from

direction 1.

It remains to consider two cases.

Case 1: vC received the message cancel(C) also from the second direction. In such a

case, u∗ also received the cancellation message, did not drop it, and sent it along the

cycle. This contradicts the assumption that the cycle is included in the verified cycle set

of u∗.

Case 2: vC received the cancellation message cancel(C) only from a single direction

(i.e., from one of its neighbors on C). According to Step (2.5), in this case vC broadcasts

a cancellation message cancel(i) to all vertices. By the correctness of the broadcast

algorithm, in Step (2.6), the vertex u∗ cancels all its cycles defined in this iteration, leading

to a contradiction.
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Claim 35. For every w ∈ C it holds that (ID(C), C) ∈ Ci(w).

Proof. Recall that a vertex w ∈ C adds a tuple (ID(C), C) to its cycle collection Ci(w), only

if (i) it received the verification message ver(C) from both its neighbors on C, (ii) any cancel-

lation message cancel(C) received has been dropped, and (iii) it did not accept a cancellation

message cancel(i) via the broadcast algorithm in Step (2.5). We will show that all these condi-

tions hold for w and C. Condition (ii) holds by Claim 34. As for condition (iii), as shown by

Cor. 3 Chapter 5, no vertex accepts a false message initiated by the adversarial edge. Hence,

if w accepts a message cancel(i), it is initiated by some vertex in the graph. Since u∗ did not

accept such a message, by the correctness of the broadcast algorithm, w did not accept such

a message as well. We are left to show condition (i) holds, and w received the verification

message from both neighbors on C.

By Claim 33, it holds that vC ∈ C. Let P ′ = C[vC , w] and P ′′ = C[w, vC ] be the two vC-w

paths on C. Since C is simple, at least one of them say P ′′ = C[w, vC ], does not contain the

adversarial edge e′. By Step (2.1), at the beginning of Step (2), vC sent ver(C) to both neighbors

on C. As a result, w received the message ver(C) over the reliable path P ′′. Additionally, as vC
did not send a cancellation message, vC also received the message ver(C) back over the path

P ′′. Thus, it holds that w sent the message to its neighbor in P ′′, and therefore w also received

the message from its other neighbor in P ′.

Coverage. We begin by noting that in case the adversarial edge e′ is not contained in a sub-

graph Gi, the cycles C ′i obtained by Alg. ComputeCycCov(Gi, L) are legal cycles in G, with

valid cycle descriptions. That is, for every vertex u and a cycle identifier ID(C) such that

(ID(C), C) ∈ C ′i(u), for every w ∈ C it holds that (ID(C), C) ∈ C ′i(w). Additionally, we

observe that all cycles in C ′i pass the verification step, and therefore for every vertex u ∈ V and

a cycle (ID(C), C) ∈ C ′i(u), it holds that (ID(C), C) ∈ Ci(u).

Observation 14. For a subgraph Gi such that e′ /∈ Gi, for every vertex u ∈ V and a tuple

(ID(C), C) ∈ C ′i(u), it holds that (ID(C), C) ∈ Ci(u).

Proof. As e′ /∈ Gi, by the properties of Alg. ComputeCycCov, the cycle collection C ′i admits the

desired length and edge congestion. Therefore, all vertices in G are active at the beginning of

the verification step. In consequence, by Step (2.1), the vertex with the highest ID in C denoted

as vC initiates the verification step and sends ver(C) to both neighbors on C. Next, according

to Step (2.2), all vertices on C send the verification messages in both directions. As a result, all

vertices in C receive the verification message ver(C) from both neighbors. As vC also receives

the message ver(C) back from both neighbors on C, no cancellation message is sent and u adds

the tuple (ID(C), C) to its cycle collection Ci(u).
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An edge (u, v) ∈ E is said to be covered by the algorithm, if there exist a cycle C with ID

ID(C) such that C∩{e, e′} = {e}, and (ID(C), C) ∈ Ci(w) for every w ∈ C. By the covering

property of the graph family G, we can now conclude that all reliable edges are covered.

Claim 36. Every reliable edge e 6= e′ is covered by a cycle of length Ô(L).

Proof. By the promise of Lemma 20, for every reliable edge e = (u, v), distG\{e,e′}(u, v) ≤ L.

Hence, due to the covering property of G, there exists a subgraph Gi containing all the edges

of an L-length u-v path P ⊆ G \ {e, e′}, and in addition Gi ∩ {e′, e} = {e}. Thus, by the

properties of ComputeCycCov(Gi, L), there exists a cycle C ⊆ Gi of length Ô(L), such that

(ID(C), C) ∈ C ′i(u), and e ∈ C. Moreover, as ComputeCycCov(Gi, L) is executed correctly

on Gi, for every w ∈ C it holds that (ID(C), C) ∈ C ′i(w). By Obs. 14 it then follows that every

vertex w ∈ C adds the tuple (ID(C), C) to Ci(w). Hence, e is covered by the end of the i-th

iteration.

Claim 37. The adversarial edge e′ = (v1, v2) is covered by a cycle of length Ô(L).

Proof. First assume that at the beginning of Step (3) at least one of the vertices v1 or v2, say

v1 considered the edge (v1, v2) as handled. That is, at the beginning of Step (3) (ID(C), C) ∈
C(v1) for some cycle C for which (v1, v2) ∈ C. By Claim 32, Claim 33 and Claim 35, it follows

that e′ is indeed covered.

Next, assume that at the beginning of Step (3) both v1 and v2 consider the edge e′ as unhan-

dled, and assume v1 has a higher ID than v2. According to Step (3), v1 and v2 broadcast the

identifier of the edge e′ using the broadcast algorithm of Theorem 12 (Chapter 5). By Claim 36

all reliable edges are covered during Step (2) of the algorithm. Hence, e′ is the only uncovered

edge, and the only message that is broadcast. By the properties of the broadcast algorithm, it

must be initiated by a vertex and cannot be initiated by the adversarial edge. Therefore, all

vertices in V accept a single message containing the identifier of e′.

Next, v1 initiates a construction of a BFS tree T rooted at v1 in G \ {e′}. Because we

assumed that for every edge e = (u, v) it holds that distG\{e}(u, v) ≤ L, the tree T is of depth

O(L), and contains a v1-v2 path P of size O(L). Additionally, since all edges participating in

the tree construction are reliable, the cycle C = P ◦ (v1, v2) covering e′, is added to the cycle

collection of all vertices in C.

Congestion. For an iteration i, let Ci be the cycle collection obtained during the i-th iteration.

We show the congestion of the cycles in C =
⋃
i Ci is at most Ô(`).

Claim 38 (Congestion). For an iteration i each edge appears on Ô(1) cycles in Ci. Conse-

quently, each edge appears on Ô(`) cycles in C =
⋃`
i=1 Ci.
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Proof. For an iteration i. First note that if e′ /∈ Gi, all edges participating in the i-th iteration are

reliable. Hence, due to the properties of Alg. ComputeCycCov, all cycles constructed during

the execution of ComputeCycCov(Gi, L) are legal, and the congestion of each edge is Ô(1).

For an iteration i such that e′ ∈ Gi, if an endpoint of an edge e detects high congestion in the

cycles constructed by ComputeCycCov(Gi, L), it omits all cycles and becomes inactive. Hence,

for each vertex u and an incident edge e, after the i-th iteration u outputs at most Ô(1) cycles

covering e. Because we have ` iterations, the total congestion of each edge is Ô(`).

We are now ready to prove Lemma 20.

Proof of Lemma 20. The covering property holds by Claim 36 and Claim 37. The congestion

arguments hold by Claim 38. The length bound holds immediately, as all long cycles defined in

bad iterations are omitted. It remains to bound the round complexity.

For each iteration i, performing Alg. ComputeCycCov(Gi, L) required Ô(L) rounds. Dur-

ing the verification step, the congestion on each edge is kept bound by Ô(1). In addition, since

the length of each cycle is Ô(L), steps (2.1)-(2.5) can be performed in Ô(L) rounds. As for Step

(2.6), in case some leaders broadcast a cancellation message cancel(i) during iteration i, as all

vertices broadcast the same message, we can view this step as performing a single execution of

the broadcast algorithm of Theorem 12 in Õ(D2) = Õ(L2) rounds.

Regarding the third step, the broadcast algorithm requires Õ(L2) rounds. Constructing a

BFS tree and performing the upcast and downcast steps requires O(L) rounds. We conclude

that the total round complexity of the algorithm is Ô(L2 · `).

We also show that if our graph G is not 3 edge-connected or with bounded diameter, our

cycle cover algorithm has the guarantee to cover every reliable edge that lies on a reliable short

cycle in G. That is, we achieve the following.

Corollary 7. There exists a deterministic algorithm DetComputeOneFTCycCov(G,L) that

given a graph G containing a single adversarial edge e′ and a parameter L, returns a col-

lection of cycles and paths C with the following property. Every reliable edge (u, v) 6= e′ for

which distG\{e′,(u,v)}(u, v) ≤ L, is covered by a reliable Ô(L)-length cycle C ∈ C, such that

e′ /∈ C and (u, v) ∈ C.

Proof of Theorem 22. By Obs. 6 setting L = 7D satisfies the promise of Lemma 20. Hence,

combining Lemma 20 with the covering family construction of Fact 6 with L = 7D, results in

a deterministic (1, e′)-FT cycle cover algorithm, with the following parameters.

Corollary 8. There exists an r-round deterministic algorithm DetComputeOneFTCycCov for

computing a (1, e′)-FT cycle cover with parameters d = Ô(D), c = Ô(D2) and r = Ô(D4).

143



As for the randomized algorithm, we begin with a construction of an (L, 1) covering fam-

ily with slightly weaker covering guarantees. The following Corollary follows by combining

Theorem 19 and Theorem 12 of Chapter 5.

Corollary 9. Given a 3 edge-connected graph G of diameter D with a fixed unknown adver-

sarial edge e′, one can compute in Õ(D2) rounds a (L = 7D, 1) covering family G of size

` = O(D log n). The family G satisfies the following properties with high probability. For every

v, e, e′ ∈ V ×V ×E×E, there exists a subgraph Gi such that (P1’) distGi\{e,e′}(s, v) ≤ L and

(P2) e /∈ Gi = ∅.

To reduce the round complexity of Alg. ComputeOneFTCycCov, in Step (2.6) of the verifi-

cation step, we use the nearly optimal randomized broadcast algorithms of Theorem 15 (Chap-

ter 5) that work given that all vertices share a random seed of size Õ(1). To share this random

seed, the algorithm begins with applying the randomized leader election algorithm of Claim 31

which takes Õ(D2) rounds. Given a leader s, it shares a random seed r of Õ(1) bits by using the

deterministic broadcast algorithm of Theorem 12 within Õ(D2) rounds. From that point, the

vertices have a shared seed and the future broadcast procedures will be based on that. We note

that since the shared seed is only used to define the covering family, we can re-use the same

shared seed in all future applications of the broadcast algorithm.

From now on, the randomized algorithm is exactly the same as Alg. ComputeOneFTCycCov,

only that thanks to the shared seed, it uses the randomized broadcast algorithm of Theorem 15.

This broadcast algorithm works in Õ(D) rounds. As it is applied ` many times, the round com-

plexity is bounded by Ô(` ·L+` ·D+L2). The proof of Theorem 22 is completed by ` = Õ(D)

(see Cor. 9) and L = 7D.

6.2.2 General Compilers Given (1, e′)-FT Cycle Cover
We next show that our (1, e′)-FT cycle cover with parameters (c, d) yields a general compiler

that translates any r-round distributed algorithm A into an equivalent algorithm A′ that works

in the presence e′.

Compiler against a single adversarial edge (Proof of Theorem 23). The compiler works in a

round-by-round fashion, where every round ofA is implemented inA′ using a phase ofO(c·d2)

rounds. At the end of the i-th phase, all vertices will be able to recover the original messages

sent to them in round i of algorithm A.

Compilation of round i. Let C be the cycle collection of the (1, e′)-FT cycle cover. Fix a

round i of Alg. A and let Mu→v be the message sent from u to v for every pair of neighbors

e = (u, v) ∈ E during the i-th round. In the i-th phase of A′, the vertex u sends v the message

Mu→v through e and all u-v paths Pu,v = {C \ {e} | C ∈ C, e ∈ C}. When sending the

messages, each vertex on a path P ∈ Pu,v sends at most one message targeted from u to v. If a

vertex w is requires to send at least two different messages from u to v, it omits both messages

and sends a null message Φ over the cycle.
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At the end of phase i, each vertex v sets the message M̃u,v as its estimate for the message

Mu→v sent by u in round i of A. The estimate M̃u,v is defined by applying the following

protocol. In the case that v receives an identical message M 6= Φ from u through all the paths

in Pu,v, then M̃u,v ← M . Otherwise, M̃u,v ← M ′ where M ′ is the message v received over the

direct edge (u, v).

Correctness. We show that at the end of phase i for every edge (u, v) ∈ E it holds that

M̃u,v = Mu→v. Consider the following two cases.

Case e = e′ is the adversarial edge. Since all u-v paths in Pu,v are reliable, all messages

received by v over these paths must be identical. Thus, all the messages that v receives through

the paths are identical, and equal to Mu→v. By the definition of the (1, e′)-FT cycle cover,

Pu,v 6= ∅. Hence, v accepts the correct message.

Case e 6= e′ is reliable. The message that u receives from v through the direct edge e is

M ′ = Mu→v. By the definition of the (1, e′)-FT cycle cover, there exists a cycle C ∈ C
covering e that does not contain e′. Hence, if all edges on C deliver the same message from u to

v, it must be the message sent by u. Thus, if all messages v received through the paths Pu,v are

identical and differ from Φ, they are equal to Mu→v. Otherwise, v accepts the correct message

M ′ = Mu→v delivered through the reliable edge (u, v).

Round complexity. Since each edge belongs to at most c cycles in the (1, e′)-FT cycle cover C,

and as all cycles are of length at most d, the number of messages sent over an edge in a given

phase is bounded by c · d. Hence, each phase is implemented in O(c · d2) rounds.

6.3 Compilers against Multiple Adversarial Edges

6.3.1 (f, F ∗)-FT cycle cover*

At the heart of the compilers lies the construction of a (f, F ∗)-FT cycle cover* in the adver-

sarial CONGEST model that we describe in this section. Our main result is a deterministic

construction of (f, F ∗)-FT cycle covers* in the adversarial CONGEST model.

Lemma 21. Given is an (2f+1) edge-connected graphG with a fixed subset of unknown adver-

sarial edges F ∗ of size f . Assuming all vertices locally know an (L = 7fD, 2f) covering family

G of size `, there exists an r-round algorithm ComputeFTCycCov for computing an (f, F ∗)-FT

cycle cover* with parameters d = Ô(L), c = Ô(` · L2), and r = Ô(` · (fD log n)O(f)) in the

adversarial CONGEST model.

The proof of Theorem 24 follows by combining Lemma 21 and Fact 6.

Our Approach. Before presenting the algorithm, we provide the high-level approach. Consider

the following natural algorithm for computing an (f, F ∗)-FT cycle cover*. Let G be an (L, 2f)

covering family for L = O(fD). By applying the (fault-free) Alg. ComputeCycCov from

Fact 9 on each subgraph Gi ∈ G, we have the guarantee that all the reliable edges E \ F ∗
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are covered successfully as required by Definition 26. The key challenge is in determining

whether the adversarial edges are covered as well. In particular, it might be the case that an

edge e ∈ F ∗ mistakenly deduces that it is covered, leading eventually to an illegal compilation

of the messages sent through this edge. Note that unlike (1, e′)-FT cycle covers, here an edge is

covered only if it is covered by cycles of sufficiently large “flow”.

Our approach is based on reducing the problem of computing an (f, F ∗)-FT cycle cover*

into the problem of computing (1, e′)-FT cycle covers in multiple subgraphs for every e′ ∈ F ∗.
Specifically, we define a covering family G with the following guarantee for each adversarial

edge e′ ∈ F ∗: for every F ⊆ G, |F | ≤ f , there exists a subgraph Gi containing a short cycle

covering e′ such that Gi∩ (F ∗ \{e′}∪F ) = ∅. Since the covering guarantees for every e′ ∈ F ∗

are based on such “good” subgraphs Gi, it is safe to apply Alg. DetComputeOneFTCycCov

(from Cor. 7) on these subgraphs (as they contain at most one adversarial edge). This ap-

proach also has a major caveat which has to do with the fact that the subgraph Gi is not nec-

essarily 3 edge-connected and might not even be connected. In the single edge case, Alg.

DetComputeOneFTCycCov is indeed applied on the input graph that is 3 edge-connected.

Recall that Alg. DetComputeOneFTCycCov is based on performing a verification step of

the cycles, at the end of which we have the guarantee that at most one edge, corresponding

to the adversarial edge, might not be covered. The third step of that algorithm then covers

this edge, in case needed, using its fundamental cycle in the BFS tree. When applying Alg.

DetComputeOneFTCycCov on the subgraph Gi, the situation is quite different. Since Gi is

not necessarily connected, there might be potentially a large number of edges in Gi that are

uncovered by cycles. Broadcasting the identities of these edges is too costly. For this reason,

our algorithm applies the reduction in a more delicate manner.

Specifically, the algorithm applies Step (3) of Alg. DetComputeOneFTCycCov on the

neighborhood cover of Gi (with a radius of O(fD)).

Alg. ComputeFTCycCov (Proof of Lemma 21).
Let G = {G1, . . . , G`} be a (L, 2f) covering subgraph family that is locally known to all

the vertices (from Definition 17). The algorithm iterates over the subgraphs in G. In phase i, the

algorithm considers the subgraph Gi ∈ G and applies two major steps. Let Ei = {e = (u, v) ∈
Gi | distGi\{e}(u, v) ≤ L} be the set of edges in Gi that are covered by a short cycle (of length

at most L+ 1) in Gi
1. During the i-th phase, the goal is to cover the edges in Ei. The first step

considers covering the reliable edges in Ei \ F ∗, and the second step considers the adversarial

edges F ∗ ∩ Ei. Note that the endpoints of an edge e does not necessarily know if it belongs to

Ei.

Step (1): Covering non-adversarial edges in Gi. The algorithm applies the determinis-

tic (1, e)-FT cycle cover Alg. DetComputeOneFTCycCov(Gi, L
′) of Cor. 7 on the subgraph

Gi with diameter estimate L′ = O(L · logc n), where c is the constant of Definition 28 (in

1Note that the set Ei is unknown to the vertices in G.
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the analysis part, it will be made clear why L′ is set in this manner). When executing Alg.

ComputeOneFTCycCov(Gi, L
′), Step (3) of that algorithm which covers the adversarial edge

is omitted. In addition, in the verification step of Alg. ComputeOneFTCycCov(Gi, L
′) (Step

2.6), instead of using the broadcast algorithm of Theorem 12 against a single adversarial edge,

we use the broadcast algorithm of Theorem 13 against f adversarial edges over the original

graph G. If during the execution of Alg. ComputeOneFTCycCov(Gi, L
′), a vertex u receives

an illegal message or that it needs to send too many messages through its incident edges (i.e.,

that exceeds the allowed Ô(L′2) congestion bound of Alg. ComputeOneFTCycCov(Gi, L
′)),

it cancels the i-th iteration in the following sense. It omits all its cycles computed in the i-th

phase, and remains silent until the next phase.

For a vertex u, let Ci(u) be the cycle collection obtained by u during

ComputeOneFTCycCov(Gi, L
′). Every vertex u that did not cancel the i-th phase, adds the cy-

cles in Ci(u) to its final cycle collection C(u). Recall that the output of Alg. ComputeOneFTCycCov

is given by a collection of tuples Ci(u) = {(ID(C), C)}. At the end of Step (1), a vertex u con-

siders its incident edge (u, v) as i-handled if there exists a tuple (ID(C), C) ∈ Ci(u) such that

(u, v) ∈ C.

Step (2): Covering the adversarial edges inGi. The goal of this step is to cover the adversarial

edges of Ei ∩ F ∗. At the beginning of the step, the vertices locally compute an (L, 1) covering

family Gi = {Gi,1, . . . , Gi,`i} of size `i = Õ(L2) using Fact 6. The algorithm then proceeds

in `i iterations, where in each iteration j the vertices perform the following sub-steps over the

communication subgraph Gi,j ∈ Gi.

(2.1) Compute an L neighborhood-cover Si,j = {Si,j,1, . . . , Si,j,ki,j} by applying Theorem 26,

and let Ti,j,q be the spanning tree of each vertex-subset Si,j,q.

(2.2) An edge (u, v) is short bridgeless if (i) (u, v) is not i-handled in Step (1), and (ii) there

exists a tree Ti,j,q containing u and v. For every short bridgeless edge e, the algorithm

adds a cycle Ce = π(u, v) ◦ e to the cycle collection, where π(u, v) is a u-v path in Ti,j,q.

If during the execution of this step, a vertex u detects an incident edge with congestion

above the limit, it omits all the cycles obtained in this step from its cycle collection C(u)

and proceeds to the next sub-iteration.

Correctness. We first show the output collection admits the desire congestion and length

bounds. The algorithm proceeds in ` phase. In each phase, all cycles obtained in Step (1)

are of length Ô(L), and the cycles obtained in Step (2) are of length Õ(L). Since every ver-

tex u that detects an edge e with congestion above the limit omits the cycles computed in that

iteration, each edge participates in at most Ô(L2) cycles. Hence, the total edge congestion is

Ô(` · L2).

Coverage. For an edge e ∈ E and a subset E ′ ⊆ E of size |E ′| ≤ (f − 1), the tuple (e, E ′) is

covered, if there exists a cycle C with a cycle identifier ID(C) satisfying C∩(F ∗∪E ′∪{e}) =
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{e}, and (ID(C), C) ∈ C(w) for every w ∈ C. An edge e ∈ E is covered, if for every subset

E ′ ⊆ E of size |E ′| ≤ (f − 1), the tuple (e, E ′) is covered.

By the definition of an (f, F ∗)-FT cycle cover*, we are left to show that all edges in E

are covered. Given an edge e = (u, v) and a subset E ′ ⊆ E of size |E ′| ≤ (f − 1), a

subgraph Gi ∈ G is good for the tuple (e, E ′) if (1) (E ′ ∪ F ∗ ∪ {e}) ∩ Gi = {e}, and (2)

distGi\{e}(u, v) ≤ L′. We start with showing that for every tuple (e, E ′) there exists a good

subgraph Gi ∈ G.

Claim 39. For every edge e = (u, v) and a subset E ′ ⊆ E of size |E ′| ≤ (f − 1), there exists

a good subgraph Gi ∈ G. Moreover, if a subgraph Gi is good for some tuple (e, E ′), all cycles

obtained during the execution of ComputeOneFTCycCov(Gi, L
′) in Step (1) are legal cycles in

G with length Ô(L) and edge congestion Ô(L2).

Proof. By Obs. 6, for a (2f + 1) edge-connected graph G with diameter D and L = 7fD,

for every edge (u, v) = e ∈ E, and every set F ⊆ E of size |F | ≤ (f − 1) it holds that

distG\{F∪F ∗∪{e}}(u, v) ≤ L−1. Since |E ′| ≤ (f−1), it also holds that distG\(E′∪F ∗∪{e})(u, v) ≤
L− 1. Hence, as |F ∗ ∪E ′| ≤ (2f − 1), by the covering property of the (2f, L) covering family

G, there exists a good subgraph Gi satisfying properties (1) and (2). Next, consider a subgraph

Gi ∈ G that is good for some tuple (e, E ′). Since F ∗ ∩ Gi ⊆ {e}, the subgraph Gi contains at

most one adversarial edge.

Recall that in Step (2.6) of the execution ComputeOneFTCycCov(Gi, L
′), if a leader re-

ceives a cancellation message only from one direction, it broadcasts a cancellation message

cancel(i) using the broadcast algorithm of Theorem 13 (Chapter 5) against f adversarial edges,

over the graph G. By Theorem 13 it follows that in such a case, all vertices in G will accept the

message. The claim then follows from Theorem 22 and the properties of Alg. ComputeOneFTCycCov.

We next show that all the reliable edges in G are covered. Towards that goal, we show that

for an edge e /∈ F ∗ and a subset E ′, if a subgraph Gi is good for a tuple (e, E ′), then (e, E ′) is

covered by the end of the i-th phase.

Claim 40. For an edge e /∈ F ∗ and a subset E ′ ⊆ E of size |E ′| ≤ (f − 1), let Gi ∈ G be a

good subgraph for (e, E ′). Then after Step (1) of the i-th phase (e, E ′) is covered.

Proof. Since Gi is good for (e, E ′), distGi\{e}(u, v) ≤ L′. Additionally, by Claim 39 the ex-

ecution of ComputeOneFTCycCov(Gi, L
′) is performed correctly, and no vertex in V cancels

the i-th phase. As e is reliable, by Cor. 7 we conclude that there exists a cycle C with cycle

identifier ID(C), such that e ∈ C, and (ID(C), C) ∈ Ci(w) for every w ∈ C. As no vertex

cancels the i-th phase, w also adds the tuple (ID(C), C) to its output set C(w). Finally, as

(E ′ ∪F ∗ ∪ {e})∩Gi = {e} and C ⊆ Gi, then (E ′ ∪F ∗ ∪ {e})∩C = {e}. The claim follows.
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Corollary 10 (Covering the Reliable Edges). Every edge e /∈ F ∗ is covered.

Proof. For an edge e /∈ F ∗, and a subsetE ′ ⊆ E of size |E ′| ≤ (f−1), by Claim 39 there exists

a subgraph Gi ∈ G that is good for (e, E ′). Hence, by Claim 40 the tuple (e, E ′) is covered by

the end of the i-th phase.

Claim 41 (Covering the Adversarial Edges). Every adversarial edge e = (u, v) ∈ F ∗ is covered.

Proof. Fix a subset E ′ ⊆ E of size |E ′| ≤ (f − 1). We will show that (e, E ′) is covered. By

Claim 39 there exists a subgraph Gi ∈ G that is good for the tuple (e, E ′). First assume that

for at least one of the vertices u or v, say v, at the end of Step (1) the edge e is i-handled. By

Claim 39 the execution of ComputeOneFTCycCov(Gi, L
′) is performed correctly, and therefore

(e, E ′) is covered by the end of Step (1) of the i-th phase.

Next, assume that at the end of Step (1), both v and u considers the edge e as not i-handled.

Let Gi,j ∈ Gi be a subgraph of Gi satisfying that (P1) distGi,j(u, v) ≤ L, and (P2) e /∈ Gi,j .

By Fact 6, there exists such a subgraph Gi,j . Since e /∈ Gi,j the subgraph Gi,j contains no

adversarial edges. Therefore, the computation of Step (2.1) is performed successfully, resulting

in an L-neighborhood-cover Si,j . Since distGi,j\{e}(u, v) ≤ L, there exists a cluster Si,j,k ∈ Si,j
such that u, v ∈ Si,j,q. Hence, the edge e = (u, v) is a short bridgeless edge. Therefore,

according to Step (2.2), a cycle Ce with identifier ID(Ce) of length Õ(L) such that (u, v) ∈ Ce
is added to the cycle collection. That is, every vertex w ∈ Ce adds the tuple (ID(Ce), Ce) to its

output set C(w).

We next show that during the j-th iteration of Step (2), the edge (u, v) is the only short

bridgeless edge. It will then imply that during iteration j, a single cycle is added to the cycle

collection, and therefore the iteration is not canceled due to large congestion by any of the

vertices in V . For every reliable edge (w1, w2) ∈ Gi, if there exists a tree Ti,j,k containing both

w1 and w2, by the definition of neighborhood covers it holds that distGi,j\{(w1,w2)}(w1, w2) =

O(L · logc n) ≤ L′. Since e /∈ Gi,j , it implies that distGi\{e,(w1,w2)}(w1, w2) ≤ L′. Hence, by

Claim 40 and Cor. 7, the edge (w1, w2) is covered in Step (1) of the i-th phase and therefore

both w1 and w2 consider the edge as i-handled. Thus, (w1, w2) is not a short bridgeless edge. It

follows that no vertex cancels the j-th iteration in Step (2.2). Additionally, as Ce ⊆ Gi, it holds

that Ce ∩ (E ′ ∪ F ∗) = {e}, and therefore the tuple (e, E ′) is covered.

Finally, for the sake of the implementation of the general compilers in the next section, we

note that all the cycles and the paths in the (f, F ∗)-FT cycle cover* are simple.

Observation 15. All cycles and paths in an (f, F ∗)-FT cycle cover* are simple.

Proof. In every phase i, by the properties of Alg. ComputeOneFTCycCov(Gi, L
′), all cycles

and paths obtained in Step (1) are simple. Additional, in Step (2), for every short bridgeless

edge e, for which the algorithm adds a cycle Ce = π(u, v) ◦ e to the cycle collection, every
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vertex w ∈ Ce adds a single tuple (ID(Ce), Ce) to its final output set C(w). Hence the degree

of every vertex in the cycle (or truncated cycle) obtained in Step (2) is at most two and therefore

the cycle (or path) is simple.

Round complexity. The algorithm proceeds in ` phases. Consider phase i. Applying Alg.

DetComputeOneFTCycCov(Gi, L
′) in Step (1) takes Ô(L4) rounds. Applying the broadcast

alg. of Theorem 13 used during the verification step (Step (2.6)) takes O(fD log n)O(f) rounds.

In Step (2), the algorithm iterates over `i = Õ(L2) subgraphs Gi. In each iteration, applying the

L-neighborhood cover algorithm of Theorem 26 takes Õ(L) rounds. The total round complexity

is bounded by Ô(` ·(fD log n)O(f)). Note that one can also reduce the edge congestion by using

the randomized algorithm for (1, e′)-FT cycle cover of Theorem 22.

6.3.2 General Compilers Given (f, F ∗)-FT cycle cover*

We next show that our (f, F ∗)-FT cycle cover* yields a general compiler that translates any

r-round distributed algorithm A into an equivalent algorithm A′, that works in the presence of

f adversarial edges with round complexity r′ = O(r · c · d3). Throughout, we use the following

definition for a minimum s-v cut defined over a collection of s-v paths.

Definition 29 (Minimum (Edge) Cut of a Path Collection). Given a collection of s-v paths

P , the minimum s-v cut of P , denoted as MinCut(s, v,P), is the minimal number of edges

appearing on all the paths in P . I.e., MinCut(s, v,P) = x implies that there exists a collection

of x edges E ′ such that for every path P ∈ P , it holds that E ′ ∩ P 6= ∅.

General compiler given an (f, F ∗)-FT cycle cover* (Proof of Theorem 25). The compiler

works in a round-by-round fashion, where every round of A is implemented within a phase of

O(c · d3) rounds.

Compilation of round i. Let C be the given (f, F ∗)-FT cycle cover*. Fix a round i in A,

and an edge e = (u, v) ∈ E, and let Mu→v be the message sent from u to v in round i. Let

Pu,v = {C \ {e} | C ∈ C, e ∈ C} be the collection of u-v paths obtained from the cycles

covering e in C. In the i-th phase of Alg. A′, the vertex u sends v the messageMu→v through the

direct edge e, as well as through all the u-v paths inPu,v. The messageMu→v is augmented with

the cycles ID and the path description, where every vertex in the path augments the message

with its own ID 1. On every path (i.e., for every cycle ID), each vertex sends at most one such

message.

At the end of phase i, every vertex v computes the message M̃u,v as its estimate for the

message Mu→v for every u ∈ N(v). Let M ′ be the message v received over the directed

edge (u, v). For a message M received by v, let PM be the path collection on which v re-

ceived this message during the i-th phase, such that (u, v) /∈ P for every path P ∈ PM . If
1We note that in the compilers against a single edge, it was not needed to send the path information.
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MinCut(u, v,PM ′) ≥ f , then v sets M̃u,v = M ′. Otherwise, v sets M̃u,v = M , for some

message M satisfying MinCut(u, v,PM) ≥ f , breaking ties arbitrarily.

Correctness. Fix a phase i and an edge e = (u, v) ∈ E. We show that at the end of the i-th

phase, it holds that M̃u,v = Mu→v. We first show that MinCut(u, v,PMu→v) ≥ f .

Claim 42. At the end of the i-th phase it holds that MinCut(u, v,PMu→v) ≥ f .

Proof. By the definition of the (f, F ∗)-FT cycle cover* C, for every subset E ′ ⊆ E of size

|E ′| ≤ f − 1, there exists a cycle C ∈ C such that C ∩ (E ′ ∪ F ∗ ∪ {e}) = {e}. It then follows

that for the set P = {P ∈ Pu,v | P ∩ F ∗ = ∅}, it holds that MinCut(u, v,P) ≥ f . Since

P ∩ F ∗ = ∅ for every path P ∈ P , for the correct message Mu→v it holds that P ⊆ PMu→v and

therefore MinCut(u, v,PMu→v) ≥ f .

If the edge (u, v) is reliable, then M ′ = Mu→v, and due to Claim 42 it also holds that

MinCut(u, v,PMu→v) ≥ f . Therefore v sets M̃u,v = M ′ = Mu→v. Next, assume (u, v) ∈ F ∗ is

adversarial. We claim that for any messageM 6= Mu→v, it holds that MinCut(u, v,PM) ≤ f−1.

For a path P ∈ PM , since M 6= Mu→v, the message M which propagated over the path

P , was initiated by some adversarial edge in F ∗. We claim that the path description of P

contains an edge e′ ∈ F ∗, as for the last adversarial edge in P , the vertex v will receive

its ID as part of the path description. Additionally, since the edge (u, v) does not appear

in any path in PM , it follows that P ∩ (F ∗ \ {e}) 6= ∅ for every path P ∈ PM . Hence,

MinCut(u, v,PM) ≤ |F ∗ \ {e}| = f − 1. We can then conclude that Mu→v is the only message

for which MinCut(u, v, PM) ≥ f and therefore M̃u,v = Mu→v as desired.

Round complexity. All cycles (and paths) in the (f, F ∗)-FT cycle cover* have length at most

d, and edge congestion at most c. Since each edge belongs to c cycles of length d, the number

of messages sent over an edge in a given phase is bounded by c · d. Since each message sent

over a path P is augmented with the path description of P , the messages have size O(d log n).

Hence, in every phase, each edge needs to send c · d messages, of size O(d log n) along paths

of size d. Therefore each phase requires O(c · d3) rounds. As a result, an r-round algorithm A
is simulated in A′ by phase of O(r · c · d3) rounds.

6.3.3 Lower Bounds (Proof of Theorem 21)

In this section, we present a lower bound for the quality of the FT-cycle covers with parameters

c, d, where the quality is measured by the summation c+ d (congestion + dilation). At the heart

of our lower bound argument lies a graph-theoretical characterization of the tradeoff between

congestion and dilation in a collection of s-v paths with a sufficiently large flow. Given an

(unweighted) graph G = (V,E), and a pair of vertices s, v, a route set is a collection of s-v

paths in G of sufficiently large flow. Our goal is then to characterize the tension between the

length of these paths and their overlap subject to some threshold on the flow of these paths.

151



Congestion vs. dilation tradeoff in route-sets. Given a graph G = (V,E), a pair of vertices

s, v and a route-set P of s-v paths, define the dilation of P by dilation(P) = maxP∈P |P |, and

the congestion of P by congestion(P) = maxe∈E |{P ∈ P | e ∈ P}|. The next lemma shows

that if the flow of the route-set is required to be sufficiently large, i.e., at least t, then there are

graphs in which the congestion + dilation of these paths must be exponentially large in t.

Lemma 22. For any parameters t ≥ 1, ρ ≥ 1 and D = Ω(t), there exists a (t + 1) edge-

connected graph G = (V,E) with diameter D, and two vertices u, v ∈ V with the following

property. For any collection of u-v paths P such that MinCut(u, v,P) ≥ t + 1 it holds that if

dilation(P) = ρ then congestion(P) = Ω((D−1
t+1

)t+1/(t · ρ)).

The Graph construction. We start with describing the lower bound graph denoted as G∗. The

graph G∗ consists of t + 1 layers of edges E0, E1, . . . , Et described described in an inductive

manner. Let D̂ = D−1
t+1

.

𝑣𝑢 𝐷 = 𝑂(𝐷/𝑡) 𝑢 𝑣 𝑢 𝑣

Figure 6.2: An illustration of the graph construction for t = 2. Left: The first layer consists of a simple

u-v path of length D̂. Middle: Illustration of the first two layers E0 and E1. Every layer consists of D̂

lengths paths covering the edges of the previous layer. Right: The constructed graph. The last layer Et
covers each of the edges in Et−1 with t+ 1 edge disjoint paths that are connected via cliques.

Layer 0. We introduce two designated vertices u, v ∈ V . The vertices u and v are connected via

a path of length D̂+ 1, denoted as P0 = (u, u1, . . . uD̂, v). See Fig. 6.2 (Left) for an illustration

of the first layer E0.

Layer i for 1 ≤ i ≤ t − 1. The i-th layer Ei consists of D̂-length paths covering the

edges in Ei−1. For every edge e = (w1, w2) ∈ Ei−1, we connect w1 and w2 by a path

Pe = (w1, ue,1 . . . ue,D̂−1, w2) of length D̂. We then define Ei =
⋃
e∈Ei−1

E(Pe). See Fig.

6.2 (Middle) for an illustration of the construction after adding the first layer of edges E1 to the

basic construction.

Layer t. The last layer Et covers each of the edges in Et−1 with t + 1 edge disjoint paths

that are connected connected via cliques. For every edge e = (w1, w2) ∈ Et−1, we introduce

t + 1 edge-disjoint w1-w2 paths of length D̂ denoted as Pe = {(w1, u
i
e,1, . . . , u

i
e,D̂
, w2)}ti=1.

Additionally, each set of vertices u1
e,j, . . . u

k−1
e,j for j ∈ [1, D̂− 1] form a clique. This completes

the description of the lower bound graph, as illustrated in Fig. 6.2 (Right).
Correctness. We start with showing the constructed graphG∗ is indeed (t+1) edge-connected,

with diameter at most D.

Observation 16. The graph G∗ is (t+ 1) edge-connected and with diameter at most D.
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Proof. For every two vertices w1, w2 ∈ V by te definition of the last layer Et, there exists t+ 1-

edge disjoint w1-w2 paths in Et. Next, we bound the diameter of G∗. Consider two vertices

w1, w2 ∈ V . By the definition of the graph G∗, the distance between w1 and w2 from the path

P0 is at most tD̂/2. Since the length of P0 is D̂ + 1, by the triangle inequality it holds that:

distG∗(w1, w2) ≤ tD̂/2 + tD̂/2 + D̂ + 1 = (t+ 1)D̂ + 1 = D

The next claim completes the proof of Lemma 22.

Claim 43. For any u-v route-set P with MinCut(u, v,P) ≥ t+ 1 and dilation(P) = ρ, it holds

that congestion(P) = Ω((D−1
t+1

)t+1/(ρ · t)).

Proof. Let P be a collection of u-v paths such that MinCut(u, v,P) ≥ t+1 with dilation(P) =

ρ. Consider a collection of t–tuples F ⊆ E0 × E1 · · · × Et, defined as follows. A tuple

(e0, . . . et−1) is in F if for every i ∈ [0, t−1] it holds that (i) ei ∈ Ei, and (ii) ei is on the unique

path covering ei−1, added in the i-th layer. Note that by the definition of the graph G∗, the size

of F is D̂t. In order to bound the congestion of P we begin with bounding the size of the route

set P using the cardinality of F .

For a u-v path P ′ ∈ P , let S(P ′) = {F ∈ F | P ′ ∩ F = ∅} be the tuples in F
which do not intersect with P ′. We next show that |P ′| = Ω(D̂ · |S(P ′)|). For every F =

(e0, . . . , et−1) ∈ S(P ′), because P ′ is a u-v path and P ′ ∩ F = ∅, P ′ contains a sub-path

PF between the two endpoints of the edge et−1, such that PF ⊆ Et. By the definition of Et,

it holds that |PF | ≥ D̂. Additionally, by the definition of F , for every two different tuples

F1 = (e0, . . . , et−1) and F2 = (e′0, . . . , e
′
t−1) in S(P ′), it holds that et−1 6= e′t−1, and therefore

PF1 ∩ PF2 = ∅. Hence, for every tuple F ∈ S(P ′) we can account P ′ with D̂ unique edges. As

a result, |P ′| = Ω(D̂ · |S(P ′)|).

Next, as MinCut(u, v,P) ≥ t + 1, for every tuple F ∈ F of t edges, there exists a path

P ′ ∈ P such that F ∩P ′ = ∅ (i,e,. F ∈ S(P ′)). Since the length of each path P ′ ∈ P is at most

ρ, it holds that |S(P ′)| ≤ ρ/D̂.

As |F| = D̂t, we conclude that the collection P contains at least D̂t · D̂/ρ different paths.

Because the degree of the vertex v is 2f + 1, there exists an edge (w, v) that participates in at

least D̂t+1/(ρ · (2f + 1)) paths in P . Hence,

congestion(P) ≥ D̂t+1/(ρ · (2f + 1)) =

(
D − 1

t+ 1

)t+1

/(ρ · (2f + 1)) .

From Lemma 22 it follows that there exists a graph G∗ with diameter D such that any

collection of t+ 1 disjoint paths (i.e., with congestion(P) = 1), must contain a long path.

153



Corollary 11. For any parameters t ≥ 1, and D = Ω(t), there exists a (t+ 1) edge-connected

graph G = (V,E) with diameter D, and two vertices u, v ∈ V such that any collection of u-v

disjoint paths P of size |P| = t+ 1, contains a path P ∈ P of length |P | = Ω((D−1
t+1

)t+1/t).

Finally, we prove Theorem 21 and show a lower bound on the quality of f -FT cycle covers

using Lemma 22. Proof of Theorem 21

Proof. Let G∗ = (V,E) be the n-vertex (f + 1) edge-connected graph with diameter D, with

two designated vertices u, v ∈ V of Lemma 22. Consider the graph G′ = G∗ ∪ {(u, v)},
obtained by adding the edge (u, v) to the graph G∗. Let C be an f -FT cycle cover for G′ with

parameters c, d, and let P = {C \ {(u, v)} | C ∈ C, and (u, v) ∈ C} be the collection of u-v

paths induced by the cycles in C. By the definition of the f -FT cycle cover C, for every subset

E ′ ⊆ E of size |E ′| ≤ f−1, there exists a cycleC ∈ C such thatC∩(E ′∪{(u, v)}) = {(u, v)}.
It then follows that MinCut(u, v,P) ≥ f . As (u, v) /∈ P for every P ∈ P , the set P is also a

u-v rout-set in G∗. Hence, by Lemma 22 it holds that dilation(P) + congestion(P) = (D
f

)Ω(f),

and therefore c+ d = (D
f

)Ω(f).
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