Remarks: can always find hitting set of size minsingly - not small finding the smallost hitting set is NP-hard we'll see how to find "reasonably" small one efficiently very (nerg!) useful tool in algorithms (examples today/later in course) <u>Thmi</u>, There is always of hitting set A of size $O(\frac{n}{s} \log l)$

 	J			•		
Further,	CAN	Je	found	in	poly-time	

(i)

Deterministic construction
Natural greedy alg.
- at step i, add
$$a_i \in V$$
 that hits the most yet-unhit sets
- repeat until all sets are hit, say after step t
- output $A = \{a_1, ..., a_t\}$
Need to show: $t \leq \frac{n}{t} \ln(\ell)$

Obs I: li-1 - l; = C;(a;) why? step i decreases #unhit sets by C;(a;)

Obs 2:
$$\sum_{v \neq a_{i}, \dots, a_{i-1}} C_i(v) \ge J_{i-1} \cdot S$$

Why? each unhit set defore step i adds 1 to $\ge S$ counters

Obs 3: $c_i(a_i) \ge \frac{1}{n-i+1} \sum_{\substack{v \neq a_{1}, \dots, a_{i-1}}} c_i(v)$

Why? max ≥ avg

combains obs 1,2,3:
$$l_{i-1} - l_i \ge \frac{l_{i-1} - s}{n-i+1}$$

rearrange: $l_i \le (1 - \frac{s}{n-i+1}) l_{i-1}$
induction: $l_i \le \frac{i}{11} (1 - \frac{s}{n-k+1}) l_0$
 $\le (1 - \frac{s}{n})^i l$
 $1 - x < e^{-x} \rightarrow < e^{-\frac{i}{n}} l$

finalize: if
$$i \ge \frac{n}{5} \ln(\ell)$$
 us get $J_i < 1 \Longrightarrow \ell_i = D$
because $l_{t-1} \ge 1$, it must be that $t-1 \le \frac{n}{5} \ln(\ell)$

Assume
$$l \leq n^{100}$$
 (100 - ortifrenz cinst), wont size $O(\frac{n}{5} \log n)$
Assume $s \gg \ln(n)$ (otherwise can take all elements)
Method 1 sample each $v \in V$ into A ind w.p. $p = \frac{1}{5} \cdot 110 \ln(n)$
prob. to vies specific S_j is $(1-p)^{|S_j|} < e^{-pS} \le e^{-100 \ln(n)} = \frac{1}{n^{110}}$
by union bound, prob to be hitting set is $\ge 1 - \frac{1}{n^{10}}$
expeded size is $np = O(\frac{n}{5} \ln n)$
can prove that this is also the size $u \cdot hp$ (Chornoff)
Method 2 sample ASV uniformly at random from
the subjects of V with size Inpl
prob to miss specific S_j is
 $\frac{n-|S_j|}{n} \cdot \frac{n-|S_j|-1}{n-2} \cdot \frac{n-|S_j|-2}{n-2} \cdot \frac{1}{i=1} \cdot \frac{n-|S_j|-(i-1)}{n-(i-1)}$
 $\le (1 - \frac{|S_j|}{n})^{ln}p^{ln} < e^{-\frac{n}{n}} \cdot \frac{n}{p} = e^{-pS} = \frac{1}{n^{110}}$
by union bound, get hitting set $u.p. \ge 1 - \frac{1}{n^{10}}$

J

Step 2 define
$$U = \{ u \in V \mid deg(u) \ge \sqrt{n} \}$$

- build hitting set A for ubrhoods of verts in U
- for $u \in U$, choose arbitrary ubr $a(u) \in A$ and
add the edge $(u, a(u))$ to H
(we call $a(u)$ the center of u)

